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Abstract

In recent years, there has been a growing inter-
est in using rich representations such as relational
languages for reinforcement learning. However,
while expressive languages have many advantages
in terms of generalization and reasoning, extending
existing approaches to such a relational setting is
a non-trivial problem. In this paper, we present a
first step towards the online learning and exploita-
tion of relational models. We propose a represen-
tation for the transition and reward function that
can be learned online and present a method that ex-
ploits these models by augmenting Relational Rein-
forcement Learning algorithms with planning tech-
niques. The benefits and robustness of our ap-
proach are evaluated experimentally.

1 Introduction

In reinforcement learning, an agent can observe its world and
perform actions in it. Its goal is to maximize the obtained
reward. For small domains with a limited number of states,
exact solution methods such as dynamic programming exist.
However, these methods are unable to handle real-world do-
mains with large state spaces. For such problems, structur-
ing the world and generalization becomes essential. Recently,
there is a strong interest in Relational Reinforcement Learn-
ing [Tadepalli et al., 2004], a framework not only providing
an expressive language for describing the world and for gen-
eralization, but also able to handle “relational” state spaces
which can not be easily represented using vector spaces.

For example, consider a blocks world where there is a set
of blocks {b1, b2, . . . bn}. Every block bi stands either on the
floor (denoted on(bi, f l)) or on some other block bj (denoted
on(bi, bj)) and on every block bi there is either exactly one
other block or it is clear (denoted clear(bi)). Here, we de-
scribe a state by the set of facts that are true in that state, e.g.
{clear(b1), on(b1, b2), on(b2, f l), clear(b3), on(b3, f l)}.
The agent can take a clear block bi and put it on another clear
block bj or on the floor (denoted move(bi, bj)). Move actions
with other arguments (e.g., move(fl, b1)) are possible but
have no effect. As the number of blocks is not limited in this
world, it is clear that such states can not be easily represented

by vectors. In contrast, in a relational setting concepts such
as “on” and “clear” are intuitive to work with.

Several studies have shown that learning a model of the
world (a transition function and the reward function) is of-
ten beneficial for the agent. Once a model has been learned,
it can be used in several different ways. First, it can help
to speed up the learning process by generating more training
examples through simulation of actions in states, as happens
in the Dyna architecture [Sutton, 1991]. Second, it allows
the agent to reason about actions in a way similar to planning
[Tesauro, 1995], which may allow it to achieve better rewards
in exploitation mode and to make better estimates of Q-values
in exploration mode by using lookahead (the TD-leaf method
[Baxter et al., 1998] is an example of the latter). Note that
both options are complementary and can be combined.

Though in the relational setting most research so far has
focused on a model-free setting, recently there is growing in-
terest in extending methods for learning and exploiting mod-
els of the world to a relational setting (see [van Otterlo, 2005]

for a recent overview). This is a non-trivial task as the use of
a more expressive relational language inevitably implies that
models of the world are more complex and harder to learn
and apply. For instance, with the Dyna strategy, it is fairly
easy to learn a model by keeping a probability distribution on
states. In the relational case however a probability distribu-
tion on the large space of relational states is necessary, which
is a lot harder, as shown in the field of statistical relational
learning.

Our work investigates the feasibility and benefit of using
relational learned models for lookahead. Moreover, we study
whether such a strategy is still beneficial in complex worlds
where it is not possible to learn a perfect model. We present
MARLIE (Model-Assisted Reinforcement Learning in Expres-
sive languages), the first system to learn a relational transi-
tion and reward function on-line. Our contribution is three-
fold. (1) We propose a representation for the transition func-
tion that facilitates its efficient and incremental learning. (2)
We propose a learning and exploitation method. In contrast
to earlier approaches learning relational models off-line (e.g.
[Zettlemoyer et al., 2005]), the partial model is exploited
immediately (avoiding as much as possible an initial period
where the agent gains poor rewards trying to learn a good
model) and in contrast to work such as [Kersting et al., 2004]

this model does not need to be complete. Also note that we

IJCAI-07
726



are considering the full RL problem in that our technique does
not require resets or generative models as e.g. in [Fern et al.,
2006]. (3) We experimentally evaluate the efficiency and ben-
efits of our approach and examine the influence of the quality
of the learned model on these results.

Organization. Section 2 presents some background and
Section 3 shows how the transition function of a Relational
MDP can be represented and learned online. Section 4 de-
scribes how using the model to look some steps ahead im-
proves over standard Q-learning. The experimental evalua-
tion is shown in Section 5. Section 6 discusses related work
and we conclude in Section 7.

2 Reinforcement Learning and MDPs

Reinforcement Learning (RL) [Sutton and Barto, 1998] is of-
ten formulated in the formalism of Markov Decision Pro-
cesses (MDPs). The need to model relational domains has
led to different formalizations of Relational MDPs (RMDPs),
e.g. [Fern et al., 2006; Kersting and De Raedt, 2004; Kersting
et al., 2004]1. We use the following simple form:

Definition 1 A Relational MDP (RMDP) is defined as the
five-tuple M = 〈PS , PA, C, T, R〉, where PS is a set of state
predicates, PA is a set of action predicates and C is a set
of constants. A ground state (action) atom is of the form
p(c1, . . . , cn) with p/n ∈ PS (p/n ∈ PA) and ∀i : ci ∈ C}.
A state in the state space S is a set of ground state atoms; an
action in the action state A is a ground action atom.

The transition function T : S × A × S → [0, 1] de-
fines a probability distribution over the possible next states:
T (s, a, s′) denotes the probability of landing in state s′ when
executing action a in state s. The reward function R :
S × A → R defines the reward for executing a certain ac-
tion in a certain state.

The task of reinforcement learning consists of finding an
optimal policy for a certain MDP, which is (initially) un-
known to the RL-agent. As usual, we define it as a func-
tion of the discounted, cumulative reward, i.e. find a policy
π : S → A that maximizes the value function: V π(s) =
Eπ[

∑
∞

t=0 γiR(st, π(st))|s0 = s, st+1 = π(st)], where 0 ≤
γ < 1 is the discount factor, which indicates the relative im-
portance of future rewards with respect to immediate rewards.

The RRL-system [Driessens, 2004] applies Q-Learning in
relational domains, by using a relational regression algorithm
to approximate the Q-function defined as

Q(s, a) ≡ R(s, a) + γ
∑

s′∈S

T (s, a, s′)maxa′Q(s′, a′) (1)

Knowing these Q-values, an optimal policy π∗ of the MDP
can be constructed as π∗(s) = argmaxa Q(s, a).

3 Online Learning of Relational Models

In this section we propose a representation for the transition
function and reward function that can be easily and efficiently

1See [van Otterlo, 2005] for an overview.

learned in an on-line setting. This module learns these func-
tions in the form of probability distributions T ′(s′|s, a) and
R′(r(s, a)|s, a), given PS , PA and C of the RMDP.

3.1 Representation of the World Model

As said above, a state is a set of ground state atoms; hence,
using a binary random variable for every possible ground
state atom at each time point t, a Dynamic Bayesian network
(DBN) [Dean and Kanazawa, 1989] can represent the transi-
tion function. The action taken at time point t is represented
by a random variable at (one for every t) that ranges over all
atoms from A that represent valid actions. The reward at time
t is represented by a real-valued random variable rt.

The reward in the current state depends on the random vari-
ables representing the state and the action taken. The action
taken depends on the current knowledge of the agent and the
current state. Its conditional probability distribution (CPD) is
not explicitly modeled as the chosen action is the result of the
agent’s reasoning process. The current state in turn depends
on the previous state and the action taken in that state. This
specifies a layered network structure which is a partial order
over the random variables. There can still be dependencies
between variables of the same state. We assume an expert
provides an order on the random variables describing states
such that a random variable only depends on those preceding
it in this order. Hence we avoid the problem of learning the
structure of the network, a problem that would be especially
hard in the case of online learning because a revision of the
structure would interfere with the learning of the conditional
probability tables in uninvestigated ways.

The CPDs of state random variables can be compactly rep-
resented by relational probability trees [Neville et al., 2003;
Fierens et al., 2005]. In our setting, the main idea is to have
a single relational probability tree for every predicate symbol
p ∈ PS . This tree is used to model the conditional proba-
bility distribution T ′

p(x|s, a) that gives for every ground atom
x with predicate symbol p the probability that it will be true
in the next state given the current state s and action a. This
allows for maximal generalizations by using the same tree for
all atoms of the same predicate symbol, but avoids the prob-
lems arising when generalizing over predicates with a differ-
ent number of arguments with different types and different
semantics. As an example, Figure 1 shows a probability tree
CPD for clear(X) in the blocks world. Another relational
probability tree is used to represent the CPD of the reward
random variable. Note that the learned relational probability
tree does not necessarily use all preceding random variables
of the network as splits in internal nodes.

3.2 Learning the Model

All the uninstantiated parts of the model are CPD’s repre-
sented by relational probability trees. Therefore, learning the
model reduces to the online learning of a set of decision trees.
In our implementation, we use an improved2 version of the in-
cremental relational tree learning algorithm TG [Driessens et
al., 2001].

2Which learns several trees in parallel and is much more space-
efficient while only slightly less time-efficient.
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Figure 1: This probability tree shows the probability that
block A will be clear when the action move(X, Y ) is exe-
cuted in state State. The first node in the tree checks if block
A was already clear (essentially the frame assumption). If
this is the case, it can only become not clear when some other
block is moved on top of it. If the block was not clear in the
original state, it can only become clear in the afterstate if the
block directly on top of it got moved to another block.

Learning examples can easily be created from the agents
experience. Note that the number of possible facts in the next
state may be very large, and therefore we do not generate all
possible examples but apply a suitable sampling strategy.

4 Online Exploitation of Relational Models

The (partially correct) transition function T ′(s′|s, a) that is
being learned enables the agent to predict future states. In this
paper, we investigate the use of Q-learning with lookahead
trees to give the agent more informed Q-values by looking
some steps into the future when selecting an action. These
lookahead trees are similar to the sparse lookahead trees used
in [Kearns et al., 2002] to obtain near-optimal policies for
large MDPs.

Since the transition function can be stochastic or there may
be uncertainty on the effect of a particular action (due to in-
complete learning), an action needs to be sampled several
times to obtain an accurate value. This sampling width SW is
a parameter of the algorithm. Starting from the current state
in the root node, we generate for every possible action, SW
(directed) edges using the action as a label for that edge. The
node at the tail of this edge represents the state obtained from
executing that action in the head node. This can be contin-
ued until the tree reaches a certain depth. The Q-values of
the deepest level can be estimated by the learned Q-function.
By back-propagating these values to the top level, a policy
can be constructed using these top level Q-values as in regu-
lar Q-learning. When back-propagating, the Q-values for the
different samples of a certain action in a certain state are av-
eraged and the Q-value of a higher level is determined using
the Bellman equation (Eq. 1).

Several optimizations to this scheme are possible. Our im-
plementation uses preconditions. This is especially useful in
planning domains as, typically, the world remains unchanged
if the agent tries an illegal action. While the transition func-

tion only indirectly states the preconditions of an action, the
introduction and the learning of an extra binary random vari-
able lt (intended to be true if the state of the world changes)
allows one to prune away actions predicted to be illegal.

Besides the sampling width, also other parameters can in-
fluence a lookahead tree. Currently, we are investigating the
use of beam-like and randomized searches.

5 Empirical Evaluation

In this section we will present an empirical evaluation of our
approach. First, we want to evaluate whether our incremental
relational decision tree learner is able to build a model of the
world. Second, we want to investigate how much the perfor-
mance and speed of the agent improves by adding lookahead.
Third, we want to evaluate the robustness of the approach,
i.e., evaluate whether the lookahead is still beneficial when
the learner is not able to build a complete model.

5.1 Domains Experimental setup

In all the following experiments, the RRL-TG[Driessens et
al., 2001] system is used to estimate the Q-values. Since the
transition function for these domains are still learned rather
easily, a sampling width of two is used. The agent also learns
the function modeling the preconditions to prune the looka-
head tree. The exploration policy consists of performing a
single step lookahead. To eliminate the influence of a specific
ordering on the random variables, independence is assumed
between random variables in the same state. The figures show
the average over a 5-fold run where each test run consists of
100 episodes and the average reward over this 100 episodes
following a greedy policy, i.e., the percentage of episodes in
which a reward is received, is used as a convergence measure.

Blocks World In the following experiments, we use the
blocks world as described in the introduction with the stack-
goal and the on(A, B) goal (defined in the same way as in
[Driessens, 2004]3). In the on(A, B)-goal the agent only re-
ceives a reward iff block A is directly on top of block B. The
objective of the stack-goal is to put all blocks in one and the
same stack, i.e., if there is only one block on the floor. The
results for the unstack-goal where the agent is rewarded iff
all blocks are on the floor are not included as the behavior
was comparable to the stack-goal.

During exploration, episodes have a maximum length of
25 steps above the ones needed by the optimal policy, dur-
ing testing only optimal episodes are allowed. In the stack-
problem the blocks world has seven blocks, for the on(A, B)-
goal the number of blocks was varied for each episode be-
tween four and seven. The same language bias is used as
in previous experiments with the RRL-TG algorithm in the
Blocks World [Driessens, 2004].

Logistics The second domain is a logistics domain contain-
ing boxes, trucks and cities. The goal is to transport cer-

3The main difference is that here the agent can execute every
possible action in a certain state instead of only the legal ones. This
makes the problem more difficult.
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tain boxes to certain cities4. The possible actions in this
domain are load box on truck/2, which loads the specified
box on the specified truck if they are both in the same city,
the unload box on truck/2 which takes the box of the truck
and moves it in the depot of the city where the truck is located.
The third possible action is the move/2-action, which moves
the truck to the specified city. The state space PS consists
of the following predicates: box on truck/2, box in city/2
and truck in city/2. These predicates also make up the lan-
guage bias used in these experiments, i.e., the tree learning
algorithm can test if a certain box is on a certain truck etc.

In the first setting there are two boxes, two cities and three
trucks and the goal is to bring the two boxes to two specific
cities. During exploration, 150 steps are allowed, but during
testing the maximum length of an episode is 20 steps. For
the second setting the domain is extended to four boxes, two
cities and two trucks and the goal is to bring three specific
boxes to certain locations within 50 time steps.

5.2 Experiments

Figure 2: Errors made by the learned transition function

First, we test the quality of the transition function. To
achieve this, we apply the learned model as a classifier. We
randomly generate facts and predict if they will be true in the
resulting next state, given some state and action. Figure 2
shows the percentage of errors made per step, False Positives
(FP) and False Negatives (FN) indicate the number of atoms
that were incorrectly predicted as true and false respectively.
For the blocks world with seven blocks the transition func-
tion is learned rather rapidly and is optimal after about 200
episodes. For the logistics domain with five boxes, trucks
and cities, it appears that a reasonable transition function is
learned rapidly, but it never reaches optimal performance.

Next, we evaluate the improvement obtained by lookahead
planning. Therefore, we ran both experiments with standard
RRL-TG and experiments with different amounts of looka-
head using the learned model. Figure 3 and Figure 4 show the
results for the on(a, b) and stack goals of the blocks world

4Specific instantiations vary from episode to episode.

respectively and for the logistics domain the results are plot-
ted in Figure 5.

Figure 3: Blocks world with on(A, B) goal

Figure 4: Blocks world with stack goal

These experiments show that the number of episodes
needed to obtain a good policy is much smaller when look-
ing ahead. However, learning and lookahead takes additional
computation time. Therefore, for worlds where performing
actions is not expensive, it is also useful to evaluate how the
total time needed to obtain a good policy compares with and
without learning. Figure 6 shows the average reward in func-
tion of the time needed to learn the policy for the on(a,b)
goal (the other settings produce similar results, omitted due
to lack of space). Due to the computational costs of learn-
ing the model, using no lookahead performs better than sin-
gle step lookahead. Indeed, in our current implementation,
learning the model of the world is the computational bottle-
neck for small levels of lookahead. This is mainly due to the
sampling techniques to create the learning examples, some-
thing we will improve in future work. However, performing
two steps of lookahead still outperforms the standard version
without lookahead.

IJCAI-07
729



Figure 5: Logistics

Figure 6: Blocks world with the on(A, B) goal

Finally, we evaluate the robustness of our approach. We set
up this experiment by generating less training examples for
the transition function per step, extending the time to learn
a good transition function. Every 30 episodes, we test both
the quality of the transition function (the number of classifi-
cation errors) and the average reward obtained by the learned
policy using single step lookahead. In Figure 7 we plotted
these points for two different learning rates, showing the ob-
tained reward in function of the quality of the model. The
horizontal line shows the performance of a learning agent af-
ter 2000 episodes using no lookahead. The figure shows that
even when the learned model is less accurate, it is still bene-
ficial to use lookahead. Only when the model performs very
inaccurately, performance can drop.

6 Related Work

An important part of related work are the indirect or model-
based approaches in the propositional setting. Most of these
fit the Dyna architecture [Sutton, 1991] as mentioned in the
introduction. There the agent learns a model of the world

Figure 7: Reward versus the quality of the model

and uses these approximations of the transition and reward
function to perform hypothetical actions to generate extra up-
dates for the Q- or value function. Algorithms such as prior-
itized sweeping [Moore and Atkeson, 1993] (and extensions
of these) focus the hypothetical actions on interesting parts of
the state space. As mentioned earlier, these approaches are
orthogonal to our approach and will be explored in our future
work.

Learning a model of the environment becomes a non-trivial
task in the relational setting. One method that focuses specifi-
cally on learning transition functions with relational structure
is [Zettlemoyer et al., 2005]. They present a method for learn-
ing probabilistic relational rules when given a dataset about
state transitions that are applicable in large noisy stochastic
worlds. The main difference with (the learning part of) our
approach is that this method is not directly applicable to Re-
inforcement Learning, since it does not work incrementally
and it is limited to domains where actions only have a small
number of effects.

The emerging field of Statistical Relational Learning has
seen a lot of work on relational upgrades of Bayesian net-
works. More specifically, [Sanghai et al., 2005] defines Re-
lational Dynamic Bayesian Networks (RDBNs) as a way to
model relational stochastic processes that vary over time.

Combining search and RL has shown to be successful in
the past, for instance in the context of game playing [Baxter et
al., 1998]. In [Davies et al., 1998], online search is used with
a (very) approximate value function to improve performance
in continuous-state domains. Our approach can be seen as an
instance of the Learning Local Search (LLS) algorithm de-
scribed there.

Many new RRL algorithms have been proposed lately, but
to our knowledge this is the first indirect RRL approach.
The most related is [Sanner, 2005], where a ground relational
naive Bayes Net is learned as an estimation of the Value func-
tion. The major difference however is that this work does not
consider the aspects of time since they consider game playing
and hence restrict themselves to undiscounted, finite-horizon
domains that only have a single terminal reward for failure or
success.
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7 Conclusions and Future Work

In this paper we presented MARLIE, the first reinforcement
learning system learning and exploiting a relational model of
the world on-line. We argued that this system has several ad-
vantages when compared to earlier work. Compared to earlier
on-line learning approaches, our approach is fully relational,
allowing for a wider range of problems. Compared to ear-
lier relational approaches, we argue that learning a complete
model may be difficult. MARLIE builds probabilistic models
allowing for partial models and uncertainty about the dynam-
ics of the world, while at the same time exploiting knowledge
as soon as it is available.

There are several directions for future work. First, one
could improve the sampling strategies for looking ahead; e.g.
by using iterative deepening strategies or sampling some ran-
dom variables only lazily. Second, self-evaluation may be
beneficial. In this way once it is shown that (parts of) the
learned transition function is correct or good enough, no more
resources need to be invested in it (but it may stay useful to
check it at regular times). On the other hand, if it is known
that the learned model or certain parts of it are not satisfactory
yet, this can be taken into account in the decision making pro-
cess. Finally, it would also be interesting to investigate how
to use poor or partial models in combination with traditional
planning reasoning strategies.
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