
Abstract 

Programming a humanoid robot to walk is a chal-
lenging problem in robotics. Traditional ap-
proaches rely heavily on prior knowledge of the 
robot's physical parameters to devise sophisticated
control algorithms for generating a stable gait. In
this paper, we provide, to our knowledge, the first
demonstration that a humanoid robot can learn to 
walk directly by imitating a human gait obtained 
from motion capture (mocap) data. Training using 
human motion capture is an intuitive and flexible 
approach to programming a robot but direct usage 
of mocap data usually results in dynamically un-
stable motion. Furthermore, optimization using 
mocap  data in the humanoid full-body joint-space 
is typically intractable. We propose a new model-
free approach to tractable imitation-based learning
in humanoids. We represent kinematic information 
from human motion capture in a low dimensional 
subspace and map motor commands in this low-
dimensional space to sensory feedback to learn a 
predictive dynamic model. This model is used 
within an optimization framework to estimate op-
timal motor commands that satisfy the initial kine-
matic constraints as best as possible while at the 
same time generating dynamically stable motion. 
We demonstrate the viability of our approach by 
providing examples of dynamically stable walking 
learned from mocap data using both a simulator 
and a real humanoid robot. 

1 Introduction 

Imitation is an important learning mechanism in many bio-

logical systems including humans [Rao and Meltzoff, 2003]. 

It is easy to recover kinematic information from human mo-

tion using, for example, motion capture, but imitating the 

motion with stable robot dynamics is a challenging research 

problem.  Traditional model-based approaches based on 

zero-moment point (ZMP) [Vukobratovic and Borovac, 

2004], [Kajita and Tani, 1996]  or the inverted pendulum 

model [Yamaguchi et al., 1996]  require a highly accurate 

model of robot dynamics and the environment in order to 

achieve a stable walking gait. Learning approaches such as 

reinforcement learning [Sutton and Barto, 1998]  are more 

flexible and can adapt to environmental change but such 

methods are typically not directly applicable to humanoid 

robots due to the curse of dimensionality problem engen-

dered by the high dimensionality of the full-body joint space 

of the robot.  

     

Figure 1. A framework for learning human behavior by imitation 

through sensory-motor mapping in reduced dimensional spaces. 

    In this paper, we propose a model-free approach to 

achieving stable gait acquisition in humanoid robots via 

imitation. The framework for our method is shown in Figure 

1. First, a motion capture system transforms Cartesian posi-

tion of markers attached to the human body to joint angles 

based on kinematic relationships between the human and 

robot bodies. Then, we employ dimensionality reduction to 

represent posture information in a compact low-dimensional 

subspace. Optimization of whole-body robot dynamics to 

match human motion is performed in the low dimensional 

space. In particular, sensory feedback data are recorded 

from the robot during motion and a causal relationship be-

tween actions in the low dimensional posture space and the 

expected sensory feedback is learned. This learned sensory-

motor mapping allows humanoid motion dynamics to be

optimized. An inverse mapping from the reduced space back 

to the original joint space is then used to generate optimized 
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motion on the robot. We present results demonstrating that 

the proposed approach allows a humanoid robot to learn to 

walk based solely on human motion capture without the 

need for a detailed physical model of the robot. 

2 Human Motion Capture and Kinematic 

Mapping 

     

Figure 2. Kinematic mapping used in our approach (from left to 

right: human body, human skeleton, robot skeleton, and robot 

body, respectively). 

In this paper, we manually map the joint angle data from a 

motion capture system to a kinematic model for a Fujitsu 

HOAP-2 humanoid robot. To generate the desired motion 

sequence for the robot, we capture example motions from a 

human subject and map these to the joint settings of the ro-

bot.  Initially, a set of markers is attached to the human sub-

ject and the 3-D positions of these markers are recorded for 

each pose during motion.  We use a Vicon optical system 

running at 120Hz and a set of 41 reflective markers.  These 

recorded marker positions provide a set of Cartesian points 

in the 3D capture volume for each pose.  To obtain the final 

subject poses, the marker positions are then assigned as po-

sitional constraints on a character skeleton to derive the joint 

angles using standard inverse kinematics (IK) routines. 

  As depicted in Figure 2, in order to generate robot joint 

angles, we simply replace the human subject’s skeleton with  

a robot skeleton of the same dimensions.  For example, the 

shoulders were replaced with three distinct 1-dimensional 

rotating joints rather than one 3-dimensional ball joint.  The 

IK routine then directly generates the desired joint angles on 

the robot for each pose.  There are limitations to such a 

technique (e.g, there may be motions where the robot’s 

joints cannot approximate the human pose in a reasonable 

way), but since we are interested only in classes of human 

motion that the robot can handle, this method proved to be a 

very efficient way to generate large sets of human motion 

data for robotic imitation. 

3 Sensory-Motor Representations 

3.1 Low-Dimensional Representation of Postures 

Particular classes of motion such as walking, kicking, or 

reaching for an object are intrinsically low-dimensional. We 

apply the well known method of principal components

analysis (PCA) to parameterize the low-dimensional motion 

subspaceX . Although nonlinear dimensionality reduction 

methods could be used (e.g., [MacDorman et al., 2004], 

[Grochow et al., 2004]), we found the standard linear PCA 

method to be sufficient for the classes of motion studied in 

this paper.  

The result of linear PCA can be thought of as two linear 

operators C and -1C which map from high to low and low to 

high dimensional spaces respectively. The low dimensional 

representation of the joint angle space of the HOAP-2 robot 

executing a walking gait (in the absence of gravity) is 

shown in Figure 3. 

Figure 3. Posture subspace and example poses. A 3-dimensional 

reduced space representation of the postures of the HOAP-2 robot 

during a walking motion. We applied linear PCA to 25 dimensions 

of joint angle data of the robot that mapped from a human kine-

matic configuration as described in Section 2. Blue diamonds 

along the function approximated trajectory represent different 

robot postures during a single walking cycle. Red circles mark 

various example poses as shown in the numbered images.  

We use a straightforward, standard linear PCA method to 

map between the low and high-dimensional posture spaces. 

Vectors in the high-dimensional space are mapped to the 

low-dimensional space by multiplication with the transfor-

mation matrix C . The rows of C  consist of the eigenvec-

tors, computed via singular value decomposition (SVD), of 

the motion covariance matrix. SVD produces transformed 

vectors whose components are uncorrelated and ordered 

according to the magnitude of their variance.  
For example, let 21 1= ×q  vector of joint angles (the 

high-dimensional space) and 3 1= ×p  vector in 3D space. 

We can calculate p  in 3D space by using r = Cq , where r

is a 21 1× vector of all principal component coefficients of 

q  and C  is the 21 21×  transformation matrix.  We then 

pick the first three elements of r  (corresponding to the first 

three principal components) to be p . The inverse mapping 

can be computed likewise using the pseudo inverse of C . 
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3.2 Action Subspace Embedding 

High-level control of the humanoid robot reduces to select-

ing a desired angle for each joint servo motor. As discussed 

previously, operations in the full space of all robot joint 

angles tend to be intractable. We leverage the redundancy of 

the full posture space and use the reduced dimensional sub-

spaceX  to constrain target postures. Any desired posture 

(also referred to as an action) can be represented by a 

point ∈a X .  

A periodic movement such as walking is represented by a 
loop inX as shown in Figure 4. In the general case, we con-
sider a non-linear manifold representing the action space 

⊆A X . Non-linear parameterization of the action space 
allows further reduction in dimensionality. We embed a one 
dimensional representation of the original motion in the 
three dimensional posture space and use it for constructing a 
constrained search space for optimization as discussed in 
Section 5. Using the feature representation of the set of ini-
tial training examples i ix = C z , we first convert each point 
to its representation in a cylindrical coordinate frame. This 
is done by establishing a coordinate frame with three basis 
directions θ θ θx , y , z in the feature space. The zero point of 
the coordinate frame is the empirical mean μ of the data 
points in the reduced space. We recenter the data around this 
new zero point and denote the resulting data ˆ ix . 

Figure 4. Embedded action space of a humanoid walking gait. 

Training data points in the reduced posture space (shown in blue-

dots) are converted to a cylindrical coordinate frame relative to the 

coordinate frame θ θ θx , y , z . The points are then represented as a 

function of the angle φ , which forms an embedded action space 

(shown in red-solid-curve). This action space represents a single 

gait cycle. 

We then compute the principal axis of rotation θz : 

ˆ ˆ

ˆ ˆ

i i+1

i i+1
θ =

∑
∑

  

i

  

i

(x × x )
z

(x × x )
.     (1) 

Next, θx is chosen to align with the maximal variance of ix

in a plane orthogonal to θz . Finally, θy is specified as or-

thogonal to θx and θz . The final embedded training data is 

obtained by cylindrical conversion to φ( ,r,h) where r is the 

radial distance, h the height above the −θ θx y  plane, and 

φ  the angle in the −θ θx y plane. The angle φ  can also be 

interpreted as the phase angle of the motion.  

Given the loop topology of the latent training points, one 

can parameterize r  and h  as a function of φ . The embed-

ded action space is represented by a learned approximation 

of the function: 

[ ] (φ)r,h g=                                     (2) 

where 0 φ 2π≤ ≤ . Approximation of this function is per-

formed by using a radial basis function (RBF) network. 

4 Learning to Predict Sensory Consequences 

of Actions 

A central component of our proposed framework is learning 

to predict future sensory inputs based on actions and using

this learned predictive model for action selection. The goal 

is to predict the future sensory state of the robot, denoted 

by
t+1

s . In general, the state space ΡS = ×Z  is the Cartesian 

product of the high-dimensional joint space Z  and the 

space of other percepts Ρ . Other percepts could include, for 

example, a torso gyroscope, an accelerometer, and foot 

pressure sensors as well as information from camera images. 

The goal then is to learn a function : ×F S A S�  that maps 

the current state and action to the next state. For this paper, 

we assume that F  is deterministic. 

Often the perceptual state ts  is not sufficient for pre-

dicting future states. In such cases, one may learn a higher 

order mapping based on a history of perceptual states and 

actions, as given by an -thn  order Markovian function: 

t t-n t-1 t-n t-1s = F (s ,...,s ,a ,...,a )         (3) 

We use a radial basis function (RBF) approximator to 

learn F from sensory-motor experience. In particular, the 

RBF network approximates F by learning a function 

 : α  βF' � : 

( )1β = exp (α μ ) (α μ )
K

T
k k kk

k

−− − −∑ ∑w ,       (4) 

where K represents the number of kernels, μk and 1
k
−Σ are 

the mean and inverse covariance of the -thk kernel respec-
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tively. The output weight vector 
k

w  scales the output of 

each kernel appropriately, and the input and output are  

[ ]α t t-1 t-n-1 t t-1 t-n-1= s , s ,...,s ,a ,a ,...,a  andβ = t+1s  respec-

tively. For convenience, one can instead view the RBF as a 

time delay network [Lang et al., 1990] for which the input 

simplifies to [ ]α = t ts ,a . The previous state and action in-

puts are implicitly remembered by the network using recur-

rent feedback connections. 

In this paper, we use a second-order (n = 2) RBF net-

work with the state vector equal to the three-dimensional 

gyroscope signal ( )t t≡s ω . As discussed in the previous 

section, an action represents the phase angle, radius, and 

height of the data in latent posture space ( )t χ≡ ∈a X .  

5 Motion Optimization using the Learned 

Predictive Model 

The algorithm we present in this section utilizes optimiza-

tion and sensory prediction to select optimal actions and 

control the humanoid robot in a closed-loop feedback sce-

nario. Figure 5 illustrates the optimization process.  

One may express the desired sensory states that the robot 

should attain through an objective function ( )Γ s . Our algo-

rithm then selects actions * *,...,t Ta a such that the predicted 

future states ,...,t Ts s will be optimal with respect to  ( )Γ s : 

( )*
 = arg min ( ,..., , ,..., )

t

t t t-n t t-nFΓ
a

a s s a a .      (5) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 5. Model predictive controller for optimizing posture stabil-

ity. The optimization algorithm and the sensory-motor model pre-

dictor produce the action ( )t
χ≡ ∈a X which is used for posture 

control of the humanoid robot. The resulting gyroscope signal is 

fed back to the predictor for retraining. The optimization algorithm 

utilizes a predicted gyroscope signal
pω in order to optimize actions 

for posture stability. 

 

 The objective function used in this paper is a measure 

of torso stability as defined by the following function of 

gyroscope signals:   

 
2 2 2

x x y y z z(ω) = λ ω λ ω λ ωΓ + + ,       (6) 

 

where x y zω ,ω ,ω  refer to gyroscope signals in 

the x, y, z axes respectively. The constants x y z λ ,λ ,λ allow 

one to weight rotation in each axis differently. The objective 

function (6) provides a measure of stability of the posture 

during motion. For our second-order predictive function F, 

the optimization problem becomes one of searching for op-

timal stable actions given by:  

 

( )
t

1 1
χ

χ  = arg min (ω , ω , χ ,χ )
*
t t t- t t-F

∈
Γ      (7) 

 

s

s

s

φ
r

h

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

        (8) 

To allow for efficient optimization, we restrict the search 

space to a local region in the action subspace as given by: 

   -1 s -1 φφ <φ φ εt t≤ +       (9) 

ε εa r s a rr - r r +≤ ≤       (10) 

 ε εa h s a hh - h h +≤ ≤      (11) 

φ0 < ε < 2π       (12) 

a a s[ ] (φ )r ,h g=       (13) 

 

The phase motion command search range φs begins after 

the position of the phase motion command at the previous 

time step -1φt . The radius search range sr begins from a 

point in the action subspace embedding A that is defined by 

(12) in both positive and negative directions from ar  along 

r  for the distance ε 0r > . The search range sh  is defined in 

the same manner as sr according to ah and εh . In the ex-

periments, the parameters φε , εr and εh  were chosen to 

ensure efficiency while at the same time allowing a reason-

able range for searching for stable postures. An example of 

the search space for a walking motion is shown in Figure 6. 

Selected actions will only truly be optimal if the sen-

sory-motor predictor is accurate. We therefore periodically 

re-train the prediction model based on the new posture com-

mands generated by the optimization algorithm and the sen-

sory feedback obtained from executing these commands. 

After three iterations of sensory-motor prediction learning, 

an improved dynamically balanced walking gait is obtained. 

The trajectory of the optimized walking gait in the low di-

mensional subspace is shown in Figure 6.  
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Figure 6. Optimization result for a walking motion pattern in a 

low-dimensional subspace based on an action subspace embed-

ding. 

We summarize below the entire optimization and action 

selection process: 

1) Use PCA to represent in a reduced 3D space the ini-

tial walking gait data from human motion capture. 

2)  Employ the non-linear embedding algorithm for pa-

rameterization of the gait. 

3) Start the learning process by projecting actions back 

to the original joint space and executing the corre-

sponding sequence of servo motor commands in the 

Webots HOAP-2 robot simulator [Webots, 2004]. 

4)  Use the sensory and motor inputs from the previous 

step to update the sensory-motor predictor as de-

scribed in Section 4 where the state vector is given 

by the gyroscope signal of each axis and the action

variables are φ,r and h  in the low-dimensional sub-

space. 

5)  Use the learned model to estimate actions according 

to the model predictive controller framework de-

scribed above (Figure 5).  

6) Execute computed actions and record sensory (gyro-

scope) feedback.  

7)  Repeat steps 4 through 6 until a satisfactory gait is 

obtained. 

6 Experimental Results 

Figure 7. Motion pattern scaling. The target motion pattern is 

scaled down until it can produce a stable motion to start the motion 

optimization process. 

This section explains how the optimization methodology in 
the previous section is used in conjunction with the mocap 
data. From our study of the motion pattern in the reduced 
subspace, we found that we can scale up and down the mo-
tion pattern and get similar humanoid motion patterns ex-
cept for changes in the magnitude of motion. When we scale 
down the pattern in the reduced subspace, it produces a 
smaller movement of the humanoid robot, resulting in s-
maller changes in dynamics during motion. Our strategy is 
to scale down the pattern until we find a dynamically stable 
motion and start learning at that point. We apply the motion 
optimization method in Section 5 to the scaled-down pattern 
until its dynamic performance reaches an optimal point; 
then we scale up the trajectory of the optimization result 
toward the target motion pattern. In our experiments, we 
found that a scaling down of 0.3 of the original motion pat-
tern is typically stable enough to start the learning process.  
Our final optimization result obtained using this procedure 
is shown as a trajectory of red circles in Figure 7. It corre-
sponds to about 80% of the full scale motion. 
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Figure 8. Learning to walk through imitation. The pictures in the 

first row show a human subject demonstrating a walking gait in a 

motion capture system. The second row shows simulation results 

for this motion before optimization. The third row shows simula-

tion results after optimization. The last row shows results obtained 

on the real robot.

Our simulation and experimental results are shown in Figure 
8. We performed the learning process in the simulator [We-
bots, 2004] and tested the resulting motion on the real robot. 
The walking gait on the real robot is not as stable as the 
results in the simulator because of differences in frictional 
forces between the simulator and the floor. We expect an 
improvement in performance when learning is performed 
directly on the real robot. We note that the learned motion is 
indeed dynamic and not quasi-static motion because there 
are only two postures in our walking gait that can be consid-
ered statically stable, namely, the two postures in the walk-
ing cycle when the two feet of the robot contact the ground. 
The remaining postures in the walking gait are not statically 
stable as the gait has a fairly fast walking speed.

7 Conclusion 

Our results demonstrate that a humanoid robot can learn to 

walk by combining a learned sensory-motor model with 

imitation of a human gait. Our approach does away with the 

need for detailed, hard-to-obtain, and often fragile physics-

based models that previous methods have relied on for sta-

ble gait generation in humanoids. Our approach builds on 

several previous approaches to humanoid motion generation 

and imitation. Okada, Tatani and Nakamura [Okada et al., 

2002] first applied non-linear principal components analysis 

(NLPCA) [Kirby and Miranda, 1996] to human and human-

oid robot motion data. The idea of using imitation to train 

robots has been explored by a number of researchers [Hayes 

and Demiris, 1994], [Billard, 2001]. In [Ijspeert et al., 

2001], a nonlinear dynamical system was carefully designed 

to produce imitative behaviors. The mimesis theory of [Ina-

mura et al., 2003] is based on action acquisition and action 

symbol generation but does not address dynamics compen-

sation for real-time biped locomotion. The motion segmen-

tation framework in [Jenkins and Mataric, 2003] uses di-

mensionality reduction and segmentation of motion data in 

the reduced dimensional space but without dynamics com-

pensation.  
The framework described in this paper has several practi-

cal applications. One scenario we are currently investigating 
is a general navigation task involving our humanoid robot. 
A modular architecture could be used to switch between a 
set of learned modules, such as walking-straight, turning-
left, turning-right and stepping-backward. Using visual in-
formation as feedback, we could control robot direction by 
switching behaviors (actions) of the robot. We have also 
found that translation in the x-y plane in the reduced 3D 
latent space can be used for changing direction. Because our 
method does not depend on a model of the world, it can be 
applied to the problems of learning to walk up and down 
stairs, and walking on constant slopes. To learn actions 
other than walking straight, we can modify our optimization 
function in Eq. (6) or introduce additional sensory variables 
such as velocity or foot-contact pressure. We are currently 
investigating these lines of research.  

Clearly, the present framework cannot be applied directly 
to the problem of navigation on uneven terrain. To effec-
tively navigate on uneven terrain, we may need a higher 
degree of compliance control in the leg and foot actuators. 
However, a hybrid active-passive actuator will likely pro-
duce even more complex dynamics than typical actuators 
used in current humanoid robots. Since our approach does 
not require a physics-based dynamics model for learning, it 
lends itself naturally to tackling this problem. We hope to 
investigate this important research direction in the near fu-
ture.  
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