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Abstract

In this paper we propose the Dynamic Weight-
ing A* (DWA*) search algorithm for solving MAP
problems in Bayesian networks. By exploiting
asymmetries in the distribution of MAP variables,
the algorithm is able to greatly reduce the search
space and offer excellent performance both in terms
of accuracy and efficiency.

1 Introduction

The Maximum a Posteriori assignment (MAP) is the prob-
lem of finding the most probable instantiation of a set of
variables given partial evidence on the remaining variables
in a Bayesian network. One specialization of MAP that has
received much attention is the Most Probable Explanation
(MPE) problem. MPE is the problem of finding the most
probable assignment of a set of variables given full evidence
on the remaining variables. MAP turns out to be a much more
difficult problem compared to MPE and computing the prob-
ability of evidence. Particularly, the decision problem for
MPE is NP-complete while the corresponding MAP prob-
lem is NP PP -complete [Park, 2002]. MAP is more useful
than MPE for providing explanations. For instance, in diag-
nosis, we are generally only interested in the configuration of
fault variables given some observations. There may be many
other variables that have not been observed that are outside
the scope of our interest.

In this paper, we introduce the Dynamic Weighting A*
(DWA*) search algorithm for solving MAP that is generally
more efficient than existing algorithms. The algorithm ex-
plores asymmetries among all possible assignments in the
joint probability distribution of the MAP variables. Typi-
cally, a small fraction of the assignments can be expected
to cover a large portion of the total probability space with
the remaining assignments having practically negligible prob-
ability [Druzdzel, 1994]. Also, the DWA* uses dynamic
weighting based on greedy guess [Park and Darwiche, 2001;
Yuan et al., 2004] as the heuristic function. Although it is
theoretically not admissible (admissible heuristic should of-
fer an upper bound on the MAP), the heuristic significantly
reduces the size of the search tree, while rarely pruning away
the optimal solutions.

2 MAP

The MAP problem is defined as follows: Let M be the set
of MAP variables, the configuration of which is what we are
interested in; E is the set of evidence, namely the variables
whose states we have observed; The remainder of the vari-
ables, denoted by S, are variables whose states we neither
know nor care about. Given an assignment e of variables E,
the MAP problem is that of finding the assignment m of vari-
ables M which maximizes the probability P (m | e), while
the MPE problem is the special case of MAP with S being
empty, i.e.,

MAP = max
M

∑
S

p(M, S | E) . (1)

In general, in Bayesian networks, we use the Conditional
Probability Table (CPT) φ as the potential over a variable and
its parent nodes. The notation φe stands for the potential in
which we have fixed the value of e ∈ E. Then the probability
of MAP with Φ as its CPTs turns out to be a real number:

MAP = max
M

∑
S

∏
φ∈Φ

φe . (2)

In Equation 2, summation commutes with summation, and
maximization commutes with maximization. However, sum-
mation does not commute with maximization and vice versa.
Therefore, it is obligatory to do summation before any max-
imization. The order is called the elimination order. The
size of the largest clique minus 1 in a jointree constructed
based on an elimination order is called the induced width.
The induced width of the best elimination order is called the
treewidth. However, for the MAP problems in which the set
S and the M are both non-empty, the order is constrained.
Then the constrained elimination order is known as the con-
strained treewidth. Generally, the constrained treewidth is
much larger than treewidth, leading the problem beyond the
limit of feasibility for complex models. Specifically, for some
MAP problems, variable elimination on polytrees is subject to
the constrained treewidth, which requires exponential time,
while MPE problems can be computed in linear time [Park
and Darwiche, 2003].

A very efficient approximate search-based algorithm based
on local search, proposed by Park and Darwiche [2001], is
capable of solving MAP efficiently. An exact method, based
on branch-and-bound depth-first search, proposed by Park
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and Darwiche [2003], performs quite well when the search
space is not too large. Another approximate algorithm pro-
posed more recently by Yuan et al. [2004] is a Reheated An-
nealing MAP algorithm. It is somewhat slower on simple net-
works but it is capable of handling difficult cases that exact
methods cannot tackle.

3 Solving MAP using Dynamic Weighting A*

We propose in this section an algorithm for solving MAP us-
ing Dynamic Weighting A* search, which incorporates the
dynamic weighting [Pohl, 1973] in the heuristic function, rel-
evance reasoning [Druzdzel and Suermondt, 1994] and dy-
namic ordering in the search tree.

3.1 A* search

MAP can be solved by A* search in the probability tree that
is composed of all the variables in the MAP set. The nodes
in the search tree represent partial assignments of the MAP
variables M. The root node represents an empty assignment.
The MAP variables will be instantiated in a certain order. If
a variable x in the set of MAP variables M is instantiated at
the ith place using its jth state, it will be denoted as Mij .
Leaves of the search tree correspond to the last MAP variable
that has been instantiated. The vector of instantiated states of
each MAP variable is called an assignment or a scenario.

We compute the probability of assignments while search-
ing the whole probability tree using chain rule. For each inner
node, the newly instantiated node will be added to the evi-
dence set, i.e., the evidence set will be extended to Mij ∪ E.
Then the probability of the MAP problem which consists of
n MAP variables can be presented as follows:

P (M | E) = P (Mni | M1j, M2k, . . .M(n−1)t, E)

. . . P (M2k | M1j , E)P (M1j | E) .

Suppose that we are in the xth layer of the search tree and
preparing for instantiating the xth MAP variables. Then the
function above can be rewritten as follows:

P (M | E) =

b︷ ︸︸ ︷
P (Mni | M1j . . . M(n−1)t, E) . . . P (M(x+1)z | Mxy . . . E)

·P (Mxy | M1j , M2k . . . M(x−1)q, E) . . . P (M1j | E)︸ ︷︷ ︸
a

. (3)

The general idea of the Dynamic Weighting A* search is
that during the search, in each inner node of the probabil-
ity tree, we can compute the exact value of item (a) in the
function above. We can estimate the heuristic value of the
item (b) for the MAP variables that have not been instanti-
ated given the initial evidence set and the MAP variables that
have been instantiated as the new evidence. In order to fit the
typical format of the cost function of A* Search, we can take
the logarithm of the equation above, which will not change its
monotonicity. Then we get f(n) = g(n) + h(n), where g(n)
and h(n) are obtained from the logarithmic transformation of
items (a) and (b) respectively. g(n) gives the exact cost from
the start node to node in the nth layer of the search tree, and
h(n) is the estimated cost of the best search path from the nth

layer to the leaf nodes of the search tree. In order to guaran-
tee the optimality of the solution, h(n) should be admissible,
which in this case means that it should be an upper-bound
on the value of any assignment with the currently instantiated
MAP variables as its elements.

3.2 Heuristic Function with Dynamic Weighting

The A* Search is known for its completeness and optimality.
For each search step, we only expand the node in the frontier
with the largest value of f(n).

Definition 1 A heuristic function h2 is said to be more in-
formed than h1 if both are admissible and h2 is closer to the
optimal cost. For the MAP problem, the probability of the
optimal assignment Popt < h2 < h1.

Theorem 1 If h2 is more informed than h1 then A∗

2 domi-
nates A∗

1 (Nilsson). [Pearl, 1985]

The power of the heuristic function is measured by the
amount of pruning induced by h(n) and depends on the ac-
curacy of this estimate. If h(n) estimates the completion cost
precisely (h(n) = Popt), then A* will only expand nodes on
the optimal path. On the other hand, if no heuristic at all is
used (for the MAP problem this amounts to h(n) = 1), then
a uniform-cost search ensues, which is far less efficient. So it
is critical for us to find an admissble and tight h(n) to get
both accurate and efficient solutions.

Greedy Guess

If each variable in the MAP set M is conditionally indepen-
dent of all the rest of MAP variables (this is called exhaustive
independence), then the MAP problem amounts to a simple
computation based on the greedy chain rule. We instantiate
the MAP variable in the current search layer to the state with
the largest probability and repeat this for each of the remain-
ing MAP variables one by one. The probability of MAP is
then

P (M |E) =

n∏
i=1

max
j

P (Mij |M(i−1)k . . . M1m, E) . (4)

The requirement of exhaustive independence is too strict
for most of the MAP problems to be calculated by using
the function above. Simulation results show that in prac-
tice, when this requirement is violated, the product is still
extremely close to the MAP probability [Yuan et al., 2004].
This suggests that it can be potentially used as a heuristic
function for MAP.

The curve Greedy Guess Estimate in Figure 1 shows that
with the increase of the number of MAP variables, the ratio
between the greedy guess and the accurate estimate of the
optimal probability diverges from the ideal ratio one although
not always monotonically.

Dynamic Weighting

Since the greedy guess is a tight lower bound on the optimal
probability of MAP, it is possible to compensate for the error
between the greedy guess and the optimal probability. We can
achieve this by adding a weight to the greedy guess such that
their product is equal or larger than the optimal probability
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for each inner node in the search tree under the following
assumption:

∃ε{∀PGreedyGuess ∗ (1 + ε) ≥ Popt∧

∀ε′(PGreedyGuess ∗ (1 + ε
′

) ≥ Popt) ⇒ ε ≤ ε
′

},

where ε is the minimum weight that can guarantee the
heuristic function to be admissible. Figure 1 shows that if we
just keep ε constant, neglecting the changes of the estimate
accuracy with the increase of the MAP variables, the estimate
function and the optimal probability can be represented by the
curve Constant Weighting Heuristic. Obviously, the problem
with this idea is that it is less informed when the search pro-
gresses, as there are fewer MAP variables to estimate.

Dynamic Weighting [Pohl, 1973] is an efficient tool for im-
proving the efficiency of A* Search. If applied properly, it
will keep the heuristic function admissible while remaining
tight on the optimal probability. For MAP, in shallow layers
of the search tree we get more MAP variables than in deeper
layers. Hence, the greedy estimate will be more likely to di-
verge from the optimal probability. We propose the following
Dynamic Weighting Heuristic Function for the xth layer of
the Search tree of n MAP variables:

h(x) = GreedyGuess · (1 + α
n − (x + 1)

n
), (α ≥ ε) . (5)

Rather than keeping the weight constant throughout the
search, we dynamically change it, so as to make it less heavy
as the search goes deeper. In the last step of the search
(x = n− 1), the weight will be zero, since the Greedy Guess
for only one MAP variable is exact and then the cost func-
tion f(n-1) is equal to the probability of the assignment. Fig-
ure 1 shows an empirical comparison of greedy guess, con-
stant, and dynamic weighting heuristics against accurate esti-
mates of the probability. We see that the dynamic weighting
heuristic is more informed than constant weighting.
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Figure 1: Constant Weighting Heuristic and Dynamic
Weighting Heuristic based on Greedy Guess.

3.3 Searching with Inadmissible Heuristics

Since the minimum weight ε that can guarantee the heuristic
function to be admissible is unknown before the MAP prob-
lem is solved, and it may vary in different cases, we normally

set α to be a safe parameter which is supposed to be larger
than ε (In our experiments, we set α to be 1.0). However,
what if α is accidentally smaller then ε leading the weighted
heuristic to be inadmissible? Suppose there are two candi-
date assignments: s1 and s2 with probability p1 and p2 re-
spectively, among which s2 is the optimal assignment that
the algorithm fails to find. And s1 is now in the last step of
search, which will lead to a suboptimal solution. We skip the
logarithm in the function for the sake of clarity here (then the
cost function f is a product of transformed g and h instead of
their sum).

f1 = g1 · h1 and f2 = g2 · h2.

The error introduced by an inadmissible h2 is f1 > f2. The
algorithm will then find s1 instead of s2, i.e.,

f1 > f2 ⇒ g1 · h1 > g2 · h2.

Since s1 is now in the last step of search, f1 = p1 (Section
3.2). Now suppose that we have an ideal heuristic function

h
′

2, which leads to p2 = g2 · h
′

2. Then we have:

g1 · h1

p2
>

g2 · h2

g2 · h
′

2

⇒
p1

p2
>

g2 · h2

g2 · h
′

2

⇒
p1

p2
>

h2

h
′

2

.

It is clear that only when the ratio between the probability
of suboptimal assignment and the optimal one is larger than
the ratio between the inadmissible heuristic function and the
ideal one, may the algorithm find a suboptimal solution.

Because of large asymmetries among probabilities that
are further amplified by their multiplicative combination
[Druzdzel, 1994], we can expect that for most of the cases,
the ratios between p1 and p2 are far less than 1. Even though
the heuristic function will sometimes break the rule of admis-
sibility, if only the greedy guess is not too divergent from the
ideal estimate, the algorithm will still not diverge from the
optimal probability. Our simulation results also confirm the
robustness of the algorithm in finding optimal solutions.

3.4 Improvements to the Algorithm

There are several techniques that can improve the efficiency
of the basic A* algorithm.

Relevance Reasoning

The main problem faced by our approach is the complexity
of probabilistic inference. The critical factor in exact infer-
ence schemes for Bayesian networks is the topology of the
underlying graph and, more specifically, its connectivity. Rel-
evance reasoning [Druzdzel and Suermondt, 1994] is a tech-
nique based on d-separation and other simple and compu-
tational efficient techniques for pruning irrelevant parts of a
Bayesian network and can yield sub-networks that are smaller
and less densely connected than the original network. For
MAP, our focus is the set of variables M and the evidence set
E. Parts of the model that are probabilistically independent
from the nodes in M given the observed evidence E are com-
putationally irrelevant to reasoning about the MAP problem.

Dynamic Ordering

As the search tree is constructed dynamically, we have the
freedom to order the variables in a way that will improve
the efficiency of the DWA* search. Expanding nodes with
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the largest asymmetries in their marginal probability distribu-
tions lead to early cut-off of less promising branches of the
search tree. We use the entropy of the marginal probability
distributions as a measure of asymmetry.

4 Experimental Results

To test DWA*, we compared its performance on MAP prob-
lems in real Bayesian networks against those of current state
of the art MAP algorithms: the P-LOC and P-SYS algo-
rithms [Park and Darwiche, 2001; 2003] in SamIam, and
ANNEALEDMAP [Yuan et al., 2004] in SMILE. We imple-
mented DWA* in C++ and performed our tests on a 3.0 GHz
Pentium D Windows XP computer with 2GB RAM. We used
the default parameters and settings for all the three algorithms
above during comparison, unless otherwise stated.

4.1 Experimental Design

The Bayesian networks that we used in our experiments in-
cluded Alarm [Beinlich et al., 1989], Barley [Kristensen
and Rasmussen, 2002], CPCS179 and CPCS360 [Pradhan et
al., 1994], Hailfinder [Abramson et al., 1996], Munin, Dia-
betes [Andreassen et al., 1991], Andes [Conati et al., 1997],
Pathfinder, and Win95pts [Heckerman et al., 1995], some of
which were constructed for diagnosis. We also tested the al-
gorithms on two very large proprietary diagnostic networks
built at the HRL Laboratories (HRL1 and HRL2). The statis-
tics for all networks are summarized in Table 1. We divide
the networks into three groups: (1) small and middle-sized,
(2) large but tractable, and (3) hard networks.

Group Network #Nodes #Arcs

Alarm 37 46
CPCS179 179 239
CPCS360 360 729

1 Hailfinder 56 66
Pathfinder 135 195

Andes 223 338
Win95pts 76 112

2 Munin 1,041 1,397
HRL1 1,999 3,112
HRL2 1,528 2,492

3 Barley 48 84
Diabetes 413 602

Table 1: Statistics for the Bayesian networks that we use.

For each network, we randomly generated 20 cases. For
each case, we randomly chose 20 MAP variables from the
root nodes or all of them if there were fewer than 20 root
nodes. We chose the same number of evidence nodes from
the leaf nodes. To set evidence, we sampled from the prior
probability distribution of a Bayesian network in its topolog-
ical order and cast the states of the sample to the evidence
nodes. Following previous tests of MAP algorithms, we set
the search time limit to be 3, 000 seconds (50 minutes).

4.2 Results for the First and Second Group

In the first experiment, we ran the P-LOC, P-SYS, AN-
NEALEDMAP and DWA* on all the networks in the first and

second group, and all four algorithms generated results within
the time limit. The P-SYS is an exact algorithm. So Table 3
only reports the number of MAP problems that were solved
optimally by the P-LOC, ANNEALEDMAP and DWA*. The
DWA* found all optimal solutions. The P-LOC missed only
one case on Andes and the ANNEALEDMAP missed one on
Hailfinder and two cases on Andes.

P-LOC A-MAP DWA*

Alarm 20 20 20
CPCS179 20 20 20
CPCS360 20 20 20
Hailfinder 20 19 20
Pathfinder 20 20 20
Andes 19 18 20
Win95pts 20 20 20
Munin 20 20 20
HRL1 20 20 20
HRL2 20 20 20

Table 2: The number of cases that were solved optimally out
of 20 random cases for the first and second groups of net-
works.

Since both ANNEALEDMAP and P-LOC failed to find all
optimal solutions in Andes, we studied the performance of the
four algorithms as a function of the number of MAP variables
(we randomly generated 20 cases for each number of MAP
variables).

#MAP P-SYS P-LOC A-MAP
10 0 0 0
20 0 1 2
30 0 1 0
40 TimeOut 4 4
50 TimeOut 6 2
60 TimeOut 5 2
70 TimeOut 6 5
80 TimeOut 6 1

Table 3: The number of cases for which the existing algo-
rithms found smaller probabilities than A* Search in network
Andes.

Because the search time of P-SYS increased quickly with
the number of MAP variables, and it failed to generate any
result when the number of MAP variables reached 40, while
DWA* found all largest probabilities, we compared all the
other three algorithms against DWA*. With the increase
of the number of MAP variables, both P-LOC and AN-
NEALEDMAP turned out to be less accurate than DWA*
on Andes. When the number of MAP variables was above
40, there were about 25% cases of P-LOC and 15% cases
in which ANNEALEDMAP found smaller probabilities than
DWA*. We notice from Table 5 that P-LOC spent less time
than DWA* when using its default settings for Andes, so we
increased the search steps of P-LOC such that it spent the
same amount of time as DWA* in order to make a fair com-
parison. However, in practice the search time is not continu-
ous in the number of search steps, so we just chose parameters
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for P-LOC such that it spent slightly more time than DWA*.
Table 4 shows the comparison results. We can see that after
increasing the search steps of P-LOC, DWA* still maintains
better accuracy.

#MAP P-LOC<DWA* P-LOC>DWA*
10 0 0
20 0 0
30 0 0
40 1 0
50 2 0
60 2 1
70 3 2
80 5 0

Table 4: The number of cases that the P-LOC found
larger/smaller probabilities than DWA* in network Andes
when spending slightly more time than DWA*.

In addition to the precision of the results, we also com-
pared the efficiency of the algorithms. Table 5 reports the
average running time of the four algorithms on the first and
the second groups of networks. For the first group, the AN-

P-SYS P-LOC A-MAP A*
Alarm 0.017 0.020 0.042 0.005
CPCS179 0.031 0.117 0.257 0.024
CPCS360 0.045 75.20 0.427 0.072
Hailfinder 2.281 0.109 0.219 0.266
Pathfinder 0.052 0.056 0.098 0.005
Andes 14.49 1.250 4.283 2.406
Win95pts 0.035 0.041 0.328 0.032

Munin 3.064 4.101 19.24 1.763
HRL1 0.493 51.18 2.831 0.193
HRL2 0.092 3.011 2.041 0.169

Table 5: Average running time in seconds of the P-SYS, P-
LOC, ANNEALEDMAP and DWA* algorithms on the first
and second group of networks.

NEALEDMAP, P-LOC and P-SYS algorithms showed similar
efficiency on all except the CPCS360 and Andes networks.
DWA* generated solutions within the shortest time on the av-
erage. Its smaller variance of the search time indicates that
DWA* is more stable across different networks.

For the second group, which consists of large Bayesian net-
works, P-SYS, ANNEALEDMAP and DWA* were all effi-
cient. DWA* search still spent shortest time on the average,
while the P-LOC was much slower on the HRL1 network.

4.3 Results for the Third Group

The third group consisted of two complex Bayesian networks:
Barley and Diabetes, many nodes of which have more than
10 different states. Because the P-SYS algorithm did not pro-
duce results within the time limit, the only available mea-
sure of accuracy was a relative one: which of the algorithms
found an assignment with a higher probability. Table 6 lists
the number of cases that were solved differently between the
P-LOC, ANNEALEDMAP, and DWA* algorithms. PL, PA

and P∗ stand for the probability of MAP solutions found by
P-LOC, ANNEALEDMAP and DWA* respectively.

P∗>PL/P∗<PL P∗>PA/P∗<PA

Barley 3/2 5/3
Diabetes 5/0 4/0

Table 6: The number of cases that are solved differently from
P-LOC, ANNEALEDMAP and DWA*.

For Barley, the accuracy of the three algorithms was quite
similar. However, for Diabetes DWA* was more accurate:
it found solutions with largest probabilities for all 20 cases,
while P-LOC failed to find 5 and ANNEALEDMAP failed to
find 4 of them.

P-SYS P-LOC A-MAP A*

Barley TimeOut 68.63 31.95 122.1
Diabetes TimeOut 338.4 163.4 81.8

Table 7: Average running time in seconds of the P-SYS, P-
LOC, ANNEALEDMAP and DWA* on the third groups.

DWA* turned out to be slower than P-LOC and AN-
NEALEDMAP on Barley but more efficient on Diabetes (see
Table 7).

4.4 Results for Incremental MAP Test

Our last experiment focused on the robustness of the four al-
gorithms to the number of MAP variables. In this experiment,
we set the number of evidence variables to be 100 and gen-
erated MAP problems with an increasing number of MAP
nodes and ran four algorithms on these cases. We chose
the Munin network, because it seemed the hardest network
among the group 1 & 2 and had sufficiently large sets of root
and leaf nodes. The running time for each of the cases are
shown in Figure 2. Typically, P-SYS and P-LOC need more
running time in face of more complex problems, while AN-
NEALEDMAP and DWA* seem more robust in comparison.

Number of MAP Variables(100 Evidences)

R
u

n
n

in
g

 T
im

e 
(m
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P-Sys

P-Loc

AnnealingMAP

DWA*

Figure 2: Plot of the running time of the P-SYS, P-LOC,
ANNEALEDMAP and DWA* algorithms when increasing the
number of MAP nodes on the Munin network.
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5 Discussion

Finding MAP in Bayesian networks is hard. By exploit-
ing asymmetries among the probabilities of possible assign-
ments of Joint Probability Distributions of MAP variables,
the DWA* is able to greatly reduce the search space and lead
to efficient and accurate solution of the MAP problem. Our
experiments show that generally, DWA* Search is more ef-
ficient than the existent algorithms. Especially for large and
complex Bayesian networks, when the exact algorithm fails
to generate any result within a reasonable time, DWA* can
still provide accurate solutions efficiently. Further extension
of this research is to apply the DWA* to the k-MAP prob-
lem, which is to find k most probable assignments for MAP
variables. It is very convenient for the DWA* algorithm to
achieve that, since after finding the most probable assign-
ment, the algorithm keeps all the candidate assignments in
the search frontier. We can expect that the additional search
time will be sublinear in k. Solving the k-MAP problem gives
additional insurance against missing the optimal solutions, as
there is a very good chance that if it is missed at first, it will
show up among the following k-1 solutions.
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