
General Game Learning using Knowledge Transfer

Bikramjit Banerjee and Peter Stone

Department of Computer Sciences, The University of Texas at Austin; Austin, TX 78712

{banerjee, pstone}@cs.utexas.edu

Abstract

We present a reinforcement learning game player
that can interact with a General Game Playing sys-
tem and transfer knowledge learned in one game
to expedite learning in many other games. We
use the technique of value-function transfer where
general features are extracted from the state space
of a previous game and matched with the com-
pletely different state space of a new game. To
capture the underlying similarity of vastly disparate
state spaces arising from different games, we use
a game-tree lookahead structure for features. We
show that such feature-based value function trans-
fer learns superior policies faster than a reinforce-
ment learning agent that does not use knowledge
transfer. Furthermore, knowledge transfer using
lookahead features can capture opponent-specific
value-functions, i.e. can exploit an opponent’s
weaknesses to learn faster than a reinforcement
learner that uses lookahead with minimax (pes-
simistic) search against the same opponent.

1 Introduction

The General Game Playing (GGP) domain, introduced by
Pell [1993], allows description of a wide range of games in
a uniform language, called the Game Description Language
(GDL) [Genesereth and Love, 2005]. The challenge is to de-
velop a player that can compete effectively in arbitrary games
presented in the GDL format. In this paper we focus on the
problem of building a learning agent that can use knowledge
gained from previous games to learn faster in new games in
this framework.

Knowledge transfer has received significant attention re-
cently in machine learning research [Asgharbeygi et al.,
2006; Taylor and Stone, 2005; Ferns et al., 2006]. Instead
of developing learning systems dedicated to individual appli-
cations, each beginning from scratch, inductve bias is trans-
ferred from previous learning tasks (sources) to new, but re-
lated, learning tasks (targets) in order to

• offset initial performance in the target tasks, compared
to learning from scratch, and/or

• achieve superior performance faster than learning from
scratch.

Oftentimes, specific skills required for target tasks are ac-
quired from specially designed source tasks that are very sim-
ilar to the targets themselves [Asgharbeygi et al., 2006]. We
consider the more challenging scenario where skills are more
general, and source target pairs bear little resemblance to one
another. Specifically, we consider the genre of 2-player, al-
ternate move, complete information games and require that
knowledge acquired from any such game be transferrable to
any other game in the genre.

We develop a TD(λ) based reinforcement learner that
automatically discovers structures in the game-tree, that it
uses as features, and acquires values of these features from
the learned value-function space. It then uses these values
learned in one game to initialize parts of the value-function
spaces in other games in the genre. The intention is to reuse
portions of the value-function space that are independent of
the game in our chosen genre in order to learn faster in new
games. This is accomplished by focusing exploration in the
complementary regions of the value function space where
foresight is not informative in a game-independent way.

We use game-tree lookahead for generating features. We
show that features acquired in this way against some oppo-
nent are also indicative of how to play against that opponent,
even in new games. We assume that the Transfer Learner can
identify whether it had played against a given opponent be-
fore (in the same or a different game) and if so, retrieve the
feature values learned against that opponent for reuse. How-
ever, a simple lookahead search player would additionally
need to know (or learn) the opponent’s strategy to select the
most effective heuristic. Without the right heuristic, we show
that the lookahead search player will not perform as well as
the Transfer Learner against a given opponent.

2 Reinforcement Learning

Reinforcement Learning (RL) [Sutton and Barto, 1998] is a
machine learning paradigm that enables an agent to make se-
quential decisions in a Markovian environment, the agent’s
goal being to learn a decision function that optimizes its
future rewards. Learning techniques emanating from RL
have been successfully applied to challenging scenarios, such
as game playing (particularly the champion backgammon
player, TD-Gammon [Tesauro, 1994]) involving delayed re-
wards (rewards only on termination leading to the credit as-
signment problem of which actions were good/bad?). RL

IJCAI-07
672

problems are usually modeled as Markov Decision Processes
or MDPs [Sutton and Barto, 1998]. An MDP is given by the
tuple {S, A, R, T}, where S is the set of environmental states
that an agent can be in at any given time, A is the set of ac-
tions it can choose from at any state, R : S × A �→ � is the
reward function, i.e., R(s, a) specifies the reward from the
environment that the agent gets for executing action a ∈ A
in state s ∈ S; T : S × A × S �→ [0, 1] is the state tran-
sition probability function specifying the probability of the
next state in the Markov chain consequential to the agent’s
selection of an action in a state. The agent’s goal is to learn a
policy (action decision function) π : S �→ A that maximizes
the sum of discounted future rewards from any state s,

V π(s) = ET [R(s, π(s))+γR(s′, π(s′))+γ2R(s′′, π(s′′))+. . .]

where s, s′, s′′, . . . are samplings from the distribution T fol-
lowing the Markov chain with policy π.

A common method for learning the value-function, V as
defined above, through online interactions with the environ-
ment, is to learn an action-value function Q given by

Q(s, a) = R(s, a) + max
π

γ
∑

s′

T (s, a, s′)V π(s′) (1)

Q can be learned by online dynamic programming using
the following update rule

Q(s, a)← Q(s, a) + α[rsa + max
b

γQ(s′, b)−Q(s, a)]

while playing action a = arg maxb Q(s, b) in any state s,
where α ∈ (0, 1] is the learning rate, rsa is the actual envi-
ronmental reward and s′ ∼ T (s, a, .) is the actual next state
resulting from the agent’s choice of action a in state s. The
Q-values are guaranteed to converge to those in Equation 1,
in the limit of infinite exploration of each (s, a), ensured by a
suitable exploration scheme [Sutton and Barto, 1998].

2.1 RL in GGP

In a General Game Playing system, the game manager acts
as the environment, and a learner needs to interact with it in
almost the same way as in an MDP as outlined above. Im-
portant differences are (1) the game manager returns rewards
only at the end of a game (100 for a win, 50 for a draw, and
0 for a loss) with no intermediate rewards, (2) the agent’s ac-
tion is followed by the opponent’s action which decides the
next state that the agent faces. If the opponent chooses its ac-
tion following a stationary (but not necessarily deterministic)
policy, then the learner faces a stationary MDP as defined be-
fore. If, however, the opponent is adaptive, then the distribu-
tion T is effectively non-stationary and the above technique
for value function learning is no longer guaranteed to con-
verge. In this paper, we focus on stationary (non-adaptive)
opponents.

Let σ ≡ (s, a) ∈ Σ be the state resulting from the learner’s
execution of action a in state s; this is actually the state that its
opponent faces for decision making. The state σ, also called
an afterstate, can be reached from many different states of
the learner as a result of different actions. So usually |Σ| <
|S × A|, and it is popular for game playing systems to learn
values of afterstates, instead of state-actions. Accordingly,
we learn Q(σ).

2.2 The GGP Learner

We have developed a complete GGP learner that caters to
the GGP protocol [GGP, ; Genesereth and Love, 2005]. The
protocol defines a match as one instance of a game played
from the start state to a terminal state, between two players
that connect to the game manager (henceforth just the man-
ager) over a network connection. Each match starts with both
players receiving a GDL file specifying the description of the
game they are going to play and their respective roles in the
game 1 The game manager then waits for a predefined amount
of time (Startclock) when the players are allowed to analyze
the game. It is possible that both players signal that they are
ready before the end of this (Startclock) phase, in which case
the manager terminates this phase and proceeds with the next.

In the next phase the manager asks the first mover for its
move, and waits for another while (Playclock). If the move
is not submitted by this time, the manager selects a move at
random on behalf of that player and moves to the next player,
and this continues. If a move is submitted before the end of a
Playclock, the manager moves to the next player early. When
the manager senses a terminal state, it returns the appropriate
rewards to the players, and terminates the match. In this paper
we consider games where every player unambiguously knows
the current state.

To measure learning performance, our learner plays a se-
ries of matches of the same game against a given opponent,
and notes the cumulative average of rewards that it gets from
the manager. Since the computations for transfer learning
are often expensive, we perform these and the Q-updates for
all states visited in the course of a match, during the Start-
clock of the next match. We keep the sequence of afterstates,
σ1, σ2, . . . , σk (σk being terminal), in memory and use the
fast TD(λ) [Sutton and Barto, 1998] update

ΔQ(σp) = αλt−p[rt+1 + γQ(σt+1)−Q(σt)] (2)

at any time t = 1, . . . , k, for p = 1, . . . , t and λ ∈ (0, 1],
where only rk+1 is potentially non-zero, with Q(σk+1)

.
= 0.

Such batch update of Q-values is effectively no different from
online updates since a player cannot face the same afterstate
more than once in a match, unless the game allows noop as a
move. By relegating the bulk of our computation to the Start-
clock period, our transfer learner makes rapid moves (involv-
ing simple Q-value lookup) which is useful in large games
(such as chess derivatrives) where move-time can otherwise
exceed the Playclock some times.

3 Features in Value Space

In RL, a feature usually means a property of some states in
S. For instance, the GPS location is a feature for a mobile
robot. If a set of features can be found such that the union
of their joint values partitions S, then each state can be de-
scribed uniquely in terms of those features. In this work we
use game-specific features (or simply the state space, S) in or-
der to enable detailed learning within each game, but for the

1In general, the game may not be one that the agent has ever seen
before. In this paper, we consider smaller variants of four popular
games, Tic-tac-toe, Othello, Connect-4 and Go, but that’s mainly for
ease of experimentation and presentation.

IJCAI-07
673

purpose of transfer, we constrain the system to identify game-
independent features (the feature space) that are nonetheless
correlated with the value function. These features describe
the transition structure under an afterstate in the game-tree,
up to a certain depth, in a game-independent way. For our
purpose, a feature is a game tree template such that if the
lookahead from a state matches the template, that feature is
said to be active in that state. A feature is generated/matched
by starting at the afterstate generated by one move of the
learner from its current position (opponent’s state shown as a
red square at the root of each subtree in Figure 1) and expand-
ing the game tree fully for up to two further moves (one move
of the opponent, followed by one move of itself). The learner
then classifies each node in this subtree as win, loss, draw or
non-terminal. Both the tree expansion and the determination
of these node classes is enabled by a game simulator (using a
Prolog based theorem prover) that the learner generates from
the given game description. Once all nodes in the subtree are
classified, siblings of the same class in the lowermost level
are coalesced. After this step, all siblings in the next higher
level (i.e. the mid level in Figure 1) that have the same subtree
structure under them are coalesced. The resulting structure is
a feature that does not incorporate any game-specific infor-
mation, such as the number of moves available to any player
in any state, or the semantics of a state. Figure 1 illustrates
this process. Extending this scheme to arbitrary number of
lookahead levels is straightforward.

Originalsubtree

Lowestlevelcoalescing
(intermediatestep)

Midlevelcoalescing
(finalstep)
producingafeature

Figure 1: Illustration of an actual subtree (top) rooted at a
given afterstate, matching/generating a feature (bottom). Cir-
cular (green) nodes represent the learner’s states, solid (red)
square) nodes are the opponent’s states (or learner’s after-
states). Empty squares stand for a win for the learner.

Figure 2 shows the 12 features discovered by our Trans-
fer Learner in the Tic-tac-toe game. Note that although the
features are all distinct, the associated semantics can often be
overlapping; for instance, Figure 2 (j),(k) and (l) are really
variants of the concept “fork opponent”, since the learner’s
move results in a state for the opponent where no matter what
move it makes, the learner can win in its next move. The
Transfer Learner also needs to check if the starting afterstate

(a)(b)(c)(d)

(e)(f)(g)(h)

(i)(j)(k)(l)

Figure 2: The 12 features discovered by the learner in Tic-
tac-toe game. Empty circle/square are terminal states, with
square (circle) meaning a win (loss) for the learner. A crossed
square is a draw. To be considered a feature there must be at
least one terminal node at some level.

is a terminal and consequently, can identify winning moves
1-step ahead.

Once the training runs are complete in the source game (in
our case Tic-tac-toe), we extract feature information from the
acquired value-function space. This involves matching each
afterstate from the subset of Σ that was actually visited dur-
ing source learning, against each of these discovered features
using the simulator for lookahead. If an afterstate σ matches
a feature, we note the value Q(σ) against that feature. The
value of a feature Fi is then calculated as a weighted aver-
age val(Fi) = avgw{Q(σ)|σ matches Fi}, where w is the
weight associated with a σ, specifying the number of times
σ was visited during the source game experience. Thus, the
abstract features in game-tree space are associated with their
values in the source task under the assumption that they will
have similar values in the target task.

After the feature values have been computed, we use them
to initialize Q(σ) in the target game for each σ that matches
Fi, i.e., Qinit(σ) = val(Fi)s.t. σ matches Fi, once for each
new σ encountered in the target game. During the Startclock
of a match, we look at the afterstates visited during the pre-
ceding match. If an afterstate has not been visited in any pre-
vious match, it is matched against our set of features discov-
ered in the source game, and initialized as above. If there is
no match, we initialize to the default value 2. Next the TD(λ)
updates are done according to Equation 2.

The idea behind this transfer mechanism is to save the cost
of a few value-backup steps near terminal states (i.e., when
the states gain predictive potential) and thus guide exploration
to focus more in the regions where foresight is not usually
available. In this way, our transfer learner behaves more like
human learners.

Characteristics of Feature Transfer

The features do not depend on the exact game, as long as it
is within the genre of chosen games. Specifically, the size
of the board, the number of available actions at each level,
the semantics of states or actions, and win/loss criteria have
been effectively abstracted away by exploiting the GDL. Con-
sider the diverse natures of games in these aspects: in Tic-

2The default initialization value δ is the average of the win and
loss rewards, in this case 50.

IJCAI-07
674

tac-toe the number of available moves steadily diminishes, in
Connect-4 it diminishes at intervals, while in Othello it may
actually increase. The winning criteria are widely varying in
these games; they are similar in Tic-tac-toe and Connect-4
but completely different in Go or Othello. A key motivation
behind this research is to develop simple techniques that can
transfer knowledge effectively from one game to a markedly
different game which is why we have focused on such a high
level of abstraction.

The distinct leaf-types used in the features (Figure 2) de-
pend on the possible outcomes of the games from which they
are acquired. In this paper, we have assumed all games have
3 possible outcomes, viz., win, loss or draw, identified by
distinct rewards 100, 50 and 0 respectively. If some game of-
fers a different set of rewards (e.g., {−10, 0, 10, 20, 50}) the
Transfer Learner can create a distinct leaf-type for each of
these outcomes to acquire features from this game. But if it
is to apply features from previous games to this game, then
it needs to be provided with some equivalence relation that
maps these rewards to previous reward sets, e.g., that -10 and
0 in this game corresponds to 0 in the previous games, and so
on.

It is worthwhile to note that in several games such as Tic-
tac-toe and Connect-4, a terminal move by any player can
cause its win or a draw, but never a loss for that player. How-
ever, in other games such as Go or Othello, a player’s move
can cause its immediate defeat. The features discovered from
Tic-tac-toe naturally cannot capture this aspect; as Figure 2
shows, there are no “win” nodes in the mid-level, or “loss”
nodes in the lowest level. Our Transfer Learner can treat any
of these games as source, and consequently it can capture a
variety of possible types of features. In fact it can treat ev-
ery game as both the application domain for previously ac-
quired features, and at the end, as a source for new features
to carry forward to future games. In this paper, however, we
focus on specific source-target pairs, and learn against spe-
cific opponents to study the effects of transfer in controlled
experiments.

One concern when using complex feature spaces for trans-
fer is that the time overhead for computing transfer knowl-
edge should not overwhelm the learning time. By having a
small number of features and limiting the depth of lookahead,
we are ensuring a low computational complexity for trans-
fer knowledge. Moreover, since a single source game serves
many target games, the time spent in acquiring the features is
amortized, so we do not consider this as an added complexity
to target learning. The limited lookahead depth also serves
to keep the features somewhat indicative of the outcome of
the subsequent moves. Note however, this indication is not
always unambiguous, e.g., the outcome of Figure 2(g) can-
not be specified without knowing the opponent’s disposition.
This ambiguity justifies transfer learning; if merely looking
ahead would give a concrete idea of the ultimate outcome of
playing a in state s irrespective of the opponent’s style of
play, then we could well have initialized the corresponding
Q-value in the target game to the known value of that out-
come, perhaps by minimax search. In the experiments, we
actually show the transfer learner learning faster than RL with
minimax-lookahead, against some opponents.

4 Experimental Results

In this section, we report empirical results that isolate the im-
pact of our general game-tree-feature-based transfer scheme
in a variety of games. We will consider our method to be
a success if it can lead to quicker and/or better asymptotic
learning in the new games when compared to learning the
new games from scratch.

We extracted the feature values from the Tic-tac-toe game,
the source, and tested the Transfer Learner on 3 different tar-
get games: Connect3, CaptureGo and Othello. Connect-3 is
a variant of Connect-4 where the board size is 5 × 5 and the
goal is to make a line of 3 instead of 4 pieces. CaptureGo is a
variant of Go (or GoMoku) where the board size is 3× 3 and
a match terminates if a player captures an opponent’s piece
following the usual rules of Go. If no player has a move but
there has been no capture yet, then the player with larger terri-
tory wins, just as in the regular version of Go. Othello follows
the same rules as the regular game but is played on a smaller
board of size 4× 4.

For all games, we compared the learning speeds of a base-
line learner to our Transfer Learner using feature knowledge
acquired from Tic-tac-toe. The baseline learner uses after-
state TD-learning as in Equation 2 with a value function ini-
tialized uniformly to the default value. For comparison pur-
poses and to isolate the effect of knowledge transfer from
lookahead search, we also compare with a lookahead learner
that uses the same depth of lookahead as the Transfer Learner,
with minimax search to estimate the value of a new afterstate.
In this search, non-terminal states at the leaf level are eval-
uated to the default value, while terminals at any level are
evaluated to their actual values. The value estimate for an
afterstate, thus reached, is used to initialize its Q-value for
TD-learning using the same method as the other 2 learners
(i.e., Equation 2).

We use three different types of opponents against which
our 3 learners are made to compete in the GGP framework.
These are

ε-greedy This opponent uses a small fixed probability, ε for
exploration, and otherwise uses the following policy. It
looks ahead one full turn and seeks terminal nodes. It
takes winning moves, avoids losing moves, but other-
wise plays randomly. This is similar to a shortsighted
novice player.

Random This opponent picks actions using a uniform prob-
ability distribution over the set of available actions at any
turn.

Weak This opponent is the opposite of an ε-greedy player. It
explores in the same manner, but picks worst moves at
decisive turns. In effect, this opponent plays randomly
most of the time, but in the vicinity of a terminal state, it
makes particularly poor decisions.

The purpose of considering a weak opponent is to study
how fast the different learners can learn to exploit certain
weaknesses in an opponent. Table 1 shows the feature val-
ues for the 12 features of Figure 2, computed by the Trans-
fer Learner in the Tic-tac-toe game when competing against
each of these 3 types of opponents. Note that the minimax-
lookahead learner would initialize the afterstates that would

IJCAI-07
675

Table 1: Values of the features (from Figure 2) acquired in
Tic-tac-toe game against various opponents.

Feature ID
from Figure 2 ε-greedy Random Weak
(a) 41.08 46.31 51.62
(b) 43.75 48.81 57.55
(c) 54.36 53.75 54.63
(d) 61.5 60.11 59.63
(e) 43.03 50.41 59.62
(f) 38 43.5 40.77
(g) 40.18 49.43 58.16
(h) 50 50 50
(i) 44.64 42.98 48.93
(j) 57.13 58.9 57.48
(k) 58.42 54.84 58.28
(l) 63.36 54.26 57.45

have matched these features to the values of 0, 50 or 100.
In other words the initializations of the minimax-lookahead
learner are more accurate (since these are the true values for
those states) than the Transfer Learner, assuming the oppo-
nent is perfectly rational. For all experiments, the learners’
parameter values were α = 0.3, γ = 1.0 (since the task is
episodic), λ = 0.7, and a fixed exploration probability of
ε = 0.01.

98.2

98.4

98.6

98.8

99

99.2

99.4

99.6

99.8

100

0 1000 2000 3000

Me
anc

um
ula

tiv
eav

era
gep

erf
orm

anc
eov

er1
0ru

ns

Matchesplayed

withtransfer
withouttransfer
withlookahead

Figure 3: Learning curves for transfer learner, baseline
learner, and RL with lookahead only, in 5 × 5 Connect3, all
against ε-greedy opponent

Figures 3, 4 and 5 show the learning curves for the 3 learn-
ers against the ε-greedy opponent. The Transfer Learner uses
the feature values learned against this player in Tic-tac-toe
(Table 1). The cumulative average reward from last 2700 of
3000 matches are averaged over 10 runs and plotted against
the number of matches in these figures. Although the Trans-
fer Learner outperforms the baseline learner, we see that the
lookahead learner is the ultimate winner since its assumption
of a rational opponent is realized in this case, and it uses su-
perior initializations compared to the Transfer Learner. Also
since all the learners use fast TD methods and afterstate learn-
ing, their learning rates are high, typically crossing 95% per-
formance level in less than 100 matches. Another thing to
note from Figure 4 is that 3000 matches is insufficient for the

98.2

98.4

98.6

98.8

99

99.2

99.4

99.6

0 1000 2000 3000

Me
anc

um
ula

tiv
eav

era
gep

erf
orm

anc
eov

er1
0ru

ns

Matchesplayed

withtransfer
withouttransfer
withlookahead

Figure 4: Learning curves for transfer learner, baseline
learner, and RL with lookahead only, in 4 × 4 Othello, all
against ε-greedy opponent

97

97.5

98

98.5

99

99.5

100

0 1000 2000 3000

Me
anc

um
ula

tiv
eav

era
gep

erf
orm

anc
eov

er1
0ru

ns

Matchesplayed

withtransfer
withouttransfer
withlookahead

Figure 5: Learning curves for transfer learner, baseline
learner, and RL with lookahead only, in 3 × 3 CaptureGo,
all against ε-greedy opponent

learners to converge in the Othello game since the terminal
states in this game are not as shallow as in the other games.

In order to verify the learning rates against a weak or a ran-
dom opponent, we pitted the Transfer Learner and the looka-
head learner against each of these opponents, in the Othello
game. This game is challenging to both learners because of
the depth of the terminal states. The Transfer Learner used the
feature values learned against each opponent for the matches
against that opponent. The learning curves are shown in Fig-
ures 6 and 7. Since the opponents are quite unlike what
the minimax-lookahead learner assumes, its learning rate is
poorer than the Transfer Learner. The Transfer Learner not
only learns the values of features, but also learns them in the
context of an opponent, and can reuse them whenever it is pit-
ted against that opponent in the future. Note that the looka-
head learner could have used a maxmax heuristic instead of
minimax to learn much faster against the weak opponent, and
similarly an avgmax heuristic against the random opponent.
Because of the random policy of this opponent, the learners
typically have to deal with enormous sizes of afterstate space
and hence learn much slower (Figure 7) than against other
opponents in the previous experiments.

These experiments demonstrate that knowledge transfer
would be a beneficial addition to a baseline learner, but that if

IJCAI-07
676

97.5

98

98.5

99

99.5

100

0 1000 2000 3000

Me
anc

um
ula

tive
ave

rag
epe

rfo
rm

anc
eov

er1
0ru

ns

Matchesplayed

withtransfer
withlookahead

Figure 6: Transfer in 4× 4 Othello against a weak opponent,
compared to RL with lookahead.

45

50

55

60

65

70

75

80

85

90

0 1000 2000 3000

Me
anc

um
ula

tive
ave

rag
epe

rfo
rm

anc
eov

er1
0ru

ns

Matchesplayed

withtransfer
withlookahead

Figure 7: Transfer in 4 × 4 Othello against a random oppo-
nent, compared to RL with lookahead.

it implements a lookahead approach that our Transfer Learner
uses as well, then its performance may be superior to the
Transfer Learner, depending on the opponent. This is true
if the lookahead scheme involves a heuristic that precisely
matches the opponent’s disposition. However, if the heuristic
is a mismatch, then knowledge transfer is the better option.
We argue that since selecting a heuristic (e.g., minimax) to
fit an opponent is a difficult task wihtout knowing the oppo-
nent’s strategy, knowledge transfer (does not need to know
the opponent’s strategy) is superior to lookahead learning.

5 Related Work

Lookahead search has been shown to be an effective tech-
nique in conjunction with Reinforcement Learning [Tesauro,
1994]. Automated feature discovery in games has been ex-
plored before [Fawcett, 1993], which can form the basis of
further work in feature transfer. Asgharbeygi et.al. [2006]

have recently developed a relational TD learning technique
for knowledge transfer in the GGP domain. Their technique
exploits handcrafted first order logic predicates that capture
key skills in a given game and their values are learned in
the same way as we do for features. The main advantage of
our technique is that we do not need to define game-specific
or opponent-specific features for transfer to be successful in
a wide variety of games. Some of the literature on Trans-
fer Learning for MDPs has looked into constructing corre-
spondences between state and action spaces of two different
but related MDPs [Taylor and Stone, 2005], whereas we face
MDPs that have very little in common in terms of syntax or
semantics of states/actions. Our approach matches the philos-

ophy in [Ferns et al., 2006] where similarity of states/actions
is determined by their effects, viz. rewards and transitions
through bisimulation metrics, which we accomplish by game-
tree lookahead.

6 Conclusions
We have presented a Transfer Learner that uses automatic
feature discovery in conjunction with reinforcement learn-
ing to transfer knowledge between vastly different 2-person,
alternate move, complete information games, in the GGP
framework. The key to feature construction is lookahead
search of the game tree. This paper demonstrates that game-
independent features can be used to transfer state value in-
formation from one game to another even better than looka-
head minimax (or a fixed heuristic) search, particularly when
the opponent is suboptimal. We believe the lookahead search
player needs to know (or learn) the opponent’s strategy, un-
like the Transfer Learner, in order to select the appropriate
heuristic. Even so, it is unclear whether appropriate heuris-
tics are readily available for a variety of opponent-weaknesses
(we have only studied two simple cases), and how well they
work for the lookahead learner compared to the Transfer
Learner. This paper shows evidence that knowledge transfer
offers a simpler alternative to the complex issue of construct-
ing appropriate heuristics for lookahead search. This work
also opens up new directions in GGP and transfer learning. In
the future we will extend feature definition to apply at higher
levels in the game-tree, incorporate deeper features built hi-
erarchically without deeper lookahead, and experiment with
other and/or larger games.

Acknowledgements
This work was supported in part by DARPA/AFRL grant FA8750-
05-2-0283 and NSF CAREER award IIS-0237699. The authors also
thank Gregory Kuhlmann for providing the GGP player codebase,
and Kurt Dresner for his implementation of the ε-greedy player.

References
[Asgharbeygi et al., 2006] N. Asgharbeygi, D. Stracuzzi, and

P. Langley. Relational temporal difference learning. In Procs.
ICML-06, 2006.

[Fawcett, 1993] Tom Elliott Fawcett. Feature discovery for prob-
lem solving systems, PhD thesis, University of Massachusetts,
Amherst, 1993.

[Ferns et al., 2006] N. Ferns, P.S. Castro, D. Precup, and P. Panan-
gaden. Methods for computing state similarity in markov deci-
sion processes. In Proceedings of UAI, 2006.

[Genesereth and Love, 2005] Michael Genesereth and Nathaniel
Love. General game playing: Overview of the AAAI compe-
tition. AI Magazine, 26(2), 2005.

[GGP,] GGP. http://games.stanford.edu/.

[Pell, 1993] Barney Pell. Strategy generation and evaluation for
meta-game playing. PhD thesis, University of Cambridge, 1993.

[Sutton and Barto, 1998] R. Sutton and A. G. Barto. Reinforcement
Learning: An Introduction. MIT Press, 1998.

[Taylor and Stone, 2005] M.E. Taylor and P. Stone. Behavior trans-
fer for value-function-based reinforcement learning. In The
Fourth International Joint Conference on Autonomous Agents
and Multiagent Systems, 2005.

[Tesauro, 1994] Gerald Tesauro. Td-gammon, a self-teaching
backgammon program, achieves masterlevel play. Neural Com-
putation, 6:215–219, 1994.

IJCAI-07
677

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 2
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

