
An Experience on Reputation Models Interoperability
based on a Functional Ontology

Laurent Vercouter
École N.S. des Mines de Saint-Étienne

158 cours Fauriel
F-42023 Saint-Étienne Cedex 02, France

Laurent.Vercouter@emse.fr

Sara J. Casare, Jaime S. Sichman, Anarosa A. F. Brandão
University of São Paulo, Brazil

Av. Prof. Luciano Gualberto, 158 - trav. 3
05508-900 São Paulo SP Brazil

{sara.casare, jaime.sichman}@poli.usp.br,
anarosabrandao@gmail.com

Abstract

Interaction between heterogeneous agents can raise
some problems since agents may not use the same
models and concepts. Therefore, the use of some
mechanisms to achieve interoperability between
models allows agents to interact. In this paper we
consider the case of reputation models by describ-
ing an experience of using several existing tech-
nologies to allow agents to interoperate when they
use reputation notions/values during interactions.
For this purpose, we have implemented agents on
the ART testbed and we make them use a functional
ontology of reputation which was developed to al-
low the interoperability among reputation models.

1 Introduction

In open multi-agent systems, it is often a problem to achieve
agents’ interoperability. Agents may be heterogeneous and
it is not trivial to establish interactions and cooperations be-
tween agents that use different models. We have to provide
means by which agents can understand each other and trans-
late part of their models into the model of other agents (and
vice versa).

In this paper we will focus on the specific case of reputation
models. The work presented here describes an experience of
using several existing technologies to allow agents to interop-
erate when interacting using the notions from their reputation
models. We implemented agents on the ART testbed [Ful-
lam et al., 2005] that provides an infrastructure for the ex-
perimentation of reputation models. Then, we used the func-
tional ontology of reputation [Casare and Sichman, 2005b] to
allow agents to describe their own reputation model for exter-
nal purposes and a query language over OWL [Bechhofer et
al., 2004], called nRQL, for agent interactions.

The next section presents the background of this work and
describes briefly the used tools (the ART testbed and the func-
tional ontology). Section 3 details our proposition by explain-
ing how an agent can use the ontology to interoperate with
others. At last, section 4 shows the implementation of this
work on ART.

2 Background
This section first states the current heterogeneity of reputa-
tion models and then presents the tools that were used as a
background of this work: the ART testbed and the functional
ontology of reputation.

2.1 Heterogeneity of Reputation Models
Multi-agent systems arised new kind of chalenges for devel-
opers due to their specific and original features as, for in-
stance, the openness of the system, the decentralized man-
agement of tasks and the autonomy of agents. These fea-
tures taken together imply that some agents, potentially im-
plemented by different developers, can enter or leave dynam-
ically the system, and that these agents may be involved in
collective tasks and will cooperate with other agents that rely
on them. Furthermore, since agents are considered as au-
tonomous entities, we cannot assume that there is a way to
control their internal behavior. These features are interest-
ing to obtain flexible and adaptive systems but they also cre-
ate new risks about the reliability and the robustness of the
system. The risk that an agent does not behave well (inten-
tionnally or not) is increased. This bad behavior can cause
the failure of some tasks performed by the agent but also of
collective tasks in which it is involved.

Solutions to this problem have been proposed by using
trust models. The main idea of this approach is to endow
agents with a model of other agents that allows them to de-
cide if they can trust these other agents or not. Such trust
decision is very important because it is an essential condition
to the formation of agents’ cooperation. The trust decision
process has been the subject of several propositions from dif-
ferent researchers. Most of them use the concept of reputa-
tion as the basis of a decision. Reputation is a subject that
has been studied in several works [Castelfranchi and Falcone,
1998; Sabater and Sierra, 2001; Conte and Paolucci, 2002;
Abdulrahman, 2004; Muller and Vercouter, 2005] with dif-
ferent approaches but also with different semantics attached
to the reputation concept. The word “reputation” does not
have exactly the same meaning depending on the approach.
Some authors consider that an agent has only one associ-
ated reputation value that is globally maintained by the sys-
tem [Zacharia et al., 1999], whereas others think that two
agents can have a different opinion about the reputation of
an agent [Sabater and Sierra, 2001; Abdulrahman, 2004;

IJCAI-07
617

Muller and Vercouter, 2005]. Moreover, some works consider
that reputation should be relative to a given context [Castel-
franchi and Falcone, 1998], to the sources used to build
it [McKnight and Chervany, 2001], to the nature of its tar-
get [McKnight and Chervany, 2001], to the facet of the agent
that is evaluated [Sabater and Sierra, 2001; Wang and Vas-
sileva, 2003], and so on.

These different approaches result in a wide semantic het-
erogeneity of reputation models. Two different reputation
models do not represent exactly the same things, and some-
times they even use the same word for different concepts.
These differences lead to some incompatibility among reputa-
tion models. Agents using different reputation models cannot
interact since their notions about one another reputation are
not understood each other. This is a heavy constraint over the
system because it imposes that every agent use the same repu-
tation model. In order to drop this constraint we must provide
a way to bring interoperability between the models.

2.2 The ART testbed
One of the consequence of the wide diversity of reputation
models and of their heterogeneity is that it is very difficult to
compare and to evaluate them. Each model focuses on the
representation of some specific concepts that may be differ-
ent from those of other models. The context and the kind
of the target application is also sometimes different. These
difficulties have been stated by the community during the
international workshop about trust in agent societies at AA-
MAS’04 [tru, 2004] and it has been decided to create a work-
ing group named ART (Agent Reputation and Trust) which
goal is the development of a testbed for the experimentation
and comparison of trust models.

A first version of the ART testbed has been developed and
used for a competition between trust models during the AA-
MAS’06 conference. This first version provides a simulation
engine on which several agents, using different trust models,
are running. The simulation consists in a game where the
agents have to decide to trust or not other agents. This game
is an art appraisal game in which agents are required to eval-
uate the value of paintings. The game can be summarized as
follows:

1. The ART simulation server gives to each agent a given
number of clients.

2. Each client gives to its agent the description of a paint-
ing. The client expects that the agent evaluates the paint-
ing and gives back to him an accurate value.

3. A painting is mainly characterized by an era. Accord-
ing to this era, an agent is more or less accurate in its
evaluations.

4. Each agent can ask other agents to help it in its evalua-
tion of a painting if it thinks that these other agents are
more accurate than itself for the corresponding era. This
exchange of information is called an opinion transac-
tion and to get this evaluation the requester pays a fixed
amount of money to the provider.

5. Agents also interact by the way of reputation transac-
tions. The information requester gives money to the

provider but this time, the information that is bought is
not an opinion about a painting but the reputation of an-
other agent (a target) for a given era. This reputation
represents the estimated accuracy of the target in its eval-
uation of paintings of the given era.

6. At last, each agent calculates a value for the paintings of
its clients and receives money for this evaluation. The
game is played during several iterations. At the next it-
eration, the amount of clients affected at an agent at step
(1) depends on the accuracy of its evaluation in the pre-
vious iteration.

More details about the ART testbed can be found in [Ful-
lam et al., 2005]. During most of this game, the incompati-
bility of trust models is not important because they are used
locally by their agents’ decision process. However, the case
of reputation transaction is particular because it is the only
moment where agents have to exchange information coming
from their trust models. Here, interoperability is required as
an agent must be able to formulate a query about reputation
values that must be understood by the receiver of the message.
This one must also be able to answer and to send the required
values in a format that is understood by the first agent. In
the current version of the ART testbed, interoperability is ob-
tained by asking the developpers of each agent to provide a
way to map their trust model into a very simple common rep-
utation model. This simple model defines that: (i) an agent
associates with each of its acquaintances a single value named
“Reputation weight”; (ii) this reputation weight is a value in
the domain [0:1].

2.3 The functional ontology of reputation
The diversity of domains that are interested in trust and rep-
utation implies a wide and confusing heterogeneity of con-
cepts and definitions. This diversity is also found in the trust
models used in multi-agent systems as they are often inspired
by social or economic sciences. In order to allow the inter-
operability of trust models, Casare and Sichman [Casare and
Sichman, 2005b] proposed a functional ontology of reputa-
tion. This ontology aims at identifying and organizing the
concepts and relations involved in trust models. The authors
have studied the main models in multi-agent systems in or-
der to identify the important concepts that may appear in a
trust model. Then they defined a functional ontology that sub-
sumes the main reputation models.

This ontology includes concepts for different aspects of a
reputation model. It both represents reputation as a process
(using concepts to describe the procedures, the actors, the
data, . . .) and as a product (using concepts to structure the
description of a reputation product). For instance, there exists
concepts to represent different reputation natures - according
to the entity (agent, event, location, etc.) that is evaluated;
different reputation types - according to the way it has been
computed; different information sources to build reputation;
etc.

An implementation of such ontology was described using
the OWL language [Bechhofer et al., 2004]. The authors
claim that the functional ontology of reputation could be used
for interoperability as it is possible to map a reputation model

IJCAI-07
618

into concepts of the ontology. Thus, an agent can map its own
reputation model into these concepts and can understand the
reputation models of others if they are also mapped. The next
section describes how we propose to achieve this.

3 Using the ontology for the interoperability
of reputation models

Reputation building is a learning process that needs several
experiences with the evaluated agents to calculate relevant
values. Thus, it is often suggested that agents should interact
in order to get more information and to accelerate the con-
vergence of the learning process. The lack of interoperability
between reputation models is then a problem because it pre-
vents any interaction between agents using different models.

We propose to use the functional ontology as an intermedi-
ary between reputation models. Since the ontology subsumes
most of the existing reputation models, we can assume that it
is possible to define a mapping between a reputation model
and part of the ontology. Interoperability is then achievable
if an agent selects in its own model some information to send
to another agent, maps it into ontology concepts and sends
the mapped information to the other agent that can convert it
according to its own model. In this section we first identify
some interesting concepts of the ontology, then show how to
use them for agent interaction. At last, an agent architecture
based on this approach is proposed.

3.1 Concepts used to describe a reputation model
The functional ontology proposed by Casare and Sich-
man [Casare and Sichman, 2005b] aims at covering a broad
knowledge about reputation. The concepts included in the on-
tology can describe several aspects about reputation but a few
of them were useful for the mapping of a reputation model.
For this purpose, we have identified the following concepts:

• Reputation role used to specify the roles fulfilled by
some given agents during a reputation calculation pro-
cess. The roles considered are the target who is eval-
uated, the evaluator or the maintainer that calculates a
reputation value, the transmitter that sends a reputation
value to another agent and the recipient that will use the
reputation value.

• Reputative entity used to address a given entity. There
are three kinds of entities: agents, non-agents (as events,
locations, . . .), or skills (owned by agents). Each of
these entities can be the target of a reputation.

• Reputation type that distinguishes different reputations
according to the way they where obtained. For instance,
primary reputation is obtained from direct experiences
with target, whereas secundary reputation is based on
second hand information.

• Reputation evaluation value and reputation final
value containing the value of a reputation. An evalu-
ation value is the result of a single evaluation process
whereas a final value is computed from several evalu-
ation values and represents a global evaluation about a
target.

These concepts are used to build an external description
of a reputation model. This external description contains in-
stances of these concepts.

3.2 Defining mapping between reputation models
and the functional ontology

As shown in [Casare and Sichman, 2005a], it is possible to
map reputation concepts between different models using the
functional reputation ontology as an intermediary. The fol-
lowing example illustrates how it should be done using two
reputation models: Cognitive Reputation Model [Conte and
Paolucci, 2002] and Regret Model [Sabater and Sierra, 2001].

The Cognitive Reputation Model adopted the term “Im-
age” in order to represent an evaluation (telling whether an
agent is good or bad) formed using information acquired by
agent direct experience, while in the Regret model the term
“Direct Trust” refers to the evaluation of an agent behavior
that is built from a direct interaction between agents.

By expressing these two concepts in terms of ontology ele-
ments, we have found that both of them are subsumed by the
same concept, named “Primary Reputation”, that represents
the reputation that is obtained from direct experiences with
target.

So, suppose we have an agent using the Cognitive Reputa-
tion Model that is asking another agent, that is using Regret
Model, some reputation information acquired by direct expe-
rience about a specific location, Rio de Janeiro. If both of
them are using the ontology as an intermediary, the second
one can provide its “Image” value for Rio de Janeiro while
the first one can understand it as corresponding to its “Direct
Trust” value.

3.3 Agent interaction about reputation
Agents interact in order to exchange information. We say
that an agent interacts about reputation when the interac-
tion purpose is to receive information about the reputation
of someone or something, as shown in the above example.
These interactions consist in a simple query/answer protocol,
as shown by figure 1. One agent, called the requester, sends
a query about some reputation information to another agent,
called the provider. Then the provider answers by a message
containing the required information.

Requester provider

request(nRQL query)

inform(nRQL answer)

Figure 1: interaction about reputation protocol

The interesting part is not on the protocol or on the format
of the messages that we kept very simple, but on the content
of each message. Since the agents may use different reputa-
tion models, the content of the messages must refer to con-

IJCAI-07
619

cepts of the ontology. In its current implementation, the on-
tology has been written using OWL [Bechhofer et al., 2004].
The queries must then refer to this ontology using a query
language for OWL. We decided to use nRQL [Haarslev et
al., 2004] that is the query language of the Racer [RacerPro,
2006] tool. This choice is motivated by the fact that Racer is
actually the leading tool for reasoning about ontologies and
thus nRQL is close from becoming a standard de facto. Then
the content of a query is a string formatted as a query ex-
pressed in nRQL and the answer is a string representing the
answer to this query as if it was treated by a Racer engine.

3.4 An agent architecture for interoperability

Agents must be able to formulate and understand queries and
their answers in nRQL, using the concepts presented in sec-
tion 3.1. Figure 2 shows an overview of a general agent archi-
tecture that allows this. The figure does not represent a full
architecture but rather some elements that have to be added to
an existing architecture in order to interact about reputation.

Interaction
Module

Functional
Ontology of
Reputation

Reputation
Mapping
Module

Reputation
Model

Reputation
Reasoning

Module

Interaction with
other agents

(this agent’s)
other modules

AGENT

control module

data module

control flow

data flow

Figure 2: General agent architecture for reputation interaction

This general architecture functions as follow:

1. The interaction module receives a message. If the mes-
sage is about reputation, it is transmitted to the reputa-
tion mapping module.

2. The reputation mapping module analyzes the content of
the message and transforms it to comply with the repu-
tation model of the agent. To do so, the reputation map-
ping module uses concepts of the functional ontology
and the structure of the reputation model. It must also
know how to map information from the ontology into
concepts of the agent’s reputation model.

3. The translated message is forwarded to the reputation
reasoning module. This one can now understand it and
handle it as it should. Reputation reasoning is out of the
scope of our work and it is not studied further here.

4. If the reputation reasoning module needs to interact with
other agents, it formulates a message according to its
own reputation model and sends it to the reputation map-
ping module.

5. In this case, the reputation mapping module translates
the content of the message into concepts of the ontol-
ogy and forwards the resulting query to the interaction
module that sends it to other agents.

During translation, the reputation mapping module uses es-
pecially the concepts described in section 3.1. However, it
can refer to other concepts of the ontology to formulate spe-
cific relations between concepts, for instance inside a query.
An example of this case is given in the next section.

4 Experimentation in the ART testbed

We have implemented agents using the ontology for inter-
actions about reputation. For experimental validation of our
approach, we used the ART testbed as a deployment infras-
tructure for our agents. Firstly, we implemented agents that
have the ability of interact about reputation using the ontol-
ogy. Secondly, we modified the ART testbed to use the repu-
tation mapping facilities for monitoring purposes to facilitate
the use of ART as an experimentation tool.

4.1 Agents’ interactions in the ART testbed

In the first version of the ART testbed, the protocol used for
reputation transaction rely on a common reputation model.
This common model is used by agents to represent externally
their own reputation model. Since the internal implementa-
tion of reputation models is free, this common model was
defined to solve the interoperability problem. Thus, the im-
plementation of each agent must provide a mapping of the
internal model into the common model. In order to remain
general enough, the common model is very simple: it as-
sociates with each couple (agent, painting era) a numerical
value between 0 and 1. Then, reputation transactions in ART
consist of queries about a given couple (agent, painting era)
and an answer containing the numerical value associated with
the provider’s model.

The problem with this common model is that it is too sim-
ple. The mapping of complex internal reputation models into
a simplistic one results in a big loss of expressiveness and de-
tails. It is thus impossible to perform finer agent interactions
about reputation.

Our proposition to use the functional ontology of reputa-
tion as a kind of shared reputation model for interaction has
been implemented in ART. We have modified the ART en-
gine to allow the exchange of messages for reputation trans-
action and those contents are rough strings (instead of couples
(agent, painting era) or numerical value). It is expected that
these strings were queries and answers written in nRQL. The
use of nRQL queries about the functional ontology allows an
agent to formulate a wide range of queries about reputation
models. To validate this new version of queries, we imple-
mented agents that use them in order to formulate the same
kind of queries than the ones defined in the first version of
ART. This implementation was mainly a test of the relevance
of the functional ontology to express such queries. The for-
malization of a query in Racer which result is the direct rep-
utation of an agent called John for the evaluation of paintings
of the Impressionism era is the following:

IJCAI-07
620

(retrieve (?val)
(and (?val ReputationWeight)

(?rep DirectReputation)
(?rep ?val hasReputationValue)
(?skill Impressionism)
(?skill ?target hasReputativeRole)
(?target ?rep hasReputation)
(John ?skill hasSkill)))

This query uses the relations between concepts to find a
given reputation value. The followed path is graphically rep-
resented in the figure 3. As explained before, more concepts
than those identified in section 3.1 are used but only to repre-
sent relations. They are not used to request their values.

Direct
Reputation

Target
Role

Impressionism

Reputation
Value

"?"

Reputative
Skill

hasReputationValue

hasReputation

hasSkill

hasReputativeRole

isA

Individual
"John"

Figure 3: Query path using the ontology concepts and rela-
tions

This query means that the requester asks an instance of
the ReputationValue class that is related to an instance of the
class DirectReputation, related to an instance of the Target-
Role class, related to an instance of ReputativeSkill. This in-
stance of ReputativeSkill should be a subclass of Impression-
ism (the era is represented by the way of an ”isA” relation)
and must be related to the instance of the Individual class that
is called John.

With this query formulation, we show that our modifica-
tions on the ART testbed still allow to express at least the
same interactions as in the first version. Furthermore, it is
now possible to use an elaborated query language to perform
several other requests. The receiver of a query also uses the
same language to answer.

The reputation mapping module of an agent links the
query to the agents’ internal reputation model. As shown
in section 3.2, an agent using the Cognitive Reputation
Model [Conte and Paolucci, 2002] will interpret the seman-
tics of this message as a query about the “Direct Trust” of
John. Then, it is able to answer this query with the corre-
sponding value. If the receiver is using a different model, for
example the Regret model [Sabater and Sierra, 2001], the an-
swer can still be understood by the reputation mapping mod-
ule. In this case, the term “Image” matches with the required
concept of the ontology and the received value will be con-
sidered as a direct trust value about John. It is also possible
to formulate answers that express that the required concept is
not known because it does not exist in the agent’s internal rep-
utation model. The use of nRQL allows this kind of “empty”
answers.

4.2 Extending the monitoring facilities
The ART testbed has been designed to organize competitions
between agents using different reputation models in order to
compare them, but it is also a tool used for experimentation
of a single reputation model. A researcher can thus imple-
ment its own reputation model and evaluate it using the ART
testbed. But the first version of the testbed only allows the
user of the testbed to state the global performance of its agents
(in terms of monetary earnings). It is not possible to fol-
low precisely the behaviour and the evolution of a reputation
model.

Our idea is to use the functional ontology, and the map-
ping implemented for interaction, to improve the monitoring
facilities of ART. When we use the ontology for agent-agent
interaction, it is a way to describe the values of reputation
concepts at a given time. We think that this approach can also
be used for agent-human interaction. The ontology, written in
OWL, is a step towards understandability by an human user.
Then, if we restrain to the concepts identified in section 3.1
to avoid flooding the user with too much information, it can
be used to describe the state of a reputation model.

In order to display information according to the concepts of
the ontology, we modified two parts of the ART testbed: (i)
The database used to store information about played games
has been modified to store the values of concepts of the on-
tology; (ii) The graphical interfaces that read the database to
display information have been adapted to display these con-
cepts. A screenshot of the modified ART interfaces is shown
in figure 4.

Figure 4: External display of the reputation model

If the developer of the agent has implemented a correct
mapping of its reputation model into the concepts of the on-
tology, it will now be possible to follow precisely its evo-
lution during the game as it can be seen in figure 4. This
figure shows the reputation model of an agent called John.
The curves indicate the value of some reputation concepts at
given time steps. Here, the reputation displayed concerned
two other agents named ”Ann” and ”Sue” about their evalu-
ation of paintings of the era ”era1”. The types of reputation
that are displayed are the direct reputation of John (the one
built from its own experience with the targets) and the repu-
tation propagated by Sue. The checkboxes at the right of the
figure permit a fine selection of the concepts to display. In

IJCAI-07
621

this example, we can see that both propagated and direct rep-
utations of Sue are better for ”era1” than the reputations of
Ann.

5 Conclusions
The work presented in this paper aims at reducing the incom-
patibility between reputation models. We propose to use the
functional ontology of reputation defined by Casare and Sich-
man [Casare and Sichman, 2005b] to facilitate interoperabil-
ity. Concepts from this ontology are used to build a shared
reputation model. Each agent can map its own reputation
model into the shared model in order to interact with other
agents using different reputation model. The work described
here does not propose new models or technologies but rather
present a first experience in the use of existing technologies
to allow agents using different reputation models to interop-
erate.

Such agents have been implemented on the ART testbed.
We have slightly modified the first version of ART to extend
it with the functional ontology. This extension widens the
possibility of interactions between agents. The second con-
tribution of this extension is about monitoring as it now per-
mits to users to follow precisely the states and the evolution
of an agent’s reputation model. The extended version of ART
may provide a basis for the testbed that will be used during
the next competition in 2007. As our future work, we will
use the agents implementation from the ART Competition at
AAMAS 2006 and make them to use the ontology in order
to validate our approach with all the reputation models that
were used.

Acknowledgements
This work has been developed in the project “Integration
of the Functional Ontology of Reputation into the Agent
Reputation Testbed (ART)” supported by FAPESP, Brazil,
grant number 2005/02902-5. Jaime Sichman is partially
supported by CNPq, Brazil, grant numbers 304605/2004-2,
482019/2004-2 and 506881/2004-0. Anarosa A. F. Brandão
is supported by CNPq, Brazil, grant number 310087/2006-6.

References
[Abdulrahman, 2004] A. Abdulrahman. A framework for de-

centralized trust reasoning. PhD thesis, University of Lon-
don, december 2004.

[Bechhofer et al., 2004] Sean Bechhofer, Franck van
Harmelen, Jim Hendler, Ian Horrocks, Deborah McGuin-
ness, Peter Patel-Schneider, and Lynn Andrea Stein.
OWL Web Ontology Language Reference, February 2004.
http://www.w3.org/TR/owl-ref/.

[Casare and Sichman, 2005a] Sara Casare and Jaime Sich-
man. Using a functional ontology of reputation to in-
teroperate different agent reputation models. Journal of
the Brazilian Computer Society, 11(2):79–94, november
2005.

[Casare and Sichman, 2005b] Sara Casare and Jaime Simão
Sichman. Towards a functional ontology of reputation. In
AAMAS, pages 505–511, 2005.

[Castelfranchi and Falcone, 1998] Cristiano Castelfranchi
and Rino Falcone. Principles of trust in mas: cogni-
tive anatomy, social importance and quantification. In
ICMAS’98, pages 72–79, Paris, 1998.

[Conte and Paolucci, 2002] Rosaria Conte and Mario
Paolucci. Reputation in Artificial Societies. Social Beliefs
for Social Order, volume 6. Springer, 2002.

[Fullam et al., 2005] Karen Fullam, Tomas Klos, Guillaume
Muller, Jordi Sabater, Andreas Schlosser, Zvi Topol,
Suzanne Barber, Jeffrey Rosenschein, Laurent Vercouter,
and Marco Voss. A specification of the agent reputation
and trust (art) testbed: Experimentation and competition
for trust in agent societies. In Fourth International Joint
Conference on Autonomous Agents and Multi Agent Sys-
tems (AAMAS’05), pages pp. 512–518, Utrecht, Nether-
lands, july 2005.

[Haarslev et al., 2004] Volker Haarslev, Ralf Moller, and
Michael Wessel. Querying the semantic web with racer
+ nrql, 2004.

[McKnight and Chervany, 2001] D.H. McKnight and N.L.
Chervany. Trust and distrust definitions: One bite at a
time. In Proceedings of the AAMAS’01 Trust in Cyber-
societies workshop, pages 27–54. Springler-Verlag Berlin
Heidelberg, 2001.

[Muller and Vercouter, 2005] Guillaume Muller and Laurent
Vercouter. Decentralized monitoring of agent communica-
tion with a reputation model. Trusting Agents for trusting
Electronic Societies, Lecture Notes in Computer Science,
(3577):144–161, 2005.

[RacerPro, 2006] RacerPro. Racer, 2006. http://www.racer-
systems.com/.

[Sabater and Sierra, 2001] Jordi Sabater and Carles Sierra.
REGRET: reputation in gregarious societies. In Jörg P.
Müller, Elisabeth Andre, Sandip Sen, and Claude Fras-
son, editors, Proceedings of the Fifth International Con-
ference on Autonomous Agents, pages 194–195, Montreal,
Canada, 2001. ACM Press.

[tru, 2004] Seventh International Workshop on Trust in
Agent Societies, New York, USA, July 2004.

[Wang and Vassileva, 2003] Y. Wang and J. Vassileva.
Bayesian network-based trust model in peer-to-peer net-
woeks. In Proceedings of the Workshop on Deception,
Fraud and Trust in Agent Societies, pages 57–68, 2003.

[Zacharia et al., 1999] G. Zacharia, A. Moukas, and P. Maes.
Collaborative reputation mechanisms in electronic market
places. In Proceedings of the 32th Hawaii International
Conference on System Sciences, 1999.

IJCAI-07
622

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 2
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

