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Abstract

This paper presents an algorithm for inferring a
Structured Hidden Markov Model (S-HMM) from
a set of sequences. The S-HMMs are a sub-class
of the Hierarchical Hidden Markov Models and
are well suited to problems of process/user profil-
ing. The learning algorithm is unsupervised, and
follows a mixed bottom-up/top-down strategy, in
which elementary facts in the sequences (motifs)
are progressively grouped, thus building up the ab-
straction hierarchy of a S-HMM, layer after layer.
The algorithm is validated on a suite of artificial
datasets, where the challenge for the learning al-
gorithm is to reconstruct the model that generated
the data. Then, an application to a real problem of
molecular biology is briefly described.

1 Introduction

Several data mining applications, such as genome analysis
[Durbin et al., 1998], intrusion detection [Lee and Stolfo,
1998; Lee er al., 2002] and agent modeling, are character-
ized by the presence of sparse patterns hidden in symbolic
sequences. By sparse patterns we mean a chain of interre-
lated motifs separated by gaps, i.e., irrelevant subsequences.

Discovering this kind of patterns becomes harder when
the length of the motifs decreases and the length of gaps in-
creases. In fact, short motifs have a high probability of oc-
curring in a long random sequences. Then, by considering
motifs in isolation, short subsequences corresponding to true
regularities are easily missed, as they cannot be distinguished
from random ones. On the contrary, short motifs can be
discovered when they systematically co-occur together with
other motifs, previously identified.

This paper presents an algorithm, EDY, which explic-
itly addresses this problem. EDY models sparse patterns
by means of Structured Hidden Markov Models (S-HMM),
which can be automatically induced from a database of se-
quences. S-HMMs benefit from interesting compositional
properties, which allow for their incremental construction.
More specifically, EDY’s discovering algorithm executes a
cycle, at each iteration of which new motifs are detected and
added to the current model, starting from the most evident
ones.

A suite of artificial problems has ben designed to test EDY;
the algorithm accuracy is correlated to the problem degree
of difficulty. Furthermore, an application to a DNA analy-
sis problem is described; in this application EDY’s incremen-
tal capabilities allow short motifs, forming together complex
patterns, to be discovered inside very long DNA strings. The
results have been considered significant by the biologists.

2 The Structured HMM

Assuming that possible instances of a sparse pattern can be
represented by a first order Markov chain, the global struc-
ture of the pattern can be modeled by a forward graph as the
one in Figure 1. Formally, the graph is defined by a 5-ple
v =(M,G, A,b,e), where M and G are two sets of abstract
states (nodes of the graph), denoted by circles and squares,
respectively. Circles represent motifs, and square represent
gaps. A is a probability distribution governing the transitions
from one state to another. States b and e are the initial and the
final states of any path on -y, representing an instance of the
pattern. By definition, b and e are dummy states. Under the
restriction that -y is a strictly forward graph, distribution A is
such that no loops are generated.

Figure 1: Example of sparse pattern model. Circles denote
motifs and squares denote gaps.

In turn, motifs and gaps are sub-patterns that are modeled
by left-to-right Hidden Markov Models (LR-HMMs) [Ra-
biner, 1989]. An LR-HMM corresponds to a forward graph
where self-loops are allowed. Formally, an LR-HMM is a 6-
ple u = (Q, 0, A, B, b, e), where @ is a set of states, O a set
of observations (symbols of an alphabet ), A is a probabil-
ity distribution governing the transitions from state to state,
B is a probability distribution governing the emission of ob-
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servation o; € O in state ¢; € (), and b, e are the initial and
final states, respectively. We assume that b and e do not have
observable emissions.

The model v, together with the motif and gap models asso-
ciated to its states, defines a Structured HMM (S-HMM)! An
S-HMM is a particular case of a Hierarchical Hidden Markov
Model (HHMM) (see [Fine et al., 1998], for details), with
only two levels in the hierarchy. An HHMM is a multilevel
extension of the basic HMM [Rabiner, 1989], in which emis-
sions at higher levels are sequences computed by sub-models
at a lower level in the hierarchy.

Under the given restrictions, two important properties (not
proven here) hold for S-HMMs, whereas they do not hold for
unrestricted HHMMs.

Property 1: Any S-HMM can be compiled into a sin-
gle level Left-to-Right HMM without loosing the structure
enforced by the hierarchy.

In other words, flattening an S-HMM into a single level
LR-HMM, denoted by LR-HMM’, can be simply done by
replacing the abstract states defined in v with the models
LR-HMMs of motifs and gaps.

Property 2: The complexity of the Forward-Backward
and Viterbi algorithms for LR-HMM s is O(k, |S|,n), where
n is the length of the observed sequence, k is the average
branching factor, and |S| is the number of states of the
corresponding LR-HMM'.

As the EM algorithm is based on the Forward-Backward
algorithm, every EM cycle has the same complexity. This
property is very important for dealing with long sequences
and complex S-HMM:s.

The presence of long gaps between motifs is a problem that
needs to be explicitly addressed. A simple way of modeling a
short gap is to use a state with a self-loop in between two mo-
tifs. However, this simple approach does not work when gaps
are long. In fact, a long gap may hide a complex process that
needs to be completed before entering the phase generating
the next motif. Then, the gap lengths may follow a distribu-
tion different from the exponential one, which is the unique
distribution associated to a self-loop. An example of a more
plausible distribution is reported in Figure 2-(a), which is cor-
rectly modeled by the LR-HMM in Figure 2-(b). It is easy to
verify that, given a sufficient number of states, this HMM ar-
chitecture can model any distribution.

3 EDY’s Discovery Strategy

The EDY algorithm exploits co-occurence of regularities in
bounded regions of a sequence in order to detect short mo-
tifs. The S-HMM X of a sparse pattern is constructed incre-
mentally, starting from a learning set LS of sequences, going
through a learning cycle in which a model is progressively
extended and refined, by repeatedly incorporating new motifs

'In the following symbol A will be used to denote a S-HMM,
whereas symbols v will denote the upper level graph of the model,
and p will denote motif and gap models.
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Figure 2: Hidden Markov Model for gaps. (a) Example of a
probability distribution over the lengths of a gap, determined
by some physical process; (b) Left-to-right unfolded model
that correctly generates distribution (a).

and gaps. The cycle may initiate with a empty model or with
a model supplied by an expert of the domain, and terminates
when there is no more evidence of new motifs to incorporate.
When the cycle initiates with an empty model, a first step
is made in order to construct a seed; in this case, the whole
length of the sequences of the learning set LS is considered,
searching for self-evident motifs, or for pairs of motifs, which
are easier to distinguish from random noise. Afterwards, the
incremental cycle begins. Suppose that EDY has built a cur-
rent model A. Abstract states in the upper level v of A are
associated to motifs and gaps that have been found in corre-
sponding subsequences of the sequences in £S. In general,
motifs and gaps are interleaved. In order to extend A, EDY
analyzes any gap searching for new motifs. Good candidates
are:

1. motifs that show a high frequency of occurrence;

motifs that occur at approximately constant distance
from one of the gap boundaries;

pairs of motifs whose inter-distance follows a peaked
distribution.

After candidate motifs are generated (with any of the
strategies), the problem arises of evaluating their likelihood,
distinguishing true motifs from apparent motifs due to ran-
domness.

Let s be the subsequence where candidate motifs have been
found. The likelihood that a candidate motif m is not random
is usually evaluated [Durbin et al., 1998; Gussfield, 1997]
by comparing the probability P(m/|s) of finding m in s to
the probability P(m|r) of finding m in a random sequence
r of the same length as s. It is immediate to verify that the
probability P(m|r’), being r’ a contiguous subsequence of r,
is always smaller than the probability P(m|r) of finding m in
the entire r. Therefore, the likelihood of m not being random
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increases when the length of the region where it may occur is
reduced.

However, computing P(m/|s) and P(m|r) is not simple
when the motif m is an instance of a model y. In fact, m
is just one possibility among all those governed by the emis-
sion probability distribution of .

On the other hand, the forward-backward algorithm [Ra-
biner, 1989] can compute the probability P(s|A) that a se-
quence s (or r) is generated by A. In the following we will
show how this algorithm can be used to estimate the reliabil-
ity of accepting a motif m as not random.

Using Bayes theorem, we get: P(s|\)P()\)
P(\|s)P(s). Given the set S of the subsequences of se-
quences in LS and another set R of random sequences, whose
lengths follow the same distribution as those in S, the follow-
ing relation:

_ E[P(Als)P(s)]
E[P(Alr)P(r)]’

p(\,S) = seS,reR.

ey
can be considered as an estimate of the reliability of ac-
cepting the hypothesis that model A generates a motif rather
than a random string in the sequences of S. Notice that A
represents the model for the whole subsequence s, in which
a motif instance m, modeled by u, has been hypothesized.
The model A will be a sequence of a gap model, a motif (i.e.,
1) and another gap model (in the case of a pair of candidate
motifs \’s structure is changed accordingly).

In order to understand the meaning of p(}),S), we have
to remember that the subsequence m (or variations thereof)
must be found in most sequences of .S to become a candidate
motif. Then, the probability value computed by the forward-
backward algorithm may differ from one sequence s from an-
other. Then, the mean value E[.] appearing in the formula
refers to the average w.r.t. to sequences in S.

The value p(A, S) must be significantly greater than 1, if
the candidate motif is not random. A Student’s test (with p >
0.99) is made in order to compare E[P(s|\)] and E[P(r|\)].
The p(A, LS) value can also be used to compare competing
motif models.

4 Learning Algorithm

Before describing in details the learning algorithm, we
need to describe sequence tagging and sequence abstraction,
which are the basic procedures of the learning strategy.

Sequence tagging. Let \; denote the current version of the
S-HMM, constructed by EDY after ¢ iterations from a learn-
ing set LS. Sequence tagging is accomplished by using the
Viterbi algorithm to find, in each sequence s € LS, the most
likely instances of \;. From these instances it is easy to de-
termine the regions where most likely the motifs and gaps
described by A; occur. Such regions are tagged with the id
of the corresponding motif and gap models. In the follow-
ing £LS(\¢) will denote the set of learning sequences tagged
using A;.

Sequence abstraction. After sequence tagging has been
done, an abstract description s’ () can be generated, for each
sequence s € LS, by replacing the tagged regions with the

corresponding motif or tag id. In the following, £S'(\;) will
denote the set of all sequences abstracted using A;.

The learning algorithm iteratively performs a cycle in
which two operators can be applied: the Extend and the
Refine operators. Let HALT denotes the variable that
controls the overall cycle execution. The abstract scheme of
the learning algorithm is the following one:

EDY()\)
STABLE = False, HALT = False
while = HALT do
while — STABLE do
Anew = Refine(\)
if LS(Anew) ~ LS(N)
then STABLE = True
endif
A = Anew
endwhile
Apply Extend(\)
if Extend(\) fails
then HALT = True
else Ay ey = Extend(X\)
A=Anew
then STABLE = False
endif
endwhile

In the next subsection the functioning of the algorithm will be
briefly illustrated.

4.1 Model Extension

Given the current model A = A, the algorithm applies the
Refine operator until (approximately) no difference exists, in
the tagged sequences in £S()\;), between two consecutive
cycles. When this happens, EDY tries to extend the current
model, by adding some motif discovered inside a gap. How-
ever, a candidate motif is not substituted to the gap, but both
are kept in parallel, waiting for the Refine operator to decide.
Notice that at most one candidate motif is added in an exten-
sion step, with the only exception in the first cycle, where a
more complex initial model, containing two motifs, may be
constructed.

In the following we will briefly overview the heuristic pro-
cedure used for generating hypotheses for motifs in gaps, and
for building an S-HMM, to be validated according to the for-
mula (1). In order to find motifs, EDY searches for regular-
ities exploiting techniques developed in Molecular Biology
[Durbin et al., 1998]. Two basic notions are used: edit dis-
tance and alignment among strings. Informally, the edit dis-
tance is measured as the number of corrections necessary to
make two strings identical. The alignment of two strings s,
S9 18 a pair of strings s/, s, obtained by s1, s2 by inserting a
proper number of spaces such that identical symbols are put
into correspondence to a maximum extent. An alignment is
said local when it is restricted to a subsequence of s, s, and
it is said multiple when it involves more than two strings.

Therefore, motifs are discovered and modeled according to
the following steps:

1. For every pair of sequences (s1, s2) in LS, or pairs of
subsequences where a gap has been found, EDY finds all
local, statistically significant alignments between them,
and collects the aligned subsequences into a set A. Sub-
sequences in A are the candidate motif instances.

Subsequences in A are then grouped, forming three
kinds of clusters: (a) clusters of highly frequent (dis-
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regarding the position) subsequences, bearing a strong
similarity among them; (b) clusters of similar subse-
quences that occur at an almost constant distance from
one of the boundaries of the sequence; (c) pairs of clus-
ters of similar subsequences that frequently occur at a
regular distance from one another. Levenstein’s distance
[Levenstein, 1966] is used between sequences.

Every cluster C; from the previous step is used to con-
struct a corresponding LR-HMM y;, using the algorithm
described in [Durbin et al., 1998]. The algorithm first
constructs a multiple alignment among all subsequences
in C;, and then it builds a model p; from the aligned
subsequences.

Gap models are then constructed, on the basis of their
length distribution.

From every motif model p; and the models of the adja-
cent gaps a partial S-HMM J; is constructed and evalu-
ated, as explained in Section 3. Among all the discov-
ered motif models, the one which obtains the best eval-
uation is selected for actually extending the model.

4.2 Model Refinement

As the mechanism exploited by the model extension proce-
dure is rather primitive, at every step only a single motif
model is added to the S-HMM. Then, the model refinement
procedure reconstructs motif and gap models , until conver-
gence on stable models is achieved.

g MeTgE
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Figure 3: Example of cluster hierarchy. Leaves corresponds
to the states of the level v, whereas second level nodes corre-
spond to models p of motifs and gaps

The starting point is the tagged dataset LS (\;) constructed
before calling the refinement operator. All sequence segments
corresponding to motif and gap instances, which have been
detected by the Viterbi algorithm, are collected into a two
level hierarchical clustering. The left part of Figure 3 pro-
vides an example of the clusters for the S-HMM in Figure
1. The clusters associated to the leaves correspond to states
at the level v of the model. Each leaf contains all the sub-
sequences which have been emitted by the model p (motif
or gap) when the S-HMM was in the corresponding state.
However, emissions in different states can be generated by
the same motif/gap model. Then, the clusters at the second
level group together the leaves whose elements are generated
by the same model p, but in different states. The root node
of the tree is a dummy node, representing the whole set of
segments. During the refinement process, second level clus-
ters can be split or merged (see right part of Figure 3), thus
increasing or decreasing the set of existing motif/gap mod-
els. Given a distance measure between instances (the edit
distance in the specific case), two clusters of motif/gap in-
stances are merged if the distance between their centers is

not greater than their average intra-cluster distance. Alterna-
tively, a cluster, whose children have an intra-cluster distance
much smaller than the inter-cluster distance, may be split.

The specific operators, which are applied in a refinement
step, are briefly described in the following.

Boundary refinement - This operator is meant to correct
possible segmentation errors performed during the initial
learning phase. Before trying to refine a motif model, the
algorithm for searching local alignments is run on the new
set of instances, but allowing the alignments to possibly ex-
tend into the adjoining gap regions for one or two positions.
Instances of the motif can thus be extended (or reduced) if
the original segmentation is found inaccurate. However, this
operator is only applied a few times when a new motif is con-
structed, because, in the long term, it can cause instability.

Model diversification - If 1 is a model associated to two
different states M;, My, of level +, and the two associated
instance clusters C'; and C}; significantly differ, then p is split
into p1; and iy, which are trained on C; and C}, respectively.

Model unification - When two models y+; and 11y, have chil-
dren that cannot be distinguished among themselves accord-
ing to the distance criterion, the models can be merge into a
single one, u, whose parameters can be estimated from the
cluster obtained as union of ; and p’s children. The proce-
dure for merging gap models is analogous, but based on a dif-
ferent criterion. More precisely, considering two clusters C}
and C}, of gap instances, the histograms h; and hy, of the cor-
responding gap lengths are constructed. Histograms are com-
pared among each other, and “’similar” ones are merged. This
operator is only activated optionally, as it may slow down
convergence to a stable hierarchy.

Parameter refinement - As the instances of a model may
be currently different from those used to initially learn it, the
model’s parameters are re-estimated from the new set of in-
stances.

Gap model refinement - This operator is similar to the pre-
ceding one, except that the parameters to be estimated are
those appearing in the distribution of the gap lengths.

Hierarchy Revision. The algorithm for the construc-
tion/reconstruction of the level v of the S-HMM is very simi-
lar to the one that constructs the motif models. The difference
is that it works on the abstracted sequences belonging to LS.

As the above algorithm is computationally inexpensive, it
is repeated at every refinement step, in order to propagate to
the upper level changes in the structure at the lower level.

5 Validation on Artificial Data

The algorithm has been validated using artificial sequence
sets, where known patterns have been hidden. The challenge
for the algorithm was to reconstruct the original model from
the data. Two groups of target S-HMMs have been con-
structed and used to generate a large number of sequence
datasets. The S-HMMs in the first group contain three mo-
tifs separated by two gaps, plus an initial and a final random
gap. The S-HMMs in the second group have a similar, but
more complex, structure. They encode a sequence of six mo-
tifs separated by 5 gaps.

Using a semi-automated procedure, 768 models (384 for
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each group) have been constructed; they differ in the nominal
length of the motifs (5, 8, 11, 15 symbols), in the cardinality
of the alphabet (4, 7, 14, 25 symbols) and in the probabil-
ity distribution controlling transitions from state to state and
symbol emission inside states. More specifically, four classes
of normal distributions (NO, N1, N2, N3) of increasing vari-
ance have been considered. For every setting of the above
parameters three different models have been generated. They
differ one from another for a small perturbation in the center
locations of the probability distributions. Finally, for every
model, a learning set and a test set, each containing 100 se-
quences, have been generated.

The sequence length ranges from 800 to 1500. It is worth
noticing that, considering the quite short motif length, the
coding part is much smaller than the non coding part appear-
ing in the gaps.

0.7

06 |

Err

05

0.4

03 |

02+

0.1 |

ok

Figure 4: EDY’s performances on the sequences generated
by models in Group 2 (6 motifs). The plot reports the error
Err = Err(Ap) on the test set versus the motif length ML
€ (5,8, 11, 15).

The perturbation effect on the sequences, due to the
increase of the standard deviation in the probability distri-
bution, has been evaluated as the average edit distance dg
between the motif instances occurring in a dataset and the
maximum likelihood instance, computed from the generative
model by the Viterbi algorithm. The following average
values have been obtained for the four distributions:

Class: NO N1 N2 N3
OE: 0.0 0.11 0.19 0.28

Notice that also the gap length spread is strongly affected
by the increase in the distribution spread, even if it is not ac-
counted for in the measures reported above.

In order to evaluate EDY’s accuracy, let A\p be the model
learned by the algorithm, and A7 the target model, used to
generate the data. Let moreover 7S(Ap) denote the test set
TS tagged with Ap and 7S (Ar) the one tagged with Ap.
The error Err(Ap) of Ap on 7S is measured as the aver-
age edit distance between the motif instances in 7S (Ap) and
the motifs instances in 7S (A7), divided by the length of the
motif instances in 7S (Ar).

The performances obtained by EDY on the two groups of

datasets are similar, even though the ones on the first group
are slightly better. For the sake of brevity, only the errors on
the second group (more difficult) are reported in Figures 4
and 5. As one may expect, EDY always finds an error-free
model when motifs are not affected by noise (gaps are always
filled with random noise).
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Figure 5: EDY’s performances on the sequences generated
by models in Group 2 (6 motifs). The plot reports the error
Err = Err(Ap) on the test set versus the alphabet cardinal-
ity |A| € (5,7, 14, 25).

In presence of noise, it appear that Err(Ap) increases
when the alphabet cardinality and the motif length decrease,
as well as when the standard deviation of the target model
increases, as it is reasonable to expect. In fact, when the al-
phabet is small, it is more difficult to distinguish real motifs
from apparent regularities due to randomness. For the same
reason, short motifs are more difficult to detect. Then, the
performance degradation is due, in general, to the failure of
the algorithm, which searches for new motifs without finding
the correct ones. However, it is surprising that the accuracy
decreases again when motifs become longer than 11 symbols.
A possible explanation is the following: when the average
length of a motif instance increases in presence of noise, the
number of alternative sequences, among which the correct in-
stances of the motif are to be identified, increases, smoothing
thus the similarity among strings and increasing confusion.

The decrease in the similarity between the target model and
the discovered model, when the probability distributions have
long tails, is also in agreement with what one expects. Never-
theless, it is interesting that the error rate remains comparable
to the level of noise of the dataset. It is also worth noticing
that the performances evaluated on the test sets and on the
learning sets are almost identical, as their differences are not
statistically significant.

Finally, the system always converged to a stable model in
a number of steps ranging from 11 to 35. The computational
complexity for solving a single problem of the second group
corresponds to a cpu time ranging from 30 to 40 minutes on
a Opteron.
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6 Discovering Regulatory Control in Proteins

EDY has been applied to a biological task, inside a project
aimed at discovering the expression regulators of proteins re-
sponsible for obesity. Currently, the experimentation in field
is still made with animals, specifically with ractus norvegi-
cus. A group of 49 proteins, involved in obesity and sensible
to hypoxia (reduced presence of oxygen in the atmosphere),
has been identified [R C. Roach, 2003]. All such proteins
share a very similar behavior: the conjecture is that they could
share also the genetic regulators (motifs), which control their
expression in the phenotype. Goal of the experiment is to dis-
cover such regulators. The EDY algorithm is used to select
candidate motifs, which will be tested later on in a bio-genetic
laboratory. Therefore, the ultimate evaluation of the results
produced by EDY will be available only in several months.
Here we will show how EDY was able to deal with complex
sequences, and we will present some of the obtained results,
which can be at least partially validated.

The biologists suppose that the loci of the regions control-
ling protein expression should be found in the sequence of
2000 nucleotides preceding the gene coding for the protein.
A first attempt of running EDY on the whole dataset of 49
sequences failed. On the contrary, exploiting EDY’s incre-
mental facilities, the results reported in Figure 6 have been
obtained.

The key point has been to exploit the known right boundary
between the promoter and the gene as an anchor for building
an S-HMM capturing the regularities found in the region up-
stream the gene. Then, EDY was run several times, progres-
sively extending the explored region of the sequences from
500 nucleotides until 2000 nucleotides upstream. After the
explored region exceeded the size of 1000 nucleotides, the
algorithm systematically begun to generate the S-HMM re-
ported in Figure 6.
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Figure 6: S-HMM generated from the hypoxia dataset explor-
ing a region of 2000 nucleotides preceding the promoter.

Motifs 1, 2, and 4 (referring to the order defined by the
graph in Figure 6) are known transcriptional factors. More-
over, the second motif is very similar to a transcriptional fac-
tor of ATF3, a gene which is known to be involved in hypoxia
(but wasn’t in the group used for learning the model). The
other motifs are now being investigated by biologists.

Finally, is worth noticing that the probability computed by
the forward-backward algorithm for the Hypoxia model on
the sequences of the genes sensible to hypoxia has been found
to be three orders of magnitude higher than on three analo-
gous sequences corresponding to not sensitive genes. This
means that no complete instances of the model exist in the
second sequence group.

7 Conclusions

A method for automatically synthesizing a Structured HMM
for complex and sparse patterns hidden in symbolic se-
quences has been proposed. The major contributions of the
paper are two: the S-HMM itself, which is a subclass of Hier-
archical HMM [Fine et al., 1998] powerful enough to model
many kind of patterns found in real applications, but compu-
tationally effective so that it can be applied to very complex
data. The most important aspect of S-HMM is its compo-
sitional property, which allows a model to be extended in-
crementally, integrating sub-models possibly obtained from
different sources (other learning algorithms or experts of the
domain).

The second contribution is EDY’s discovery algorithm,
which has been validated on a non trivial suite of artificial
data and is now applied in a real application of Data Mining
on DNA sequences.
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