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Abstract
We present a conceptual framework for creating Q-
learning-based algorithms that converge to optimal
equilibria in cooperative multiagent settings. This
framework includes a set of conditions that are suf-
ficient to guarantee optimal system performance.
We demonstrate the efficacy of the framework by
using it to analyze several well-known multi-agent
learning algorithms and conclude by employing it
as a design tool to construct a simple, novel multi-
agent learning algorithm.

1 Introduction
Multiagent reinforcement learning systems are interesting be-
cause they share many benefits of distributed artificial in-
telligence, including parallel execution, increased autonomy,
and simplicity of individual agent design [Stone and Veloso,
2000; Cao et al., 1997]. Q-learning [Watkins, 1989] is a natu-
ral choice for studying such systems because of its simplicity
and its convergence guarantees. Also, because the Q-learning
algorithm is itself so well-understood, researchers are able to
focus on the unique challenges of learning in a multiagent
environment.

Coaxing useful behavior out of a group of concurrently-
learning Q-learners is not a trivial task. Because the agents
are constantly modifying their behavior during the learning
process, each agent is faced with an unpredictable environ-
ment which may invalidate convergence guarantees. Even
when the agents converge to individually optimal policies, the
combination of these policies may not be an optimal system
behavior.

Poor group behavior is not the universal rule, of course.
Many researchers have observed emergent coordination in
groups of independent learners using Q-learning or similar
algorithms [Maes and Brooks, 1990; Schaerf et al., 1995;
Sen et al., 1994]. However, failed coordination attempts oc-
cur frequently enough to motivate a host of Q-learning adap-
tations for cooperative multiagent environments. [Claus and
Boutilier, 1998; Lauer and Riedmiller, 2000; Littman, 2001;
Wang and Sandholm, 2002]. These algorithms are critical
steps towards a better understanding of multiagent Q-learning
and of multiagent reinforcement learning in general. How-
ever, most of these algorithms become intractable as the num-

ber of agents in the system increases. Some of them rely
on global perceptions of other agents’ actions or require a
unique optimal equilibrium, conditions that do not always ex-
ist in real-world systems. As reinforcement learning and Q-
learning are applied to real-world problems with real-world
constraints, new algorithms will need to be designed.

The objective of this paper is to understand why the algo-
rithms cited above are able to work effectively, and to use this
understanding to facilitate the development of algorithms that
improve on this success. We do this by isolating three factors
that can cause a system to behave poorly: suboptimal indi-
vidual convergence, action shadowing, and the equilibrium
selection problem. We prove that the absence of these three
factors is sufficient to guarantee optimal behavior in cooper-
ative Q-learning systems. Hence, any algorithm that effec-
tively addresses all three factors will perform well, and sys-
tem designers can select means of addressing each problem
that are consistent with the constraints of their system.

2 Background and Terminology
The simplicity of the Q-learning algorithm [Watkins, 1989]

has led to its frequent use in reinforcement learning research
and permits a clear, concise study of multiagent coordination
problems in simple environments. Multiagent coordination
problems are not a direct consequence of the Q-learning al-
gorithm, however. Thus, although we focus on Q-learning
in this paper, the analysis presented should be applicable in
other reinforcement learning paradigms as well.

A Q-learning agent may be described as a mapping from a
state space S to an action space A. The agent maintains a list
of expected discounted rewards, called Q-values, which are
represented by the function Q(s, a) where s ∈ S and a ∈ A
are the current state and chosen action. The agent’s objective
is to learn an optimal policy π∗ : S → A that maximizes
expected discounted reward over all states s. At each time
step, the agent chooses an action at ∈ A, receives a reward
r(st, at), and updates the appropriate Q-value as

ΔQ(st, at) = α[r(st, at) + γ max
a

Q(st+1, a) − Q(st, at)]

where 0 < α ≤ 1 is the learning rate and 0 ≤ γ < 1
is the discount factor. At any point in time, the agent’s
best estimate of the optimal policy is its learned policy
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π̂(s) = argmaxa{Q(s, a)}. The learned policy may differ
from the optimal policy because it is based on Q-value es-
timates. In Q-learning, the learned policy also differs from
the exploration policy executed during learning (off-policy
learning). Note that other approaches might employ identi-
cal learned and exploration policies (on-policy learning).

Under certain conditions [Tsitsiklis, 1994], Q-learning will
converge to a set of optimal Q-values

Q∗(s, a) = r(s, a)+
∑

t

∑

st

γtp(st|st−1, at−1)r(st, π
∗(st))

where t = {1, 2, ...∞} and p(st|st−1, at−1) is the probability
of transitioning to state st given the previous state and action.
If the agent has converged to an optimal Q-value set, then the
optimal and learned policies are identical: π∗(s) = π̂(s) =
argmaxa{Q(s, a)}.

2.1 Q-learning in Multiagent Systems

Let Si and Ai represent the state and action space of the ith
agent in an n-agent system. The state of the system can be ex-
pressed as a vector of individual agent states s = [s1, ..., sn ],
si ∈ Si, and the combination of the agents’ individual actions
is a = [a1, ..., an ], ai ∈ Ai, resulting in joint state and action
spaces, S and A.

The combined policy for the system is a mapping
Π : S → A, where Π(st) = [π1(s1(t)), ..., πn(sn(t))]. In

each time step, a joint action a = Π(st) is executed, and each
agent receives a reward ri(si ,a) and updates the correspond-
ing Q-value Qi(si, ai). Note that the rewards the agents re-
ceive are based on the joint action (and individual state), but
the agents update Q-values for their corresponding individual
action (and state). Thus, multiple joint actions are aliased to
a single action perception of the agent.

It is sometimes useful to describe system behavior in terms
of which joint policy an agent would prefer if it maintained
a separate Q-value for each joint action. This preferred joint
policy is a mapping Π∗

i : Si → A and represents the joint
policy which provides maximum discounted reward for agent
i over all si. An agent’s joint Q-values Qi(si,a) can then
be defined as the average (over all joint states that contain si)
expected reward received by agent i when joint action a is
executed in si and Π∗

i is followed thereafter. The relationship
between the joint Q-values and the agent’s actual Q-value set
Qi(si, ai) is described by

Qi(si, ai) =
∑

a

p(a|ai)Qi(si ,a)

where p(a|ai) is the probability of joint action a being exe-
cuted when agent i selects individual action ai. Note that the
probability is conditional because for some a (those that do
not contain ai) the probability is 0 but for others it is not. For
those a that do contain ai, the probability depends on the ac-
tions of the other agents (in other words, p(a|ai) is a function
of the joint exploration policy Π(s, t)). The agent’s optimal
joint Q-values are defined as

Q∗
i (si ,a) = ri(si ,a)

+
∑

t

∑

si(t)

γtp(si(t)|si(t−1),at−1 )ri(si(t), Π∗
i (si(t))))

where t = {1, 2, ...∞} and p(si(t)|si(t−1),at−1) is the prob-
ability of transitioning to individual state si(t) given the pre-
vious state and action. An agent’s preferred joint policy
can be described in terms of the optimal joint Q-values,
Π∗

i (si) = argmaxa{Q∗
i (si ,a)}.

Definition 1. A system of Q-learning agents is cooperative if
and only if any joint action that maximizes Q∗

i (si , ai) for one
agent also maximizes it for all agents.

This definition of cooperation does not require that the
agents share the same reward signal for all joint actions; it
requires only that the agents share a set of mutually-preferred
joint actions. It thus allows for scenarios where the agents’
preferences differ, but where the agents’ needs can (and must)
be simultaneously satisfied.

We consider a solution to be system optimal if it is both a
Nash equilibrium and Pareto-optimal. In a cooperative set-
ting, this definition of optimality can be restricted to a subset
of Pareto-optimal Nash equilibria called coordination equi-
libria. A coordination equilibrium is strict if the inequality
in Definition 2 is strict (the inequality will be strict if there
is exactly one joint action that results in all agents receiving
their max reward; in other cases there are multiple such joint
actions and some sort of coordinated equilibrium selection
becomes necessary).

Definition 2. Joint action a∗ is a coordi-
nation equilibrium for state s if and only if
∀{a, i | ai ∈ a and a∗

i ∈ a∗}, Q∗
i (si , a

∗
i ) ≥ Q∗

i (si , ai).

3 Factors That Can Cause Poor System
Behavior

We now identify three factors that can cause poor system be-
havior. The first and third factors are represented in various
guises in the literature. The second factor, action shadowing,
is likely to be less familiar to readers. In the next section, we
will show that the absence of these three factors is sufficient
to guarantee that the system will perform optimally.

3.1 Poor Individual Behavior
An agent has learned an individually optimal policy
π∗

i (si) = argmaxai
{Q∗

i (si, ai)} if its behavior is a best
response to the strategies of the other players. Q-learning is
guaranteed to converge to an optimal Q-value set, and hence
to an optimal policy, in the individual case. However, this
convergence guarantee breaks down in multiagent systems
because the changing behavior of the other agents creates a
non-Markovian environment.

Despite this loss of theoretical guarantees, Q-learning
agents often converge to optimal policies in multiagent set-
tings because (1) the agents do not necessarily need to con-
verge to an optimal Q-value set in order to execute an optimal
policy and (2) if all agents are playing optimally, they must

IJCAI-07
781



settle to a Nash equilibrium, and Nash equilibria tend to be
self-reinforcing. Individual behavior of Q-learning agents is
well-studied in the literature and in what follows we focus
particularly on the following two potential problems.

3.2 Action Shadowing
Action shadowing occurs when one individual action appears
better than another, even though the second individual ac-
tion is potentially superior. This can occur because typical
Q-learning agents maintain Q-values only for individual ac-
tions, but receive rewards based on the joint action executed
by the system. As a consequence, the agent’s optimal pol-
icy may preclude the possibility of executing a coordination
equilibrium.

Definition 3. A joint action a† is shadowed by individ-
ual action âi in state s if and only if âi = π∗

i (si) and
∀a|âi ∈ a,Q∗

i (si,a†) > Q∗
i (si,a).

A special case is maximal action shadowing, which occurs
when the shadowed joint action provides maximal possible
reward for the affected agent:

Definition 4. An agent i experiences maximal action shad-
owing in state s if and only if there exist a∗ and âi such that
a∗ is shadowed by âi and ∀a ∈ A, Q∗

i (si ,a
∗) ≥ Q∗

i (si ,a)
The cause of the action shadowing problem lies in the Q-

value update function for agents in a multiagent system. In
each time step, each agent receives a reward ri(si, a) based on
the joint action space, but it updates the Q-value Qi(si, ai),
based on its individual action selection. Consequently, agent
i is unable to distinguish between distinct rewards that are all
aliased to the same individual action. Action shadowing is
a consequence of the well-known credit assignment problem
but is more precisely defined (and thus addressable).

Action shadowing is sometimes prevented by on-policy
learning – agents seeking to maximize individual reward
will tend to gravitate toward coordination equilibria. On-
policy learning does not assure that an action shadowing
problem will not occur, however. Maximal action shadow-
ing is likely to occur despite on-policy learning in situations
where failed coordination attempts are punished, as in penalty
games [Claus and Boutilier, 1998]. Maximal action shadow-
ing will always cause a coordination problem when agent in-
terests do not conflict.

3.3 Equilibrium Selection Problems
An equilibrium selection problem occurs whenever coordi-
nation between at least two agents is required in selecting
between multiple system optimal solutions. This is a some-
what stricter definition than the standard game-theoretic term,
which refers to the task of selecting an optimal equilibrium
from a set of (possibly suboptimal) potential equilibria.

Definition 5. An equilibrium selection problem oc-
curs whenever ∃(a1,a2 	= a1)|∀(i , j ∈ {1, 2},a)
Q∗

i (si ,a
j ) ≥ Q∗

i (si ,a).
The existence of an equilibrium selection problem does

not necessarily result in suboptimal system behavior. How-
ever, an equilibrium selection problem creates a potential that
the agents will mis-coordinate. Whether or not this happens

will depend on the complete reward structure of the task as
well as on the exploration strategy used by the system. Par-
tially exploitive exploration strategies have proven particu-
larly effective at encouraging convergence to a set of mutually
compatible individual policies [Claus and Boutilier, 1998;
Sen and Sekaran, 1998].

4 Achieving Optimal Performance
Cooperating Q-learners will behave optimally if each agent
learns an individually optimal policy and if maximal action
shadowing and the equilibrium selection problem are absent.

Theorem 1. For any cooperative Q-learning system,
∪n

i=1π̂i(si) is a system optimal solution if the following con-
ditions hold:

(1) ∀i, π̂i(si) = π∗
i (si)

(2) �(a†, âi)|âi = π∗
i (si) and ∀a|âi ∈ a, Q∗

i (si ,a
†) >

Q∗
i (si ,a)

(3) �(a1,a2 	= a1)|∀(i , j ∈ {1, 2},a)Q∗
i (si ,a

j ) ≥
Q∗

i (si ,a)

Proof. Let â = ∪n
i=1π̂i(si) be the joint action selected by the

learned joint policy of the system. Then ∀i, âi = π̂i(si) and
by Condition (1) ∀i, âi = π∗

i (si).
We know from Condition (2) that there cannot be a joint

action a† such that ∀a|âi ∈ a,Q∗
i (si ,a

†) > Q∗
i (si ,a). This

implies that âi enables one or more joint actions that maxi-
mize agent i’s joint Q-value function: ∃{a1, ...,am}|∀(j ∈
{1, ...,m},a), âi ∈ aj and Q∗

i (si ,a
j ) ≥ Q∗

i (si ,a).
Because the system is cooperative, any joint action that

maximizes expected discounted reward for one agent must
maximize it for all other agents as well. Hence, we
have a set of joint actions {a1, ...,am} such that ∀(i, j ∈
{1, ...,m},a),Q∗

i (si ,a
j ) ≥ Q∗

i (si ,a).
From Condition (3) we know that there can be at most one

joint action that maximizes the expected discounted reward
for all agents. It follows that m = 1 and there is a unique
joint action a1 such that ∀(i,a),Q∗

i (si ,a
1) ≥ Q∗

i (si ,a).
Since each agent’s individual action âi enables a joint ac-

tion that maximizes its expected discounted reward, it must
be the case that â = a1. Because it maximizes expected dis-
counted reward for every agent, â is a (strict) coordination
equilibrium (by Definition 2) and hence must be a system op-
timal solution.

Naturally, these are not the only possible sufficient con-
ditions to guarantee optimal system behavior. However, the
conditions that make up our framework are preferable over
many other possibilities because they can be addressed by
modifying the learning algorithm directly, without placing
additional constraints on the cooperative learning environ-
ment.

5 Improving System Performance
Given the framework imposed by Theorem 1, we con-
sider various approaches to preventing coordination prob-
lems. Topics are grouped according to two factors that affect
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system behavior: action shadowing, and equilibrium selec-
tion. The third factor, suboptimal individual convergence, is
quite prevalent in the Q-learning literature, and is too broad a
topic to be examined here.

There are two basic ways to improve system performance:
control the task or modify the learning algorithm. In task-
oriented approaches, reward structures are constrained so that
action shadowing and the equilibrium selection problem are
not present for any agent. Algorithm-oriented approaches
attempt to design algorithms that cope effectively with the
above-mentioned problems. In general, algorithm-oriented
approaches are superior because they enable the creation of
general-purpose learners that learn effective policies regard-
less of the reward structure. Still, it is useful to be acquainted
with task-oriented approaches because algorithms designed
for constrained environments will not need to explicitly ad-
dress issues that are implicitly resolved by the environment.

5.1 Task-oriented Approaches for Action
Shadowing

Dominant Strategies: A dominant strategy is a policy that
maximizes an agent’s payoff regardless of the actions of the
other agents. If the task is structured in a way that creates
dominant strategies for all agents, no agent can experience
action shadowing.

5.2 Algorithm-oriented Approaches for Action
Shadowing

Joint Action Learning: If each agent is able to perceive the
actions of its counterparts, then it will be able to distinguish
between high and low payoffs received for different joint ac-
tions, rather than indiscriminately attributing the payoffs to a
single individual action. This technique is often called joint
action learning [Claus and Boutilier, 1998]. Other exam-
ples of joint action learning include Friend-or-Foe Q-learning
[Littman, 2001], Nash Q-learning [Hu and Wellman, 2003],
and cooperative learners [Tan, 1997].

Optimistic Updates and Optimistic Exploration: For de-
terministic environments, distributed reinforcement learning
[Lauer and Riedmiller, 2000] has the same effect as joint ac-
tion learning, but without giving the agents any extra infor-
mation – agents optimistically assume that all other agents
will act to maximize their reward, and thus store the maxi-
mum observed reward for each action as that action’s utility.
A variation for stochastic domains uses a weighted sum of
the actual Q-value and an heuristic to select an action for ex-
ecution [Kapetanakis and Kudenko, 2002] . This heuristic
results in effective convergence to optimal equilibria in some
stochastic climbing games, but does not do so in all stochastic
environments.

Variable Learning Rate: Another approach to addressing
the problem is to minimize the effect that the learning of other
agents has on a given agent’s own learning. This is the ap-
proach taken by WoLF variants [Bowling, 2004], in which a
variable learning rate for updating the Q-values has the effect
of holding some agents’ policies constant while others learn
against the (temporarily) stationary environment.

5.3 Task-oriented Approaches for Equilibrium
Selection

Unique Optimal Solution: The simplest way to prevent the
equilibrium selection problem is to design a system that has
only a single optimal solution. When this is the case, the
agents do not need to coordinate in selecting between mul-
tiple optimal equilibria. This is the premise behind the con-
vergence proofs in [Hu and Wellman, 1998] and [Littman,
2001]. It is also the only possibility for avoiding an equilib-
rium selection problem using WoLF [Bowling, 2004] (note
that the WoLF variants have focused on adversarial general
sum games, and not at all on cooperative ones).

5.4 Algorithm-oriented Approaches for
Equilibrium Selection

Emergent Coordination: Emergent Coordination describes
the tendency of a set of non-communicating reinforcement
learners to learn compatible policies because each agent is
constantly seeking a best response to the other agents’ ac-
tions. This has been demonstrated, for example, in hexapedal
robot locomotion [Maes and Brooks, 1990], network load
balancing [Schaerf et al., 1995], and a cooperative box-
pushing task [Sen et al., 1994].

Social Conventions: A social convention is a pre-arranged
constraint on behavior that applies to all agents, such as driv-
ing on the right side of the street. This is the premise be-
hind social learners [Mataric, 1997] and homo egualis agents
[Nowe et al., 2001], and it has also been used as a coordina-
tion mechanism in Q-learning systems [Lauer and Riedmiller,
2000].

Strategic Learners: Strategic learners are agents that model
their counterparts and select an optimal individual strategy
based on that model. One commonly-used model in games
where the agents can see each others’ actions is fictitious
play [Claus and Boutilier, 1998] and its variant, adaptive play
[Wang and Sandholm, 2002; Young, 1993]. Another exam-
ple is that of concurrent reinforcement learners [Mundhe and
Sen, 2000].

6 Applying the Framework: Incremental
Policy Learning

In this section we describe a simple learning algorithm de-
signed by addressing each of the conditions of Theorem
1. This algorithm, called Incremental Policy Learning, ad-
dresses the issues of optimal individual convergence, action
shadowing and the equilibrium selection problem. It consis-
tently learns to play a coordination equilibrium in determin-
istic environments.

Achieving Optimal Individual Behavior: Incremental Pol-
icy Learning achieves optimal individual behavior by using a
standard Q-learning update equation to estimate Q-values.

Preventing Action Shadowing: Following the example of
[Claus and Boutilier, 1998], Incremental Policy Learning pre-
vents action shadowing by learning Q-values over the entire
joint action space. Each agent can perceive the action selec-
tions of its counterparts (but only its own reward signal) and
uses this information to learn Q-values for all possible joint
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actions. This enables the agents to clearly determine which
individual actions may lead to coordination equilibria.

Addressing the Equilibrium Selection Problem: Incre-
mental Policy Learning uses a sequence of incremen-
tal policy adjustments to select between multiple optimal
equilibria. Each agent maintains a probability distribu-
tion P = {p(a1), ..., p(am)} over its available action set
A = {a1, ..., am}. These probabilities are initialized and
modified according to the algorithm described below.

6.1 The Incremental Policy Learning Algorithm
• Initialization
∀i, p(ai) = vi, where v is arbitrarily chosen such that∑n

i=0 vi = 1 and ∀i, vi > 0.

• Action Selection
In each time step t, the agent selects an action a(t) ∈ A
according to probability distribution P . The agent exe-
cutes this action, receives a reward signal r(t), updates
its joint Q-values, and updates P as described below.

• Probability Updates
Let rmax be the maximum Q-value stored in the joint
action table
Let 0 < α ≤ 1.
If r(t) ≥ rmax then ∀i:

if (a(t) = ai) then p(ai) = p(ai) + α(1 − p(ai))
if (a(t) 	= ai) then p(ai) = p(ai) − αp(ai)

Here rmax is the reward for the target equilibrium (the re-
ward for the preferred joint action). Intuitively, whenever
rmax is received as a reward, the action selection probabil-
ity distribution is skewed somewhat toward the action that
resulted in its receipt.

A proof sketch that the IPL algorithm meets the criteria
of Theorem 1 (and thus will result in optimal system perfor-
mance) proceeds as follows. Condition 1 is met because the
individual agents use standard Q-learning. Condition 2 is met
because the agents are allowed to see the joint action space.
An argument for meeting condition 3 is given in [Fulda and
Ventura, 2004].

6.2 Results
We first allow the agents to select random actions until their
joint Q-values converge, and only then use the coordination
mechanism described above. This results in the agents con-
sistently learning to play a coordination equilibrium. How-
ever, such strictly controlled situations are of limited interest.

We next experiment with two agents learning Q-values and
the coordination policy simultaneously. These agents repeat-
edly play a (stateless) single-stage game in which each agent
has five possible action selections. Each cell of the payoff
matrix was randomly initialized to an integer between 0 and
24 (different random payoffs were assigned to each agent),
with the exception of five randomly placed coordination equi-
libria whose payoff was 25 for both agents. The algorithm
was tested in both deterministic and stochastic environments
(each reward signal was summed with Gaussian noise).

Figure 1 shows the algorithm’s performance as a function
of α, averaged over 100 trials. Because the Q-values and the

Figure 1: Incremental Policy Learning performance as a func-
tion of α

policy are learned simultaneously, the agents do not always
achieve their maximum expected rewards. This occurs be-
cause the agents’ policies sometimes settle before the Q-value
estimates for the coordination equilibria are large enough to
be distinguished from the Q-values of less desirable actions.
As expected, the algorithm performs better with lower values
of α. The smaller α is, the more likely it is that the joint Q-
values will converge to their correct values before the agents’
policies settle, which in turn enables the agents to easily learn
a coordination equilibrium. Interestingly, even when α ap-
proaches 1, the performance of the algorithm degrades rather
gracefully.

6.3 Discussion
The methods used by Incremental Policy Learning are simple,
but the principle demonstrated is powerful. An algorithm that
successfully achieves individual optimal performance, avoids
maximal action shadowing, and addresses the equilibrium se-
lection problem will learn an optimal group behavior in coop-
erative environments. Incremental Policy Learning satisfies
these requirements in deterministic environments when α is
sufficiently small. In fact, the algorithm performs well even
when these requirements are violated.

Incremental Policy Learning is particularly suited to en-
vironments with small numbers of interacting agents. If the
number of agents becomes very large, a method of addressing
the action shadowing problem other than joint action learning
would be required. A possible alternative is to represent only
significant subsets of the joint action space, as in [Fulda and
Ventura, 2003].

7 Conclusion
We have identified a set of conditions sufficient to guarantee
optimal performance for systems of cooperative, concurrently
learning agents. Each condition can be met in multiple differ-
ent ways, thus enabling the creation of learning algorithms
that are suited to the constraints of a particular environment
or task. As an example, a learning algorithm has been pre-
sented that addresses each of the conditions.

The major advantage of our framework is that the con-
ditions can all be satisfied through algorithm-oriented ap-
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proaches. In contrast, many other conditions sufficient for
optimal performance require additional constraints on the en-
vironment or the task (for example, iterated strict dominance
games or the generic condition in which all solutions are co-
ordination equilibria). Since our stated objective is to assist
in creating algorithms that are uniquely adapted to the envi-
ronment, we require conditions that can be addressed through
the algorithm itself.

Future work will concentrate on generalizing the approach
to competitive environments and eventually to environments
of conflicting interest (such as battle of the sexes and the
prisoner’s dilemma). One approach to this replaces the Q-
function with an evaluation function so that although agent
preferences may differ, they will coordinate in seeking a com-
promise between those preferences, essentially converting an
adversarial system into a cooperative one. This is the ap-
proach taken by Hu and Wellman’s Nash Q-learning, in which
the agents seek to play Nash equilibria rather than seeking to
maximize rewards directly [Hu and Wellman, 2003].

Also, the framework presented here makes an underlying
assumption of the independence of the individual states si.
That is, it assumes that state si of agent i (at time t) will not
affect the state sj of agent j at some later time. It would be
interesting to generalize this work to consider the case when
this independence assumption does not hold.
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