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Abstract

Image alignment refers to finding the best transfor-
mation from a fixed reference image to a new image
of a scene. This process is often guided by similar-
ity measures between images, computed based on
the image data. However, in time-critical applica-
tions state-of-the-art methods for computing simi-
larity are too slow. Instead of using all the image
data to compute similarity, one can use a subset of
pixels to improve the speed, but often this comes
at the cost of reduced accuracy. This makes the
problem of image alignment a natural application
domain for deliberation control using anytime al-
gorithms. However, almost no research has been
done in this direction. In this paper, we present
anytime versions for the computation of two com-
mon image similarity measures: mean squared dif-
ference and mutual information. Off-line, we learn
a performance profile specific to each measure,
which is then used on-line to select the appropri-
ate amount of pixels to process at each optimiza-
tion step. When tested against existing techniques,
our method achieves comparable quality and ro-
bustness with significantly less computation.

1 Introduction

The need to align, or register, two images is one of the ba-
sic problems of computer vision. It can be defined as the
task of finding the spatial mapping that places elements in
one image into meaningful correspondence with elements in
a second image. It is essential for data fusion tasks in medical
imaging [Hajnal et al., 2001] and remote sensing (e.g. [Cole-
Rhodes et al., 2003]). It is also widely applied in tracking and
automatically mosaicking photographs [Szeliski, 2004].

One of the most straightforward and widely used ap-
proaches is referred to as direct image alignment. It works
by defining a similarity measure, D, as a function of a refer-
ence image, and a template image warped by a transforma-
tion with some parameters, φ. The computation of D typi-
cally requires examining all pixels in each image. The align-
ment problem becomes that of finding the values of φ that
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maximize the chosen similarity measure. A number of op-
timization techniques for smooth functions, such as gradient
descent, have been used for this problem, and provide good
solutions on a wide range of image types. However, these
approaches can be slow, which reduces their usefulness in
time-sensitive applications such as real-time video registra-
tion (e.g. [Wildes et al., 2001]) and medical image registra-
tion during surgery(e.g. [Pennec et al., 2003]). It is possible
to increase the speed of processing by using only a subset of
the pixels to compute D, but this can easily lead to a reduc-
tion in accuracy and reliability. Determining the size of the
subset to use is typically done in an ad-hoc fashion, or using
heuristics which are applicable only to certain domains. Fur-
thermore, since a different number of pixels may be needed
at different stages in the optimization, a fixed subset is neces-
sarily a compromise.

In this paper, we propose a deliberation control frame-
work using anytime algorithms [Dean and Boddy, 1988;
Horvitz, 1987] to arrive at a principled solution to the speed
vs. accuracy trade-off in this problem. The first step is to
learn the properties of the similarity measure under consider-
ation, in terms of accuracy vs. computation time, by training
off-line on image pairs for which the transformation param-
eters are known. Given a new pair of images to align, we
then use this knowledge to determine the number of pixels
that need to be considered at each step of the optimization.
In this paper, we explore the effectiveness of this approach
using two common similarity measures, mean squared dif-
ference and mutual information, and a gradient descent opti-
mizer. We tested the algorithm on several types of images:
images of everyday scenes, multi-modal medical images and
earth observation data (i.e. Landsat and Radarsat images). In
all cases, using a deliberation control approach is faster than
computing the transformation using all the image data and
gives more reliable results than simply performing the opti-
mization using an arbitrary, fixed, percentage of the pixels.

The remainder of this paper is organized as follows. In Sec-
tion 2 we review the image alignment problem and in Section
3 we review methods of deliberation control using anytime
algorithms. The details of how deliberation control has been
implemented in the context of image alignment are given in
Section 4. Finally, Sections 5 and 6 describe our experimental
setup, results and conclusions.
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2 Image Alignment

Direct approaches to image alignment work by defining a
function D that measures the similarity between a fixed ref-
erence image, R(x) and a new image T (W (x,φ)). Here, we
consider the images R(x) and T (x) to be continuous func-
tions of position, x, defined on some space of coordinates X.
The coordinate space is warped by W (x,φ) which is a map-
ping from X to X, parameterized by φ (e.g., a translation or
rotation). Since our images are actually sets of pixels located
at integer coordinate positions, we use linear interpolation as
needed to determine the values of T (W (x;φ)) when W (x;φ)
is not an integer. The similarity measure, D, is thus a func-
tion of the transformation parameters φ, and the problem of
image alignment becomes an optimization problem, which
can be solved using many standard techniques, e.g., gradi-
ent descent, second-order methods, stochastic programming
etc. All these techniques require the repeated calculation of
D, and/or its gradient, ∇φD, at different points in the space
of possible transformations. This is by far the most computa-
tionally intensive part of the process.

Recently, feature based approaches to alignment have seen
considerable success, and can operate faster than direct ap-
proaches for many applications. Nevertheless, the direct ap-
proaches can yield higher overall accuracy and continue to
be used as a final adjustment step [Szeliski, 2004]. Further-
more, it is difficult to match features reliably when the im-
ages in question are not of the same modality. Hence, direct
approaches are the method of choice in applications such as
medical imaging [Hajnal et al., 2001] and geomatics [Cole-
Rhodes et al., 2003], where high precision is required and
multimodal imagery is common.

It has long been known that numerical optimization ap-
proaches can be significantly accelerated by using only a sub-
set of the pixels in the images to estimate the similarity func-
tion. For example, many implementations of mutual infor-
mation (e.g. [Ibanez et al., 2005]) use a random subset of the
image data. It has been suggested that it may be more effi-
cient to include only pixels with high derivatives in the calcu-
lation [Szeliski, 2004]. However, the size of the subset to be
used is fixed in an ad-hoc fashion. Unfortunately, any fixed
size is usually too much for some regions of the parameter
space and too little for others. Furthermore, different types of
images behave differently, so it is difficult to come up with a
subset size that is appropriate for all cases. Instead, we will
use a deliberation control mechanism to choose how much
computation to perform at each step of the optimization.

3 Deliberation Control with Anytime

Algorithms

In many artificial intelligence tasks, e.g. planning, the quality
of the solution obtained depends on the amount of time spent
in computations. Hence, trade-offs are necessary between the
cost of sub-optimal solutions and the cost of spending time
doing further computation. This process, called deliberation
control, has been investigated in the context of real-time ar-
tificial intelligence and a number of approaches have been
proposed [Horvitz and Zilberstein, 2001]. Deliberation con-
trol methods rely on two key components: algorithms that

support partial evaluation, and knowledge about how those
algorithms perform after different amounts of computation.

A class of algorithms supporting partial evaluation are any-
time algorithms [Horvitz, 1987; Dean and Boddy, 1988],
which provide a solution when run for any length of time. The
solution quality is guaranteed to improve with the amount of
computation performed. Deliberation control strategies us-
ing anytime algorithms have been applied to both theoreti-
cal and practical problems including robot control [Vlassis et
al., 2004], constraint satisfaction [Wah and Chen, 2000] and
shape extraction in image processing [Kywe et al. , 2006].

To formulate an effective deliberation control strategy us-
ing anytime algorithms it is necessary to have meta-level
knowledge of their performance as a function of the amount
of computation performed [Dean and Boddy, 1988; Horvitz,
1987]. This knowledge is stored in a performance profile.
Performance profiles may be based on theoretical knowledge
of the algorithm, on empirical testing of its performance at
different computation levels, or a combination of the two.
In any case, the decision to continue computation will be
based on an estimate of the accuracy of the current result,
and an estimate of the potential improvement if the algorithm
continues to run [Dean and Boddy, 1988; Horvitz, 1987;
Larson and Sandholm, 2004].

The simplest type of performance profile is a static one,
which predicts accuracy as a function of the amount of com-
putation completed. However, for our problem of interest,
this is equivalent to simply using a fixed, arbitrary percent-
age of the pixels. If feedback about the current run of the
algorithm is available, it can be incorporated in a more so-
phisticated approach. A dynamic performance profile [Lar-
son and Sandholm, 2004] uses feedback to estimate the accu-
racy as the algorithm progresses. It is described by two func-
tions: â = Pf wd( f , p), maps the percentage of computation
completed, p, and the feedback parameter, f , to an expected
accuracy, â. The other, p̂ = Prev( f ,a), maps a and f to the
expected percentage of computation required, p̂. Conceptu-
ally, these two functions are inverses. However, both have to
be maintained in general, to facilitate the decision making.
A controller can use these functions to gradually increase the
amount of computation performed, until the estimated accu-
racy is adequate for the task.

4 Deliberation Control in Image Alignment

As mentioned in Section 2, the most computationally inten-
sive part of image alignment is the repeated evaluation of the
similarity measure D and its gradient ∇D. The optimization
algorithm needs this information in order to take a step in
parameter space towards the optimal setting. Note that the
calculation only has to be accurate enough to ensure that the
next step is correct; determining these values exactly is not
necessary. Therefore, we propose to implement D and ∇D
as anytime algorithms, and to learn performance profiles de-
scribing their accuracy at different levels of computation.

4.1 Anytime similarity measures

We implemented two popular image similarity measures as
anytime algorithms. The resulting implementations have to
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be able to support partial evaluation, as well as to continue
an interrupted calculation efficiently. To achieve this, we re-
define each similarity measure, D(φ), as a function D(φ, p)
of both the parameters, φ, and the percentage of pixels to be
used, p. To avoid biasing the computation towards one area
of the image, the pixels are processed in a random order.

Mean Squared Difference

The negative mean squared difference DMSD is one of the
most common similarity measures [Szeliski, 2004], and is
suitable for images of the same modality. In its original form,
DMSD is simply an average of the negative squared differences
in intensity between corresponding pixels (the negative here
is simply to get a similarity, rather than a distance measure).

DMSD(φ, p) = −
1

�pN�

�pN�

∑
i=1

(R(xi)−T(W (xi,φ))2

where N is the total number of pixels in the image. The gra-
dient of this similarity measure is also easy to compute:

∇φDMSD(φ, p) =
2

�pN�

�pN�

∑
i=1

[(R(xi)−T (W (xi,φ)))

·∇W T (W (xi,φ))∇φW (xi,φ)
]

Note that both DMSD(φ, p) and ∇φDMSD(φ, p) can be updated
incrementally in the usual fashion.

Mutual Information

The mutual information (MI) image similarity measure [Viola
and Wells III, 1995] is useful for images of different modal-
ities. Our anytime implementation is based on the efficient
mutual information implementation proposed in [Thévenaz
and Unser, 2000], which relies on a B-spline windowed rep-
resentation of the joint probability distribution of the inten-
sity levels in the two images. Specifically, let bRk

, where
k = 1 . . .K, be a set of K bins of width dR for the intensity
values in the reference image starting at bR

0 = min
x

R(x). Simi-

larly, let bTl
be the bins for the intensity values in the template

image, where l = 1 . . .L, the bins begin at bT
0 = min

x
T (x) and

have width dT . Then the unnormalized joint distribution is an
array of size K ×L. The entry Pkl is equal to the number of
pixels in R for which the intensity falls in bin k and the in-
tensity of the corresponding pixels in the transformed image
falls in bin l:

Pkl(φ, p)=
�pN�

∑
i=1

δ

(
k,

⌈
R(xi)−bR

0

dR

⌉)
δ

(
l,

⌈
T (W (xi,φ))−bT

0

dT

⌉)

where δ is equal to 1 if its two arguments are equal, and zero
otherwise. Thévenaz and Unser (2000) use instead a soft ver-
sion to compute the entries in the table, based on B-spline
Parzen windows. Similarly to their work, we will use:

Pkl(φ, p) =
�pN�

∑
i=1

β0

(
k−

R(xi)−bR
0

dR

)
β3

(
l −

T (W (xi,φ))−bT
0

dT

)

where β0 and β3 are 0th and 3rd order B-spline Parzen win-
dows respectively. The normalization factor of Pkl is:

α(φ, p) =
K

∑
k=1

L

∑
l=1

Pkl(φ, p) = �pN�

This is true because B-splines satisfy the partition of unity
constraint. The mutual information can then be computed
using the usual formula:

DMI(φ, p)=
K

∑
k=1

L

∑
l=1

Pkl(φ, p)

�pN�
log

αPkl(φ, p)

(∑k′ Pk′l(φ, p)) (∑l′ Pkl′(φ, p))

Note that the second factor in the denominator above is just
the intensity histogram of the original image, which is com-
puted only once, before the optimization process.

Because a 3rd order B-spline is differentiable, the gradient
of the joint histogram, ∇φPkl(φ, p), can be computed in the
usual way as well, and stored in |φ| tables, each of dimension
K ×L. In [Thévenaz and Unser, 2000] it is shown that when
using the above formulation the derivative of DMI is:

∇φDMI(φ, p) =
K

∑
k

L

∑
l

γ∇φPkl(φ, p) log
Pkl(φ, p)

∑K
k′ Pk′l(φ, p)

where γ is the normalization factor γ = (dT �pN�)−1
. Thus,

when the derivative is required, we can compute it from the
joint probability distribution, and its gradient.

The algorithm maintains the unnormalized probability dis-
tribution, and its unnormalized partial derivatives, as de-
scribed above, which can be easily updated when more pixels
are added, because the table entries are simple sums. The dis-
tance measure and its gradient are then computed as needed
from this table.

4.2 Performance profiles

Exploiting the partial evaluation possibilities of the anytime
similarity measures requires dynamic performance profiles
describing their expected accuracy at different computation
levels and feedback values. The notion of accuracy must be
developed in terms of the optimization method being used.
In this paper, we used a simple steepest descent optimizer,
which is described in [Ibanez et al., 2005]1. Carter (1993)
has analyzed a similar class of optimizers and has proven their
convergence using the following measure of relative error:

ε =
||∇trueD−∇measuredD||

||∇trueD||
(1)

A dynamic performance profile requires a feedback param-
eter which indicates the progress of a particular calculation
run and based on the above equation the gradient magnitude
is an ideal candidate. Thus, we designed our performance
profiles to be tables mapping computation level and gradi-
ent magnitude to accuracy. To construct them we sampled
the gradient at different computation levels at many points in
the transformation space. For each computation level, p, we
grouped the gradient magnitudes into bins and computed the
expected accuracy, Ēp, of the gradient for each bin as follows:

Ēp = 1−∑
i

||∇100%D(φi)−∇pD(φi)||

||∇100%D(φi)||
, (2)

1More specific information may be found in the class documen-
tation http://www.itk.org/Doxygen/html/classitk

1 1RegularStepGradientDescentOptimizer.html
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(where the φi are the sampled points in the transform space).

The optimizer uses this table to progressively increase the
amount of computation performed until the estimated ac-
curacy reaches its criterion for acceptability. The analy-
sis in [Carter, 1993] indicates that significant computational
gains can be made, with a small (ε ≈ 10%) reduction in ac-
curacy. Therefore we choose to have the optimizer seek an
expected accuracy of 90% for each gradient that it computes.

A simple example of how the table can be used to control
computation is shown in Figure 1. This table can act as a
performance profile where two functions, â = Pf wd( f , p) and
p̂ = Prev( f ,a) are implemented through simple lookup. For
example, suppose an optimizer requires an accuracy of 98%.
On an initial probe, f (which is in our case the current esti-
mated performance) is 0.55. By examining the row applying
to 0.6 and less, we get a prediction that with p = 8%, we will
obtain the desired accuracy level (arrow 1). After perform-
ing 8% of the computation, however, suppose f is now 0.1.
Thus the accuracy is only 93% (arrow 2) meaning more com-
putation is required. The required p is now estimated as 16%
(arrow 3), and so on. In our case, the parameter p will be the
percentage of pixels processed in the image. The feedback
parameter is the magnitude of the gradient.

Figure 1: Dynamic performance profile example: Values in
the table represent the expected accuracy of the results.

5 Experiments

To test the anytime algorithm approach, a number of per-
formance profiles were generated, and alignments were per-
formed. Four classes of images (shown in Figure 2) with at
least two image pairs each were used in the testing process.
The first image class was typical digital photos (DP) (images
a-d). Both a) and d) were self-aligned and a) was aligned
affinely against several images of the same scene taken from
different camera positions (images b,c) using both similarity
measures. The second class of images (M1) (images e,f) were
slices from T1-weighted magnetic resonance imaging (MRI)
volumes which were self-registered using the DMSD measure.
The third class of images (EO) are patches from georefer-
enced, orthorectified Landsat 7 and Radarsat imagery that
were registered to each other using the mutual information
measure (rows 3 and 4). The final class of images (M2) are
slices from previously registered volumes in different medical
imaging modalities, including T1 and T2 weighted MRI, and
computed tomography (CT) (last row). These images were
aligned to each other using the mutual information measure.

1Images 2a, 2b, 2c, and 2d from K. Mikolajczyk http://www.
inrialpes.fr/lear/people/Mikolajczyk/. Landsat
and Radarsat images (2g,2h,2i,2j, 2k,2l) from Natural Resources
Canada http://geogratis.gc.ca. Medical images (2e, 2f,
2m, 2n, and 2o) courtesy Montreal Neurological Institute

(a) boat-1 (b) boat-2 (c) boat-3

(d) graffiti (e) mri-1 (f) mri-2

(g) Landsat-1 (h) Landsat-2 (i) Landsat-3

(j) Radar-1 (k) Radar-2 (l) Radar-3

(m) MRI T1 (n) MRI T2 (o) CT

Figure 2: Images used for the experiments 1

5.1 Generating performance profiles

Before performing any alignments, performance profiles for
each combination of image class and similarity measure were
generated off-line. These profiles were constructed using
training image pairs of the same modalities as the ones to
be aligned. This training data was separate from the test-
ing data used later. For each training pair, the value of ∇D
was computed at 4000 points in the transform space, at 12
different computation levels, and the profile was constructed
using the method described in Section 4.2. The resulting per-
formance profiles are shown in Figure 5.1. Note that each
profile has a roughly similar shape. At large values of the
feedback parameter, ||∇φD||, little computation is needed to
get a good result. For smaller values, however, progressively
more computation is needed. This agrees with our intuition;
since the image noise level remains constant, small values are
progressively harder to measure. It is the curved shape of
these graphs that allows us to realize important performance
gains. A constant fraction of pixels would inevitably be too
many for some feedback values and too few for others.

Despite their basic similarity, however, there are important
differences between the profiles. For example, note that for
both similarity measures, the medical images require a much
greater percentage of computation for an accurate result for
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Image RMS (pixels) Run time (s) Failure Rate
Pair GD100 GD50 GD30 AGD GD100 GD50 GD30 AGD GD100 GD50 GD30 AGD

a)-a) (DP) 0.01±0.01 0.01±0.01 0.01±0.01 0.01±0.01 48.0 24.3 15.2 31.8 1.7% 3.3% 1.7% 1.7%

d)-d) (DP) 0.02±0.02 0.01±0.02 0.01±0.01 0.02±0.02 37.7 20.6 13.1 28.2 0.0% 0.0% 1.7% 1.7%

a)-b) (DP) 0.60±0.14 0.57±0.13 0.58±0.15 0.59±0.11 106.0 40.7 22.0 35.8 8.3% 5.0% 8.3% 5.0%

a)-c) (DP) 0.34±0.12 0.35±0.09 0.35±0.11 0.33±0.08 59.1 36.8 21.1 27.7 5.0% 3.3% 8.3% 6.7%

e)-e) (M1) 0.02±0.04 0.02±0.02 0.02±0.02 0.03±0.04 4.6 2.6 1.7 4.5 0.0% 0.0% 0.0% 0.0%

f)-f) (M1) 0.12±0.54 0.03±0.04 0.03±0.05 0.05±0.07 2.9 1.5 1.0 2.7 1.7% 1.7% 1.7% 1.7%

MSD-Avg 0.18±0.32 0.16±0.23 0.16±0.23 0.16±0.23 41.9 20.5 12.0 21.5 2.8% 2.2% 3.6% 2.8%

(a) Results for the MSD measure

Image RMS (pixels) Run time (s) Failure Rate (%)
Pair GD100 GD50 GD30 AGD GD100 GD50 GD30 AGD GD100 GD50 GD30 AGD

m)-o) (M2) 0.41±0.17 0.57±0.30 0.72±0.72 0.55±0.33 9.9 4.5 3.4 9.5 11.7% 25.0% 40.0% 5.0%

n)-o) (M2) 0.96±0.33 1.13±0.53 1.22±0.59 1.10±0.31 10.7 4.8 2.7 10.6 16.7% 31.7% 43.3% 11.7%

m)-n) (M2) 0.17±0.00 0.19±0.03 0.21±0.08 0.17±0.01 6.2 3.6 2.3 5.4 3.3% 31.7% 36.7% 5.0%

g)-j) (EO) 1.69±0.38 1.89±0.39 1.90±0.65 1.84±0.74 13.9 7.2 4.1 7.6 28.3% 45.0% 51.7% 35.0%

h)-k) (EO) 1.19±0.02 1.19±0.05 1.19±0.05 1.19±0.01 42.8 25.4 16.2 39.6 13.3% 30.0% 51.7% 18.3%

i)-l) (EO) 0.06±0.01 0.07±0.01 0.08±0.02 0.07±0.01 72.4 37.4 24.1 50.3 6.7% 21.7% 41.7% 6.7%

a)-a) (DP) 0.01±0.01 0.01±0.01 0.01±0.02 0.01±0.01 115.3 62.9 37.5 14.7 5.0% 5.0% 8.3% 5.0%

d)-d) (DP) 0.04±0.10 0.01±0.01 0.01±0.01 0.02±0.05 110.6 52.4 32.7 19.8 0.0% 5.0% 1.7% 0.0%

MI-avg 0.42±0.59 0.47±0.67 0.50±0.73 0.46±0.67 60.7 30.9 19.1 18.2 10.6% 24.4% 34.4% 10.8%

(b) Results for the MI measure

Table 1: Experimental Results: Results by image pair, and combined for each measure (bottom rows)
Algorithms: GDX - standard algorithm, using X% of pixels; AGD - Anytime algorithm. Entries shown in plain font are not significantly

different from GD100; those in italic are ambiguous (see text) and items in bold significantly differ from GD100.
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Figure 3: Performance profiles: The percentage of computa-
tion required to achieve Ep = 90%.

a given gradient magnitude. The alignment tests, discussed
below, reveal that these images require more computation to
align successfully. Also note that the DMI performance pro-
files for both geographic data and medical images indicate
that no less than 30% of the pixels will ever be used for these
classes of images using this method.

5.2 Alignment tests

We implemented our approach by extending an existing, well-
tested, image alignment implementation. Specifically, we
used an implementation similar to the example MultiResIm-
ageRegistration1 in [Ibanez et al., 2005], pp. 257–63, with
appropriate transforms, and with extensions added to the op-
timizer and measures to support deliberation control. The ex-
perimental procedure was as follows. Three sets of 20 ran-
dom starting positions were created. Each set was at a dif-
ferent effective distance from the identity transform in order

to test the algorithms over the capture range of the optimizer.
For each combination of image, similarity measure and algo-
rithm, the true transform was composed with these starting
positions, and the result was used to initialize the alignment
process. Alignments were performed using the standard ap-
proach (labeled GD100 in the graphs), the standard approach
using only a specified percentage of pixels (labeled GDx, if
x% of the pixels is used) and our anytime approach. The com-
putational efficiency was measured in terms of running time.
Each reported time was obtained on a 1.9GHz AMD Athlon
machine with 3GB of RAM.

To determine if any observed reductions in runtime came
at the expense of performance, we also measured the qual-
ity and reliability of the algorithms. The quality of a result
was measured by the root-mean-square (RMS) position er-
ror compared to the true transformation position. To calcu-
late this, 50 randomly placed points in the unit square were
scaled to the image extent. These were transformed both us-
ing the known true transformation and the computed transfor-
mation. The reported RMS is the square root of the mean of
the squared coordinate differences for these points.

The reliability of each method was measured by the num-
ber of failed alignments. A particular run was considered to
have failed when the registration converged to a transforma-
tion that lead to RMS pixel position errors greater than 5 pix-
els, or when the registration failed to converge to an answer
at all. In practice, we found that this criterion was rarely am-
biguous. The alignment would either yield results that were
much better than this RMS value, or much worse. Failed runs
were not calculated in the average times or registration error.

Since each algorithm being tested was run on the same set
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of test inputs, we used paired comparisons to test for signif-
icance. For each criterion, the null hypothesis, H0, was that
the algorithms had the same performance as the original. The
RMS errors and run times were compared using pairwise t-
tests, and the failure rates were compared using the McNe-
mar test. To adjust for multiple comparisons, we used the
Tukey method for the RMS and timing data, and the Bon-
ferroni method for the failure rates [Howell, 2002]. All tests
were performed at the 95% confidence level.

Adjusting for multiple comparisons can tend to accept H0

when it should be rejected, artificially bolstering our argu-
ment. Therefore, we report all three possible cases. Where
all tests rejected H0 we conclude that performance differs.
When H0 was rejected pairwise, but accepted when adjusted
for multiple comparisons we consider the result ambiguous,
and finally when H0 was accepted by all tests, we conclude
that the data do not indicate a performance difference.

The experimental results are summarized in Table 1 a) (for
MSD) and b) (for MI). The tables show the runtime of each
method for each image pair, as well as for all runs combined.
We also show the failure rate, and the RMS error with stan-
dard deviation. For the MSD measure, little can be con-
cluded. All the algorithms under test show some improve-
ment in speed, without significantly affecting failure rate or
RMS error. For this measure, there is little to distinguish our
method from simply reducing the number of pixels. How-
ever, the results for the MI measure highlight the advantages
of our method. Reducing the number of pixels by a percent-
age frequently incurs a statistically significant loss of quality
or reliability. The anytime method, however, delivers signif-
icantly faster times without sacrificing either the RMS error,
or the failure rate. This is particularly apparent in the overall
results (bottom row,Table 1-b).

An advantage of our approach is its adaptability. It per-
formed the alignment of digital photos (DP) with the MI mea-
sure using a little more than 10% of the original running time,
without changing the failure rate. In other cases, particularly
the multimodal medical image registration (M2), more pixels
seem to be inherently required to successfully align the im-
ages. Our method adapts to that requirement and maintains a
low failure rate by increasing the computation performed.

6 Conclusions and future work

We proposed to use deliberation control methods in order to
improve the efficiency of computer vision applications. We
implemented such methods for the image alignment problem
and showed a significant improvement in speed without de-
grading the quality of the results. Even when the performance
gains are limited, a major advantage of this approach is that
the number of pixels used is determined using a training pro-
cess. Our results show that arbitrarily selecting a percentage
of the image data to use for alignment will lead to very differ-
ent results on different classes of images. Our method gives
a principled way to determine how much of the image data
needs to be processed to achieve reasonable results.

In the future, we plan to further investigate the problem of
multi-modal image alignment using such algorithms. In this
case, the amount of data is prohibitive for exact methods, es-
pecially if the data is volumetric, and if the registration has

to be performed in real-time during surgery. We will investi-
gate the use of more sophisticated methods for obtaining the
performance profile and doing the deliberation. We will also
look at other ways of highlighting the anytime aspect of sim-
ilarity measures commonly used in computer vision.
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