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Abstract

P-log is a probabilistic logic programming lan-
guage, which combines both logic programming
style knowledge representation and probabilistic
reasoning. In earlier papers various advantages of
P-log have been discussed. In this paper we further
elaborate on the KR prowess of P-log by showing
that: (i) it can be used for causal and counterfactual
reasoning and (ii) it provides an elaboration toler-
ant way for non-naive conditioning.

1 Introduction and Motivation

In recent years there has been a lot of progress in logical
knowledge representation and reasoning as well as proba-
bilistic knowledge representation and reasoning. There have
been some attempts at developing formalisms that allow both
logical as well as probabilistic knowledge representation.

One such approach is Pearl’s probabilistic causal models
[Pearl, 2000]. While Pearl’s formalism is an improvement
over traditional propositional probability representations such
as Bayes’ nets, there are still the limitations that are asso-
ciated with propositional representation as well as classical
(and hence monotonic) reasoning. In recent years approaches
to overcome both have been proposed. Proposed approaches
to overcome the limitations of propositional representation
include probabilistic relational models [Koller, 1999; Getoor
et al., 2001], various probabilistic first-order logics [Nilsson,
1986; Bacchus, 1990; Bacchus et al., 1996; Halpern, 1990;
2003; Pasula and Russell, 2001; Poole, 1993], and ap-
proaches based on assigning weights to first-order formu-
las [Paskin, 2002; Richardson and Domingos, 2006]. There
have been also many formalisms that integrate logic pro-
gramming with probability such as Poole’s Probabilistic Horn
Abduction (PHA) [Poole, 1993], his Independent Choice
Logic (ICL) [Poole, 1997; 2000], the LPAD formalism [Ven-
nekens et al., 2004], Bayesian logic programming [Kerst-
ing and Raedt, 2000], ALTERID [Breese, 1990; Wellman
et al., 1992], probabilistic knowledge bases [Ngo and Had-
dawy, 1997], stochastic logic programs [Muggleton, 1995;
Cussens, 1999], probabilistic constraint logic programs [Rie-
zler, 1998; Santos Costa et al., 2003], interval based prob-
abilistic logic programming [Ng and Subrahmanian, 1992;

1994; Dekhtyar and Dekhtyar, 2004; Lukasiewicz, 1998],
dynamically ordered probabilistic choice logic programming
[De Vos and Vermeir, 2000], and the recent langauge P-log
[Baral et al., 2004; 2005]. Our focus on this paper is on P-
log.

Earlier it was shown that P-log has many advantages over the
other languages. In particular, P-log allows a wide variety of
updates compared to the other approaches; it allows explicit
specification of background knowledge; and it allows logical
reasoning to dynamically decide on the range of values that a
random variable can take. In this paper we show how P-log
can also do causal and counterfactual reasoning of the kind in
Pearl’s probabilistic causal models. We give an encoding of
probabilistic causal models in P-log and state the correspon-
dence. Our correspondence shows that while the computation
of causal and counterfactuals in PCMs is algorithmic in na-
ture, in the encoded P-log it is automatically captured by the
semantics of the language. We then show that P-log’s abil-
ity to allow logical reasoning to dynamically decide on the
range of values that a random variable can take leads to a
elaboration tolerant way to perform non-naive conditioning
[Halpern, 2003]. We illustrate this with respect to Halpern’s
second-ace puzzle example.1

2 Background

In the next two subsections, we will briefly review the syntax
of a simplified version of P-log [Baral et al., 2004] and the
syntax and semantics of probabilistic causal models [Pearl,
2000].

2.1 P-log lite: an overview

For simplicity, we will define a subset of the probabilistic
logic programming language P-log, which we will call P-log
lite. We use logic programming terminology of terms, atoms
and literals. A P-log lite program Π consists of (i) a set of
boolean attributes {p,¬p : p is an atom }, (ii) a regular part,
(iii) a set of random selection rules, (iv) a probabilistic infor-
mation part, and (v) a set of observations and actions. In the
following by t we denote a vector of parameters consisting of
terms, and by ¬̃p we refer to p and by p̃ we refer to ¬p.

1Earlier work on P-log [Baral et al., 2004] hinted at this with
respect to the Monty Hall example. However no general methodolo-
gies for “non-naive” conditioning were proposed.
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(ii) Regular part: The regular part of a P-log lite program
consists of a collection of logic programming rules (without
disjunction and under the stable model semantics).

(iii) Random Selection: A random selection is a rule of the
form

random(a(t)). (1)

Statement (1) says that one of a(t) or ¬a(t) is selected at ran-
dom. In P-log with non-boolean attributes the random state-
ment is more general and is of the form:
random(Attr : {X : p(X)}).

(iv) Probabilistic Information: Information about probabil-
ities of random attributes taking particular values is given by
probability atoms (or simply pr-atoms) which have the form:

pr(l) = v. (2)

where l is a(t) or ¬a(t), and pr(a(t)) = v would cause a(t)
with probability v.

(v) Observations and actions: Observations and actions are
statements of the respective forms: obs(l) and do(l).

Observations are used to record the outcomes of random
events, i.e., random attributes and attributes dependent on
them. The statement do(a(t)) indicates that a(t) is made true
as a result of a deliberate (non-random) action.

Semantics of P-log lite:

The semantics of a P-log lite program Π is given by a collec-
tion of the possible sets of beliefs of a rational agent associ-
ated with Π, together with their probabilities.

We start with translating the logical part of a P-log lite pro-
gram Π to an Answer Set Prolog program τ(Π) as described
below.

(a) τ(Π) contains the regular part of Π.

(b) For each attribute atom a(t), τ(Π) has the rules:

intervene(a(t)) ← do(a(t)).
intervene(a(t)) ← do(¬a(t)).

(c) For each random(a(t)) in Π, τ(Π) has the Smodels rule:

1{a(t),¬a(t)}1 ← not intervene(a(t)).

The left hand side of the above rule means that one of a(t)
and ¬a(t) must be in the answer set.

(d) τ(Π) has all the actions and observations of Π.

(e) For all literals l, τ(Π) has the rules:

← obs(l), not l.
l ← do(l).

An answer set of τ(Π) is called a possible world of Π. The
set of all possible worlds of Π is denoted by Ω(Π).

Let W be a possible world of a P-log lite program Π. If Π
contains a random selection rule of the form random(a(t)),
then we say that both a(t) and ¬a(t) are possible in W with
respect to Π. For every W ∈ Ω(Π) and every literal l possible
in W we now define the corresponding probability P (W, l).

For each l possible in W :

If l ∈ W , Π has a pr-atom pr(l) = v and W does not contain

intervene(l) then P (W, l) = v, and P (W, l̃) = 1 − v.

If for any attribute literal l, we do not have pr-atoms for either

l or l̃, l ∈ W and W does not contain intervene(l) then

P (W, l) = 0.5, and P (W, l̃) = 0.5.

Now we are ready to define the measure, μΠ, induced by the
P-log lite program Π.

Definition 1. (Measure) (i) The unnormalized probability,
μ̂Π(W ), of a possible world W induced by Π is μ̂Π(W ) =∏

l∈ W P (W, l), where the product is taken over literals for

which P (W, l) is defined.

(ii) The measure (or the normalized probability), μΠ(W ), of a
possible world W induced by Π is the unnormalized probabil-
ity of W divided by the sum of the unnormalized probabilities

of all possible worlds of Π, i.e., μΠ(W ) = μ̂Π(W )P
Wi∈Ω

μ̂Π(Wi)

When the program Π is clear from the context we may simply
write μ̂ and μ instead of μ̂Π and μΠ respectively. �

The truth and falsity of propositional formulas with respect to
possible worlds are defined in the standard way. A formula A
is true in W is denoted by W � A.

Definition 2. (Probability)
The probability with respect to program Π of a formula A,
PΠ(A), is the sum of the measures of the possible worlds of
Π in which A is true, i.e. PΠ(A) =

∑
W�A μΠ(W ). �

When Π is clear from the context we may simply write P in-
stead of PΠ. Conditional probability in P-log lite is defined
in the usual way. Moreover, under certain consistency con-
ditions (which hold for the examples discussed in this paper)
on P-log lite programs T , formulas A, and a set of literals B
such that PT (B) �= 0, we have PT (A|B) = PT∪obs(B)(A)

2.2 Probabilistic causal models

In this section we present many definitions from [Pearl, 2000]

and give our definition of a PCM-probabilistic query.

Causal model: A causal model is a triple M = 〈U, V, F 〉
where

(i) U is a set of background variables, (also called exogenous),
that are determined by factors outside the model;

(ii) V is a set {V1, V2, . . . Vn} of variables, called endoge-
nous, that are determined by variables in the model - that is,
variables in U ∪ V ; and

(iii) F is a set of functions {f1, f2, . . . fn}, such that each fi

is a mapping from U ∪ (V \Vi) to Vi, and such that the entire
set F forms a mapping from U to V . In other words, each fi

tells us the value of Vi given the values of all other variables in
U ∪V , and the entire set F has a unique solution for V , given
a realization of U . Symbolically, the set of equations F can
be represented by writing Vi = fi(PAi, Ui), i = 1, . . . , n,
where PAi (connoting parents) is a subset of variables in V \
Vi and Ui stands for a subset of variables in U .

We will refer to the realization of a set of variables Y ⊆ V
given the causal model M and the background variable real-
ization of U = u as YM (u). Y (u) will be used as shorthand
for YM (u), but we will explicitly use the subscript Mx for
realizations of submodels defined below.

IJCAI-07
244



Example 1. We have a simple causal model consisting of a
background variable U , endogenous variables A and B, and
the set of the following causal functions:

A = U ∧ B. B = U ∨ A.

For each value of U , there is a unique solution for A and B.
That is, for U = 1, A = B = 1 and for U = 0, A = B = 0.
�

Submodel: Let M be a causal model, X be a set of variables
in V , and x be a particular realization of X . A submodel Mx

of M is the causal model Mx = 〈U, V, Fx〉 where Fx = {fi :
Vi �∈ X} ∪ {X = x}.

Submodels are useful for representing the effect of local ac-
tions and hypothetical changes. Mx represents the model that
results from a minimal change to make X = x hold true un-
der any realization of U .

Effect of Action: Let M be a causal model, X be a set of
variables in V , and x be a particular realization of X . The
effect of action do(X = x) on M is given by the submodel
Mx.

Potential Response: Let X and Y be two subsets of vari-
ables in V . The potential response of Y to action do(X = x),
denoted YMx

(u), is the solution for Y of the set of equations
Fx, where u is a particular realization of U .

Counterfactual: Let Xi and Y be two subsets of variables
in V . The counterfactual sentence “The value that Y would
have obtained, had Xi been forced to be xi” is interpreted as
denoting the potential response YMxi

(u), where u is a partic-
ular realization of U .

Probabilistic causal model: A probabilistic causal model
(PCM) is a pair 〈M, P (u)〉 where M is a causal model and
P (u) is a probability function defined over the domain of U .

Because the set of functional equations forms a mapping from
U to V , the probability distribution P also induces a proba-
bility distribution over the endogenous variables.

For every set of variables Y ⊆ V , we have: P (Y = y) =∑
{u | Y (u)=y} P (u)

The probability of a counterfactual statement is defined us-
ing the potential response, YMx

(u), induced by the submodel
Mx. It can be expressed in a similar manner: P (YMx

= y) =∑
{u | YMx

(u)=y} P (u)

PCM probabilistic query: Joint probabilities of counter-
factuals that are conditional on observations will be the fo-
cus of our counterfactual reasoning. Let YMx1

= y1,. . . ,
YMxm

= ym be counterfactuals and let B and C be subsets of
V. A PCM probabilistic query is of the form P(YMx1

= y1,. . . ,

YMxm
= ym, B = b | C = c), and its value is given by:

∑
u

P (YMx1
= y1, . . . , YMxm

= ym, B = b | u)P (u | c)

3 Encoding Pearl’s firing squad in P-log lite

In this section we will consider Pearl’s firing squad example
and show how one can encode this example in P-log lite and
ask counterfactual queries.

The firing squad PCM: The PCM of the firing squad has two
background variables U and W , and endogenous variables
A, B, C, and D; which stand for

U = court orders the execution; C = captain gives a signal;
A = rifle A shoots; B = rifle B shoots; D = the prisoner dies;
W = rifle A pulls the trigger out of nervousness.

The causal relationships between the variables are described
by the functional equations C = U ; A = C ∨ W ; B =
C; D = A ∨ B. In addition the probabilities of the back-
ground variables are given as P (U) = p and P (W ) = q.

3.1 Example of an observation assimilation query

Consider the query that asks the probability that B shot given
that the prisoner is dead? In PCM formalism this will be ex-
pressed as P (B|D).

To translate this query to an equivalent P-log lite query we
will use a program Π1 that captures both the causal rela-
tionships and the probabilistic arguments found in the firing
squad PCM. The program Π1 will have explicit rules for the
positive and negative boolean variables. The P-log lite pre-
dictive query is not conditioned on the fact that the prisoner
is dead. Instead, the fact that the prisoner is dead is added to
Π1 as an observation rule obs(D). The P-log lite program Π1

consists of the following:

1. Declarations for each background variable:

U : boolean. random(U).
W : boolean. random(W ).

2. Declarations for each endogenous variable:

C : boolean. A : boolean.
B : boolean. D : boolean.

3. Pr atoms and logic programming rules

pr(U) = p. pr(W ) = q.

4. Reminder of the logic programming rules

C ← U. ¬C ← ¬U.
A ← C. A ← W. ¬A ← ¬C ∧ ¬W.
B ← C. ¬B ← ¬C.
D ← A. D ← B. ¬D ← ¬A ∧ ¬B.

Result 1. P (B|D) = PΠ1 ∪ obs(D)(B) = p
1−(1−p)(1−q)

3.2 Example of an intervention query

Now let us consider the following intervention query: What
is the probability that the prisoner is dead given that A is not
allowed to shoot? In PCM formalism this is expressed as
P (DM¬A

).

To translate this query to an equivalent P-log lite query we
will use a program Π2 which is similar to Π1 with respect
to the parts (1)-(3) of Π1, but differs on part (4) by having
rules which are blocked when an intervention is done. In this
the nonmonotonic operator not of logic programs comes in
handy.

Part (4) of Π2

C ← U, not do(C), not do(¬C).
A ← C, not do(A), not do(¬A).
A ← W, not do(A), not do(¬A).
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B ← C, not do(B), not do(¬B).
D ← A, not do(D), not do(¬D).
D ← B, not do(D), not do(¬D).

¬C ← ¬U, not do(C), not do(¬C).
¬A ← ¬C,¬W, not do(A), not do(¬A).
¬B ← ¬C, not do(B), not do(¬B).
¬D ← ¬A,¬B, not do(D), not do(¬D).

Result 2. P (DM¬A
) = PΠ2 ∪ do(¬A)(D) = p

3.3 Example of a counterfactual query

We now consider the following counterfactual query from
[Pearl, 2000]: “What is the probability that the prisoner
would be alive if A had not shot given that the prisoner is
in fact dead?”

In PCM this counterfactual query is expressed as either
P (¬DM¬A

| D) or as P (¬DM¬A
| DM ), where M is the orig-

inal causal model.

Thus the PCM counterfactual query has two causal models in
the probabilistic query. The conditional variable DM , which
is an equivalent representation of variable D, is a member of
the original causal model M , while the variable YM¬A

is a
member of the submodel M¬A.

Our encodings in Π1 refers to the model M and our encod-
ing in Π2 refers to the model M¬A. Now we need both. We
achieve this by carefully using the indices 0 and 1 for the
endogenous variables. We do not use any index for the ex-
ogenous variables as they remain the same in both models.

Note that in Π1 we do not apply do() rules to the original
model M , since by definition submodels are the result of an
effect of action do() on the original model M . Therefore all
variables that are members of the M do not need intervention
rules in the translation.

The P-log lite encoding of the above example will consist of
the program Π3 given below. To ask the query all one needs
to do is to add obs(D(0)) and do(¬A(1)) to Π3 and compute
the probability of ¬D(1). In the syntax of P-log lite this is
expressed as PΠ3 ∪ obs(D(0)) ∪ do(¬A(1))(¬D(1)).

The intuition behind adding obs(D(0)) is that D is observed
with respect to the original model M which is encoded by the
index 0. The intuition behind adding do(¬A(1)) is that ¬A
is established (through an action) resulting in a new model
M¬A which is encoded by the index 1. The intuition behind
asking the probability of ¬D(1) is that the query is asked
about the model M¬A which, as we mentioned earlier, is en-
coded by the index 1. Now we describe the program Π3. Its
constituents are as follows:

• Declarations for each background variable:

U : boolean. random(U).
W : boolean. random(W ).

• Probability atoms corresponding to the background vari-
ables U and W.

pr(U) = p. pr(W ) = q.

• Indices to enumerate the models M and M¬A:

index = {0, 1}.

• Declarations for each endogenous variable:

C : index → boolean. A : index → boolean.
B : index → boolean. D : index → boolean.

• Rules that allow us to reason about the model M .

We use the index 0 for the endogenous variables. The
background variables do not have an index as they re-
main unchanged with respect to the original model and
its sub-models.

C(0) ← U. ¬C(0) ← ¬U.
A(0) ← C(0). ¬A(0) ← ¬C(0) ∧ ¬W.
A(0) ← W.
B(0) ← C(0). ¬B(0) ← ¬C(0).
D(0) ← A(0). ¬D(0) ← ¬A(0) ∧ ¬B(0).
D(0) ← B(0).

• Rules that allow us to reason about the model M¬A.

Since doing an action (as an assignment to a variable)
necessitates surgery to the model so that the parents of
the variable that is assigned no longer affect the variable;
we do it logically by adding “not do” in the bodies of the
rules. As a result we have the following rules:

C(1) ← U, not do(C(1)), not do(¬C(1)).
A(1) ← C(1), not do(A(1)), not do(¬A(1)).
A(1) ← W, not do(A(1)), not do(¬A(1)).
B(1) ← C(1), not do(B(1)), not do(¬B(1)).
D(1) ← A(1), not do(D(1)), not do(¬D(1)).
D(1) ← B(1), not do(D(1)), not do(¬D(1)).

¬C(1) ← ¬U, not do(C(1)), not do(¬C(1)).
¬A(1) ← ¬C(1) ∧ ¬W, not do(A(1)),

not do(¬A(1)).
¬B(1) ← ¬C(1), not do(B(1)), not do(¬B(1)).
¬D(1) ← ¬A(1) ∧ ¬B(1), not do(D(1)),

not do(¬D(1)).

To answer PΠ3 ∪ obs(D(0)) ∪ do(¬A(1))(¬D(1)) all one needs
to do is to add the intervention and observation facts
do(¬A(1)), and obs(D(0)), respectively and compute the
probability of ¬D(1) with respect to the resulting theory.

Result 3. P (¬DM¬A
| D)=

PΠ3 ∪ obs(D(0)) ∪ do(¬A(1))(¬D(1)) =
(1−p)× q

1−(1−p)(1−q)

4 A general encoding of PCM to P-log lite

We now generalize the encoding illustrated in the previous
section to arbitrary PCM theories and for queries that may
refer to multiple hypothetical models. We will refer to our
encoding2 as T . To accommodate multiple submodels, the P-
log lite rules will use an index variable S, where S = 0 will
correspond to the original model of the PCM theory and, S =
1 . . .m, will correspond to the m sub-models necessitated by
the probabilistic query. The encoding T will consist of the
following.

Step 1: Enumerate the models and submodels necessitated by
the probabilistic query 0, . . . , m. The variable S used in the

2Our encoding of a PCM theory and a query will be independent
of each other.

IJCAI-07
246



endogenous variables rules is in the domain of index:
index = {0, . . . , m}

Step 2: For each background variable u ∈ U , for which the
PCM has the probability p(u) = q, T will have the following:

u : boolean. pr(u) = q. random(u).

Step 3: For each endogenous variable v, with x1, . . . , xn ∈
U ∪ (V \ v) and with the associated function fv(x1, . . . , xn),
we do the following:

1. Add the following declaration:
v : index → boolean.

2. Let the disjunctive normal form of fv(x1, . . . , xn) be
c1 ∨ . . . ∨ cn, where each ci is a conjunction of liter-
als made up of from x1, . . . , xn. In the translation the
parameter S is added to each endogenous variable xi of
x1, . . . , xn, such that xi becomes xi(S). The P-log lite
program T will have the following rules:

v(S) ← c1, not do(v(S)), not do(¬v(S)).
...
v(S) ← cn, not do(v(S)), not do(¬v(S)).

3. Let the disjunctive normal form of ¬fv(x1, . . . , xn) be
d1 ∨ . . . ∨ dn, where each di is a conjunction of liter-
als made up of from x1, . . . , xn. In the translation the
parameter S is added to each endogenous variable xi of
x1, . . . , xn, such that xi becomes xi(S). The P-log lite
program T will have the following rules:

¬v(S) ← d1(S), not do(v(S)), not do(¬v(S)).
...
¬v(S) ← dn(S), not do(v(S)), not do(¬v(S)).

Step 4: Encoding the query P (b, YMx1
= y1, . . . , YMxm

=

ym|c)

4.1: For each counterfactual statement YMxi
= yi:

For each variable v ∈ V that is a member of the realization of
Xi = xi: if v is positive, we add do(v(S = i)); else (i.e., v is
negative) we add do(¬v(S = i)).

4.2: For each variable w ∈ c: if w is positive, we add
obs(w(0)); else (i.e., w is negative) we add obs(¬w(0)). �

Before presenting a theorem that formally relates PCM the-
ories and queries with our encoding, we need to consider a
notion of “being able to compute unique solutions of a causal
model using three valued iteration”. Consider the causal
model from Example 1 which had the functions: A = U ∧B.
B = U ∨ A. In Example 1 we showed that for each value
of U , there is a unique solution for A and B. In this case,
these unique solutions can be computed in an iterative fash-
ion. Suppose we initially assign the value false to U . We
then assign unknown to A and B. We now use 3-valued logic
on the causal functions and compute the values of A and B.
After the first iteration A has value false and B has value
unknown. After the second iteration we reach a fixpoint
where A and B are both assigned to false. This is what
we refer to as “being able to compute unique solutions of a
causal model using three valued iteration.”

Having unique solution does not necessarily mean that it can
be obtained using the above mentioned three valued iteration.
Following is a counterexample3:

Let A = ¬B ∨¬C ∨U , B = ¬A ∧ ¬C, and C = A ∨ ¬B.
When U is false we can not derive the value of A, B, or C
by a three valued iteration. But, there is the unique solution
A = true, B = false, and C = true that satisfies the causal
functions.

Theorem 1. Given a PCM M = 〈M, P (U)〉, let P denote
the probabilistic query with respect to it and let the P-log lite
program T be obtained by the encoding of M as described in
the previous section. Let b, c, y1, . . . , ym and x1, . . . , xm be
realizations of subsets of the endogenous variables V . Also
let YMxi

= xi be counterfactual statements, where Mxi
is

a submodel of M . If all realizations of U = u give unique
solutions for endogenous variables in the submodels Mxi

and
the unique solutions can be computed in an iterative fashion
starting from the background variables we have the following:
P (b, YMx1

= y1, . . . , YMxm
= ym|c) =

PT∪obs(c(0))∪do(x1(1))∪...∪do(xm(m)))

(b(0), y1(1), . . . , ym(m)).

Discussion on the theorem and its proof:

Here the encoding has three main aspects: (i) the encoding
of the PCM equations, (ii) taking into account the severing of
connections between variables when an action is performed,
and (iii) considering models and submodels in parallel during
counterfactual reasoning. For part (i) the notion of “unique
solutions being computed in an iterative fashion” is impor-
tant as that leads to a correspondence between the unique so-
lutions and the answer sets. To do (ii) we use the negation
as failure operator “not” and to do (iii) we introduce multiple
time lines. Overall, the proof is based on splitting the logic
programming translation of T to many layers, where the bot-
tom layer consists of the enumeration of the background vari-
ables.

4.1 PCM, PAL and P-log lite

A related work is [Tran and Baral, 2004], where an encod-
ing of PCM in an action language PAL is given. The en-
coding here to a probabilistic logic programming language
P-log lite is different from the encoding in [Tran and Baral,
2004]. There the key issue was to encode the severing of con-
nection between variables when an action is performed. It
was achieved by introducing an ab predicate and having ef-
fect axiom make(vi) causes {ab(vi), vi} and a static causal
law ¬ab(vi) causes vi ⇔ fi(PAi, ui) to capture the PCM
equation vi = fi(PAi, ui).

5 Non-naive conditioning in P-log

We now show how P-log provides an elaboration tolerant
way to perform non-naive conditioning in that it shows a

3This has significance beyond AI, as the recent thesis [Riedel,
2003] (awarded the best Ph.D thesis of Electrical Engineering at the
California Institute of Technology for the year 2003) mentions three
valued iteration but does not point out that the iteration does not
necessarily lead to the unique solution.
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way to incorporate new observations through simple addition
of knowledge rather than a surgery of existing knowledge.
Halpern in [Halpern, 2003], uses the term naive conditioning
to refer to conditioning with respect to the ‘naive’ state space
one usually constructs when trying to reason. He discusses
several examples, where naive conditioning gives the wrong
answer. Following is his second-ace puzzle:

A deck has four cards: the ace and the deuce of hearts and
spades. After a fair shuffle, two cards are dealt to Alice. It
is easy to see that, at this point, there is a probability of 1/6
that Alice has both aces, a probability of 5/6 that Alice has at
least one ace, a probability of 1/2 that Alice has ace of spades
and a probability of 1/2 that Alice has ace of hearts.

Alice then says, “I have an ace.” Conditioning on this in-
formation (by discarding the possibility that Alice was dealt
no aces), Bob computes the probability that Alice holds both
aces to be 1/5. This seems reasonable. Next, Alice says, “I
have the ace of spades.” Conditioning on this new informa-
tion, Bob now computes the probability that Alice holds both
aces to be 1/3. But suppose that Alice had instead said, “I
have the ace of hearts.” It seems that a similar argument
again shows that the conditional probability that Alice holds
both aces is 1/3.

Is this reasonable? When Bob learns that Alice has an ace,
he knows that she must have either the ace of hearts or the
ace of spades. Why should finding out which particular ace it
is raise the conditional probability of Alice having two aces?
Put another way, if this probability goes up from 1/5 to 1/3
whichever ace Alice says she has, and Bob knows that she
has an ace, then why isn’t it 1/3 all along?

Halpern [Halpern, 2003] analyzes the above example and
points out that it is important to know to what question Al-
ice answered: “I have ace of spades.” He goes on to say that
if she is asked (Q1) to name an ace if she has any and it is
given that if she has both aces she will pick one of their col-
ors with equal probability, naive conditioning does not lead to
the right answer. We agree with Halpern. In this case instead
of the naive possible worlds, one needs to take into account
the new question and create a new set of possible worlds. P-
log allows us to do that within the language in a nice way. On
the other hand if Alice’s answer is with respect to the ques-
tion (Q2) which asks if Alice has the ace of spades, then the
assimilation of Alice’s answer is different, and in this case
naive conditioning works.

The second-aces puzzle in P-log:

Consider the following encoding Π1 of the second-ace puzzle
in P-log.4

card1 and card2 have the domain card = {1s, 2s, 1h, 2h}.

random(card1).

¬p2(X) ← card1 = X . p2(X) ← not ¬p2(X).

random(card2 : {X : p2(X)}).

4Here we use full P-log rather than P-log lite that we presented
earlier. Among the differences, in full P-log the literals are more
general and attributes can take values from a declared domain rather
than being just true or false.

has alice(X) ← card1 = X .
has alice(X) ← card2 = X .

Result 4. Probabilities w.r.t. Π1

(i) PΠ1
(has alice(1s) ∧ has alice(1h)) = 1/6

(ii) PΠ1
(has alice(1s) ∨ has alice(1h)) = 5/6

(iii) PΠ1
(has alice(1s)) = 1/2

(iv) PΠ1
(has alice(1s) ∧ has alice(1h)|has alice(1s)) =

1/3

Now we will consider that Alice’s response of “I have ace
of spades” is with respect to the question Q1. In that case
we propose that the new information is incorporated to Π1 by
adding the following to Π1:

random(o : {X : p(X)}).
p(1s) ← has alice(1s). p(1h) ← has alice(1h).

We refer to the resulting P-log program as Π2.

Result 5. PΠ2
(has alice(1s) ∧ has alice(1h)|o = 1s) =

1/5

A general methodology:

From the encodings in the previous section one can draw the
lesson that when an observation x about a particular concept
is made, one can incorporate that observation correctly and
avoid possible error associated with naive conditioning by:

1. Adding rules for a new predicate p(X) that define the
value that o can take.

2. Adding the random declaration for a new attribute o:

random(o : {X : p(X)}).

3. Adding the observation obs(o = x).

Moreover the steps (1) and (2) are useful for defining the val-
ues that an attribute can take. It is used in Π1 when defining
the values the attribute card2 can take, after card1 has been
assigned a value.

6 Conclusion

In this paper we have shown how to do non-naive condition-
ing and encode Pearl’s probabilistic causal models (PCMs)
in P-log lite. We show how one can reason about simple ob-
servations, observations as a result of answers given to spe-
cific queries, interventions and counterfactuals, in P-log lite.
There is a distinct difference between how reasoning about
interventions and counterfactuals is done in PCMs and in P-
log lite. In the former, surgery is done on a given PCM the-
ory to obtain sub-models due to interventions, while in the
later one just needs to add do facts, and let the semantics take
care of the reasoning. Another difference between the two ap-
proaches is that P-log, because of its superior logical knowl-
edge representation aspect, allows one to specify more nu-
anced theories. For example, with respect to the firing squad
example, one can express knowledge such as “Rifleman B
normally follows the captain’s order”. An elaboration toler-
ant representation of “normally” will allow easy elaboration
of new knowledge such as: “B, as a conscientious objector
to death penalty, defies his captain with respect to shooting.”
Such representation and elaboration is straightforward in P-
log, while the corresponding PCM theory will need surgery.
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