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Abstract

In this paper we introduce a new dynamic Bayesian
network that separates the speakers and their speak-
ing turns in a multi-person conversation. We pro-
tect the speakers’ privacy by using only features
from which intelligible speech cannot be recon-
structed. The model we present combines data
from multiple audio streams, segments the streams
into speech and silence, separates the different
speakers, and detects when other nearby individu-
als who are not wearing microphones are speaking.
No pre-trained speaker specific models are used, so
the system can be easily applied in new and dif-
ferent environments. We show promising results in
two very different datasets that vary in background
noise, microphone placement and quality, and con-
versational dynamics.

1 Introduction

Automatically modeling people’s spontaneous, face-to-face
conversations is a problem of increasing interest to many dif-
ferent research areas. Yet there is very little data available
that captures truly spontaneous speech—speech recorded in
situ as people go about their lives. Portable devices capable
of such recording have grown in storage capacity while be-
coming smaller, cheaper, and more powerful. But obstacles
to gathering spontaneous speech still remain, and perhaps no
other obstacle is as prominent as privacy.

Collecting truly spontaneous speech requires recording
people in unconstrained and unpredictable situations, both
public and private. There is little control over who or what
may be recorded. Uninvolved parties could be recorded with-
out their consent—a scenario that, if raw audio is involved,
is always unethical and often illegal. Recording spontaneous
data in real-world situations will require protecting the pri-
vacy of those involved by not always storing complete audio.
More specifically, any data that is saved must not allow the
linguistic content of a person’s speech to be reconstructed.
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While that limits the analyses that can be done on the data,
it does not render the data useless. A broad range of infer-
ences can be made from privacy-sensitive features. There are
many applications that would benefit from increased access
to spontaneous speech data while not needing to know the
content of the speech.

For example, research in speech and emotion often uses
only information about pitch, volume, or duration [Schuller
et al., 2004]. But the data used in such research has been
either acted speech [Campbell, 2000] or datasets gathered
in constrained situations [Greasley et al., 1995; Douglas-
Cowie et al., 2000; Ang, 2002]. Acted speech is known to
poorly reflect natural emotion [Batliner ez al., 2000]; and the
constrained datasets are recorded in relatively unnatural set-
tings (television shows, interviews) that are not representative
of ordinary human communication. There is a demand for
more natural data sets for the study of speech and emotion
[Douglas-Cowie et al., 2003al.

A second example is the study of social networks. Tra-
ditional social network analysis has relied on data gathered
either through surveys, which are vulnerable to known bi-
ases [Bernard et al., 1979; Marsden, 19901, or third party ob-
servers, which is costly, labor intensive, and does not scale.
Recent studies have used automatically gathered data about
on-line interactions [McCallum et al., 2005; Kossinet and
Watts, 2006], but there are few studies involving automat-
ically recorded face-to-face conversations—despite the fact
that face-to-face communication remains people’s dominant
mode of interaction [Baym et al., 2004]. To study social net-
works, it is sufficient to know only who spoke with whom,
not what was said.

Finally, non-linguistic aspects of spoken communication
are also useful features in medical and meeting understand-
ing applications. Speaking rate is an indicator of mental ac-
tivity [Hurlburt et al., 2002] and a behavioral symptom of
mania [Young et al., 1978]. Abnormal conversation dynam-
ics are symptoms of Asperger syndrome [Wing and Gould,
1979] and autistic individuals often speak in a high-pitched
voice or lack intonation [Tager-Flusberg, 1994]. In meetings,
interruptions and speaking time can reveal information about
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status and dominance [Hawkins, 1991] and gender specific
differences in interruptions and the consequences of those dif-
ferences are active topics of research [Tannen, 1993]. None
of these features require access to linguistic content, and all
of these applications would benefit from increased access to
natural speech data.

1.1 Problem Description

Our specific long-term goal is to model the evolution of spon-
taneous face-to-face interactions within groups of individu-
als over extended periods of time. In order to protect the
privacy of both research subjects and the non-subjects with
whom they come into contact, we must ensure that the acous-
tic information that is saved cannot be used to reconstruct
intelligible speech. The stored features must contain enough
information to serve as input to models of conversational and
social dynamics, but at the same time have insufficient in-
formation to reconstruct what is being said, or to positively
identify individuals who are not wearing microphones.

The work presented in this paper is the first step toward
our goal. We present an unsupervised approach to separating
speakers and their turns in a multi-person conversation, rely-
ing only on acoustic features that do not compromise privacy.
The features employed are useful for modeling conversational
dynamics—who is speaking and how—but are not sufficient
for speech recognition.

Our work is novel in several ways. The key contribution is
a joint probabilistic model that combines streams of acoustic
features from a set of individuals wearing microphones, infers
when there is speech present, separates the different speak-
ers from each other, and also detects when other individu-
als around them—who are not equipped with microphones—
are speaking. It does not require pre-trained speaker specific
models, and thus scales to any number of users and can be
used with new speakers and in new environments. Our model
can be extended to a dynamically varying number of speak-
ers, where new audio streams come and go whenever a new
person enters or exits a group. We also introduce a novel fea-
ture set that is useful for segmenting speakers and for mod-
eling conversation attributes, but that cannot be used to tran-
scribe the actual words spoken during a conversation.

1.2 Related Work

Most of the work in modeling spoken conversations has been
done in the domain of meeting understanding [NIST, 2006;
Dielmann and Renals, 2004]. One of the goals in meeting
understanding is speaker diarization: determining who spoke
when [Reynolds and Torres-Carrasquillo, 2005]. All of the
work that we have found in this domain assumes access to the
full audio and that it is not necessary to remove information
that can be used to transcribe speech.

Much previous work has been done in linguistic conversa-
tion analysis [Ochs et al., 1996; Sacks, 1992]. Clearly, that
work relies almost solely on information about the words that
are spoken, and not the basic acoustics of speech. As such,
the model presented in this paper is complementary to tra-
ditional conversation analysis. However, inasmuch as con-
versations are considered turn taking between speakers, our
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Figure 1: The source-filter model for speech production.

model’s ability to infer speaker turns can be seen as a nec-
essary low-level enabler for higher level conversation under-
standing.

Finally, as previously mentioned, there has been much
research into recognizing emotions associated with speech
[Douglas-Cowie et al., 2003b]. Many of these emotion-
recognition applications may not need to know the words
that are spoken. [Shriberg, 2005] mentions the importance
of modeling natural speaking behavior and identifies it as a
fundamental challenge for spoken language applications.

2 Speech Features and Privacy

We begin by giving a very simple description of speech pro-
duction based on the source-filter model [Quatieri, 2001]
(see Figure 1). Most speech sounds can be modeled with
two independent components: (i) the source sound generated
in the glottis and (ii) the filter (the vocal tract) that shapes
the spectrum of the source sound. The source can be ei-
ther voiced with fundamental frequency FO (the pitch) or un-
voiced with no fundamental frequency. Prosodic information
about speech (intonation, stress, and duration) is described by
how the fundamental frequency and energy (volume) change
during speech. The frequency response of the vocal tract—
particularly the resonant peaks (the formants)—contains in-
formation about the actual phonemes that are the basis for
words. To reproduce speech intelligibly, information on at
least three formants is required [Donovan, 1996]. Any pro-
cessing of the audio that removes information about the for-
mants will ensure that intelligible speech can not be synthe-
sized from the information that remains, and privacy will be
preserved.

To detect speech (and specifically, voiced speech) and
model how something is being said, we extract features that
contain information about the source and prosody but not
about the formants. Three features that have been shown to
be useful for robustly detecting voiced speech under vary-
ing noise conditions are: (i) non-initial maximum autocor-
relation peak, (ii) the total number of autocorrelation peaks
and (iii) relative spectral entropy [Basu, 2002] computed on
16 ms chunks of audio. Because of the periodic components
of voiced speech (see Figure 1), the autocorrelation will have
a small number of sharp peaks. Similarly, the relative spectral
entropy between the spectrum at time ¢ and the local mean
spectrum (800 ms window) will be high for voiced speech
even in the presence of indoor and outdoor noise (e.g. wind,
fan).

Beyond detecting the spoken regions, the system needs ad-
ditional information to separate the different participants in
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Figure 2: DBN model for multi-person conversation

the conversation. We found two features to be useful for this
purpose: (i) the absolute energy, and (ii) the entropy of the en-
ergy distribution across the different microphones (described
in more detail in Section 3).

Summarizing, the complete list of acoustic features that
must be saved for our model are: (i) non-initial maximum
autocorrelation peak, (ii) the total number of autocorrelation
peaks, (iii) relative spectral entropy, and (iv) energy.

3 Multi-Person Conversation Model

Let us assume there are N individuals wearing microphones.
Given acoustic features from these N microphones, we want
to detect when one of the wearers is speaking as well as when
the microphones are picking up speech from others in the
area not wearing microphones. A dynamic Bayesian network
(DBN) [Dean and Kanazawa, 1988] is a flexible way to com-
bine all of the features into a unified model used to infer who
is speaking when. The state factorization of DBNs makes it
relatively simple to express complex dependencies between
different variables in the system. Figure 2 depicts our DBN
model for inferring both spoken segments as well as identify-
ing the speaker of those segments (N = 3 in this example).
The shaded nodes are the observed variables whose values
are inputs to the system and the hidden nodes are the vari-
ables whose values are to be inferred.

Each time step in the DBN corresponds to a small chunk,
or frame, of audio data. In all of our experiments we used
frames with a length of 33.33 ms 16.67 ms of overlap with
the previous frame.

Below we describe how the different variables are specified
and the dependencies between them.

Group state G,

The group node G; determines who is holding the floor or
taking a turn to speak. It is a discrete random variable with
cardinality IV + 2: one state for no speaker (silent regions),
one state for each of the NV people wearing microphones, and
one state for any other speakers not wearing microphones.
The group state G; depends on G;_1, and the conditional
probability P(G|G¢_1) encodes the probability of turn tran-
sitions between speakers. At time ¢ = 0 all states are equally
likely: P(Go) = 1/(N + 2). The group node allows us to
constrain the individual states described below, and reduces

the complexity of the conditional probability table (CPT) we
would otherwise have to model to capture dependencies be-
tween speakers.

State of the individuals wearing microphones M

The binary random variable M, indicates whether the i-th
individual wearing a microphone is speaking. The condi-
tional probability P(M}|G}) is set to be semi-deterministic:
P(M} = 1|G; = g) ~ 1 when g = i, and ~ 0 otherwise.
This imposes the constraint that—most of the time—people
do not talk simultaneously during a conversation. Note that
it is still possible, though highly unlikely, for multiple M}
variables to be true while G is held to a single speaker.

State of unmiked others U,

Similar to MZ the unmiked other node U, is a binary ran-
dom variable that indicates whether anyone not wearing a
microphone is speaking. If there are multiple unmiked per-
sons present, they are all modeled by this node. U, is condi-
tioned on the group node G; and the aggregate voicing node
A} which indicates whether any microphone detected voiced
speech (and is described in more detail below). The condi-
tional probability P(U;|Gy, AY = 1) is defined identically to
P(M}|Gy), and P(U; = 1|Gy, AY = 0) =~ 0.

Voicing states V! and aggregate voicing A}’

The voicing states V;' are binary variables that indicate
whether microphone ¢ has recorded sound consistent with
voiced human speech. The parents of V;' are M; and the
previous V;* ;. Since each microphone can pick up speech
from its wearer as well as other speakers nearby, the condi-
tional probabilities of the V; nodes are defined as P(V}} =
1|M} = 1) ~ 1 and P(V{ = 1|M} = 0) = 0.5. In other
words, if person ¢ is speaking it is highly likely her micro-
phone will record voiced speech, and if she is not speaking
there is a uniform probability that her microphone will record
voiced speech.

The node A} is an aggregate voicing node that is the deter-
ministic logical OR of all the V' nodes. We describe below
how A} helps distinguish other individuals speaking from
silent regions.

Observations O, E;”, and HY

The observed variables obtained from the acoustic features of
the NV microphones are included at various points in the DBN
as children of M}, Uy, and V}!.

O} is a three-dimensional variable that includes the three
features previously mentioned as having been useful for de-
tecting voiced speech (non-initial maximum autocorrelation
peak, number of autocorrelation peaks, and relative spectral
entropy). P(O! = 0|V} = v) is modeled by a 3D Gaussian
with full covariance matrix. The P(O}|V}') parameters are
learned from a set of labeled data (where Vti is given) contain-
ing speakers who are not present in any of the data we eval-
uated here. Learning these features in this manner has been
shown to be speaker-independent and robust across different
environmental conditions [Choudhury and Basu, 2004].

E;” is a two-dimensional variable containing the log en-
ergies of microphones ¢ and j averaged over a 333 ms
window centered at time ¢. The conditional distribution
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Figure 4: Log entropy of energy distribution across microphones.

P(E;’|M}, M}) is modeled with a full covariance 2D Gaus-
sian. This pairwise energy feature associates voiced regions
with their speaker. If person i speaks at time ¢, then her en-
ergy should be higher than ;’s (and vice versa). When both
1 and j speak, both of their microphones have high energy
and when neither speaks both of their microphones have low
energy. Figure 3 illustrates an example of this.

H is the entropy of the log-energy distribution across
all N microphones. This feature is useful for determining
whether voiced regions come from a speaker not wearing a
microphone. When a person wearing a microphone speaks,
his microphone will be significantly louder than the others’
and the entropy will be low. When a person not wearing a mi-
crophone speaks, her energy will be spread more uniformly
across all microphones and the entropy will be high. Figure 4
illustrates an example of this.

H; is computed as follows. First, all microphones’ en-
ei(7)
> jei(m)’
Then H, is computed as the entropy of P.(7). Finally, Hf
is the average of H. over a 333 ms window centered at time
t. We use the log of H{ and model that with a 1D Gaussian

random variable conditioned on U;.

Although HY is a useful feature for distinguishing whether
speech comes from a person wearing a microphone or from
one who is not, it does not help distinguish between when
an unmiked person is speaking and when no one is speak-
ing. Entropy is high in both of those cases. However, in-
formation about the voicing states V' taken together with the
entropy can distinguish those situations. If there is voicing

ergies are normalized to a distribution: P.(7) =

and the entropy is high then it is likely that someone else
(i.e. someone not wearing a microphone) is speaking. It is
here that the aggregate voicing node A} is useful. We de-
fine P(U;|Gy = u, AY = 1) ~ 1 (where u is the state of
node G that indicates an unmiked person is speaking), and
P(Ui|Gy, AY) =~ 0if Gy # uorif AY = 0. Loosely, this
means that the model will only infer an unmiked speaker if
at least one microphone picked up voiced speech and that
speech cannot be assigned to any of the miked speakers.

3.1 Parameter Learning and Inference

Learning is done in an entirely unsupervised manner using
expectation maximization (EM). Unsupervised learning is
important for this application, given the privacy constraints
associated with recording spontaneous speech. Raw audio
will not be available for labeling speaker-specific data, so the
model must be able to fit itself to unlabeled data.

However, with a large number of parameters, EM can of-
ten converge to values that do not result in accurate infer-
ences. To prevent this, we clamp most of the above param-
eters to their pre-defined or pre-trained values. Indeed, only
the Gaussians associated with the energy-based observations
(P(E{?|Mt, M7) and P(H¢|U,)) are learned during EM.
(As mentioned, the Gaussians associated with the voicing ob-
servations are pre-trained in a speaker-independent way.) All
of the transition probabilities and semi-deterministic condi-
tional probabilities are fixed at predefined values. We did ex-
periment with leaving more parameters free and the resulting
inferences were much less accurate.

Once the free parameters are learned with EM, exact infer-
ence is done using the junction tree algorithm. During decod-
ing, we infer the most likely state sequence for the group node
G, speaker nodes M, and Uy, and voicing nodes V;'. We use
the Graphical Models Toolkit (GMTK) for all of our learning
and inference [Bilmes and Zweig, 2002].

4 Experiments and Results

Experimental evaluations were performed on two datasets:
(i) the publicly available scripted meeting corpus (M4) from
IDIAP [McCowan et al., 2003] and (ii) a labeled dataset
of natural interactions that we collected. The M4 corpus
contains 27 four person meetings, each of them about five
minutes long. The dataset has audio recordings from 12
microphones—one 8 microphone array and 4 lapel micro-
phones. The speakers in each recording followed a script for
certain meeting-wide activities (e.g., discussion, argument,
monologue) but were not told what to say. In our experi-
ments, we used data only from the lapel microphones as it
most closely resembles our data collection setup. Overall,
this dataset is quite clean and does not have much background
noise. We evaluated the performance of our model on 13 ran-
domly selected meetings from this corpus.

The dataset we collected is much more challenging. It has
a significant amount of background noise and distant speech.
There are 6 conversations collected in 4 different locations: a
meeting room, an elevator, a hallway, and a loud and noisy
atrium. The speakers were told where to go but not what to
talk about. They are all friends and had no trouble filling
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Figure 5: Two people wearing our portable recording equipment.
The sensing unit is at their right shoulders.

the time with spontaneous conversation. For recording, we
used an inexpensive condenser microphone, which is part of
a multi-modal sensing unit (dimensions: 60 mm x 30 mm x
25 mm) [Welbourne et al., 2005]. The sensing unit is clipped
to the strap of a small over the shoulder bag. The unit sits near
the upper right shoulder, but can move so the microphone is
not always at a fixed location from the mouth. A PDA in the
bag records the audio data. Figure 5 shows two people wear-
ing the equipment. Unlike the M4 data, where all lapel mi-
crophones are tethered to the same recording computer, each
person in our data carries with her all the equipment needed
for recording. Thus, our participants can move about inde-
pendently and interact in a more natural manner.

To evaluate the speaker segmentation performance, we
learned the unclamped parameters of the model in an unsu-
pervised manner for each meeting independently. Once the
learning was done, we inferred the most likely state sequence
for the group state node G; and speaker nodes M/ and U.

We compute four evaluation metrics that compare the in-
ferred value of G; to ground truth. (i) The per frame er-
ror rate is the fraction of frames in which the value of Gy
does not match the ground truth speaker. We do not consider
frames that have more than one ground truth speaker. (ii)
The diarization error rate (DER) is a standard metric used by
NIST [NIST, 2006] to measure the performance of speaker
segmentation systems. It is a relaxed version of frame er-
ror rate that merges pauses shorter than 0.3 s long and ig-
nores 0.25 s of data around a change in speaker. These relax-
ations account for perceptual difficulties in labeling speech at
such a fine time granularity. (iii) Precision is the fraction of
the total number of inferred speaker frames that are correct.
(iv) Recall is the fraction of truly spoken frames for which
any speaker is inferred (in other words, the accuracy of basic
speech-detection).

The results for the M4 corpus are in Table 1 and the results
for our dataset are in Tables 2(a) and 2(b). In both datasets,
all participants wear microphones. To test the performance of
our model with unmiked speakers, we selectively ignored the
data from some participants’ microphones. Results shown for

mics | frame err. | DER | prec. | recall

4 19.48 15.94 | 83.27 | 95.57
3 21.62 18.15 | 81.22 | 95.52
2 22.98 19.79 | 79.82 | 95.33

Table 1: Results for the M4 corpus. All meetings had 4 participants.

speakers mics | frame err. | DER | prec. | recall
4 4 31.73 24.10 | 68.18 | 95.69

3 31.27 23.72 | 70.74 | 95.23

2 30.52 23.18 | 70.45 | 96.25

3 3 33.07 27.60 | 65.49 | 90.17

2 3547 29.99 | 64.09 | 90.66

2 2 28.23 17.47 | 72.49 | 93.86

(a) Quiet environments.

speakers mics | frame err. | DER | prec. | recall
4 4 42.80 39.70 | 56.27 | 95.35

3 44.77 40.79 | 54.55 | 94.60

2 46.28 41.87 | 53.82 | 96.02

3 3 23.96 13.56 | 76.77 | 98.52

2 25.23 14.91 | 75.52 | 98.90

2 2 40.87 29.59 | 60.92 | 95.98

(b) Noisy environments

Table 2: Results on our data.

cases with fewer microphones than speakers are the averages
of results for all permutations of that number of microphones
across that number of speakers.

The first thing to note is that the DER scores on the M4
data are comparable with current speaker diarization results.
18.6 is currently the best DER (achieved with features that
do not preserve privacy) for meeting data [NIST, 2006]. (Un-
fortunately the dataset used in that evaluation is not generally
available, so we cannot compare our results directly.) To the
best of our knowledge, there is only one other published di-
arization result for the M4 corpus [Ajmera e al., 2004]. That
technique has better frame error rates (7.4%) but lower pre-
cision and recall (their reported average of the two is 80.8,
our average of the two is 88.5)—thus making for an incon-
clusive comparison. That technique also used features (low
order cepstral coefficients) that contain information about the
words spoken, so it does not protect privacy.

Our error rates are significantly better on the M4 dataset
than on the dataset we collected. Our dataset, however, has
substantially more difficult characteristics than M4. Our data
includes significantly more background noise, and the con-
versations are more fluent and fast paced with much more
speaker overlap. For example, the M4 data’s mean turn dura-
tion is 6.5 s (median: 2.5 s). For our dataset the mean turn du-
ration is 1.52 s (median: 1.1 s). Clearly, more work remains
to be done in handling noisy environments and conversations
with faster (or even variable) pacing, but the results are still
quite promising.
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Figure 6: Model history

5 Discussion

Our goal of separating the different speakers in conversations
and identifying when they speak while not preserving infor-
mation from which intelligible speech can be reconstructed
led us to explore many different variations of the model pro-
posed in this paper. Having the correct graphical structure
and acoustic features is critical in solving this problem.

A number of variations were attempted along the way. This
is depicted in the development history plot shown in Fig-
ure 6. We started by using only pairwise relative energy ratios
along with the voicing features for our observations (A). This
performed quite poorly, failing in cases where no one was
speaking and small absolute changes in energy caused large
changes in their ratios. In (B), we modeled the full distri-
bution of pairwise energies which significantly improved our
error rates. Next, we experimented with the effect of making
the individual speaker variables M, deterministically depen-
dent on GG; which worsened things (C) and lead to the semi-
deterministic CPT we ultimately used. In (D) and (E) we tried
adding various energy statistics as children of U; to determine
when unmiked persons were speaking. For (D) we added the
maximum microphone energy, and in (E) we added the mean
and variance of all the energies, but these models were not
appreciably better. Removing these energy observations and
using an aggregate voicing indicator A} alone in model (F),
did help—(F) is 3% lower than (B). Model (G) was an at-
tempt to add back the mean and variance of energy, but those
features (even after normalization) continued to hurt perfor-
mance. This suggests that those features are not sufficiently
discriminative which causes EM to converge to unhelpful pa-
rameter values. Lastly, model (H) uses the smoothed log en-
tropy of the energy distribution, as described earlier in Sec-
tion 3.

6 Future Work

There are many ways that our model could be extended. Cur-
rently, it requires at least two microphones, and we are explor-
ing ways to allow it to work with only one microphone. And
while the model is theoretically capable of inferring overlap-
ping speakers, the semi-deterministic conditional probabili-
ties from the GG; node prevent it from reliably doing so. We
are exploring ways of adding a switching node [Bilmes, 2000]
to explicitly represent changes in speaker turns as well as in-
terruptions and interjections. Additionally, we have not ex-

perimented with very many different values of the pre-defined
parameters. It may be possible to learn some of these from
other data, as we do with the voicing parameters, or to al-
low EM to learn them within given bounds. Learning better
turn transition probabilities will probably help our results the
most, since turn lengths seem to vary with conversation type.

We also plan to apply this model to the analysis of a much
larger data set. We have recently collected over 4,400 hours
of data from 24 subjects over the course of 9 months. The
subjects wore our data collection equipment and all feature
extraction was done in real-time on the PDA. (The data also
contains features beyond those listed in this paper, but none
from which intelligible speech can be reconstructed.) We
hope to use our model (along with other techniques) to study
the evolution of the subjects’ conversational styles and social
network. To the best of our knowledge, this is the most de-
tailed study of face-to-face social interactions ever done using
automatically gathered data. We would not have been able to
collect this data without the privacy guarantees provided by
our feature set.

7 Conclusion

We have presented a DBN and privacy-sensitive feature set
that are capable of inferring who was speaking when in a
conversation. The feature set does not include any informa-
tion that could be used to reconstruct intelligible speech. In
clean data, its performance is comparable to that of systems
that use much richer features from which the original speech
can be reconstructed. Even though other features useful for
speech synthesis and recognition could have been used, we
believe there is a huge advantage to protecting privacy. In the
long run, this will allow us to collect and model more inter-
esting and spontaneous conversations and extend this work
to capture richer conversation dynamics and handle varying
numbers of speakers and overlaps.
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