
Multimode Control Attacks on Elections

Piotr Faliszewski

Dept. of Computer Science
AGH University of Science
and Technology, Kraków

Poland

Edith Hemaspaandra

Dept. of Computer Science
Rochester Institute of Technology

Rochester, NY 14623
USA

Lane A. Hemaspaandra

Dept. of Computer Science
University of Rochester
Rochester, NY 14627

USA

Abstract

In 1992, Bartholdi, Tovey, and Trick [1992] opened
the study of control attacks on elections—attempts
to improve the election outcome by such actions
as adding/deleting candidates or voters. That
work has led to many results on how algorithms
can be used to find attacks on elections and how
complexity-theoretic hardness results can be used
as shields against attacks. However, all the work
in this line has assumed that the attacker employs
just a single type of attack. In this paper, we model
and study the case in which the attacker launches
a multipronged (i.e., multimode) attack. We do so
to more realistically capture the richness of real-
life settings. For example, an attacker might si-
multaneously try to suppress some voters, attract
new voters into the election, and introduce a spoiler
candidate. Our model provides a unified frame-
work for such varied attacks, and by constructing
polynomial-time multiprong attack algorithms we
prove that for various election systems even such
concerted, flexible attacks can be perfectly planned
in deterministic polynomial time.

1 Introduction

Elections are a central model for collective decision-making:
Actors’ (voters’) preferences among alternatives (candidates)
are input to the election rule and a winner (or winners in
the case of ties) is declared by the rule. Bartholdi, Tovey,
and Trick [1989; 1992] initiated a line of research whose
goal is to protect elections from various attacking actions in-
tended to skew their results. Bartholdi, Tovey, and Trick’s
strategy for achieving this goal was to show that for var-
ious election systems and attacking actions, even seeing
whether for a given set of votes such an attack is possible
is NP-complete. Their papers (e.g., [Bartholdi et al., 1989;
1992]) consider actions such as voter manipulation (i.e., sit-
uations where a voter misrepresents his or her vote to obtain
some goal) and various types of election control (i.e., situ-
ations where the attacker is capable of modifying the struc-
ture of an election, e.g., by adding or deleting either voters
or candidates). Since then, many researchers have extended

Bartholdi, Tovey, and Trick’s work by providing new mod-
els, new results, and new perspectives. However, until now,
nobody has considered a situation in which an attacker com-
bines multiple standard attack types into a single attack—let
us call it a multipronged (i.e., multimode) attack.

Studying multipronged control is a step in the direction of
more realistically modeling real-life scenarios. Certainly, in
real-life settings an attacker would not voluntarily limit him-
self or herself to a single type of attack but rather would use
all available means of reaching his or her goal. For example,
an attacker interested in some candidate p winning might, at
the same time, intimidate p’s most dangerous competitors so
that they would withdraw from the election, and encourage
voters who support p to show up to vote. In this paper we
study the complexity of such multipronged control attacks.
(The framework of multiprong control can be extended to in-
clude manipulation and bribery. For example, one can de-
fine a new control type, “alter voters,” allowing one to al-
ter the votes of up to some input number of voters, and we
could include that in our model below. This integrates un-
priced bribery—which many recent papers simply refer to as
“manipulation”—into the multiprong control model. How-
ever, due to space limitations the present paper focuses just
on multiprong attacks whose prongs are all already existing
control types.)

Given a type of multiprong control, we analyze whether it
is possible to compute in polynomial time an optimal attack
of this type or whether even recognizing a possibility of an
attack is NP-hard. It is particularly interesting to ask about
the complexity of a multipronged attack whose components
each have efficient algorithms. We are interested in whether
such a combined attack (a) becomes computationally hard, or
(b) still has a polynomial-time algorithm. Regarding the (a)
case, we have not been able to find examples of that behav-
ior in existing real-world election systems, but we have con-
structed artificial election systems that display precisely this
behavior (see the open questions section). Our paper’s core
work studies the (b) case and shows that even attacks having
multiple facets can in many cases be planned with perfect effi-
ciency. (Such proofs yield as immediate consequences all the
individual efficient attack algorithms for each prong, and as
such allow a more compact presentation of results and more
compact proofs. But they go beyond that: They show that
the interactions between the prongs can be managed without

128



such cost as to shoot beyond polynomial time.)
Related work. Since the seminal paper of Bartholdi, Tovey,
and Trick [1992] much research has been dedicated to study-
ing the complexity of control in elections. Bartholdi, Tovey,
and Trick [1992] considered constructive control only (i.e.,
scenarios where the goal of the attacker is to ensure some
candidate’s victory) and Hemaspaandra, Hemaspaandra, and
Rothe [2007a] extended their work to the destructive case
(i.e., scenarios in which the goal is to prevent someone from
winning). The Holy Grail of control research is finding a
natural election system (with a polynomial-time winner algo-
rithm) that is resistant to all the standard types of control, i.e.,
for which all the types of control are NP-hard. Hemaspaan-
dra, Hemaspaandra, and Rothe [2007b] showed that there ex-
ist highly resistant artificial election systems, and Faliszewski
et al. [2008] showed that Copeland voting is not too far from
the goal mentioned above. Erdélyi, Rothe, and Nowak [2008]
showed a system with even more resistances than Copeland,
but in a slightly nonstandard voter model.

Going in a somewhat different direction, Meir et al. [2008]
bridged the notions of constructive and destructive control via
considering utility functions, and in this model obtained con-
trol results for multiwinner elections. In multiwinner elec-
tions the goal is to elect a whole group of people (consider,
e.g., parliamentary elections) rather than just a single person.
Related to control, but in a quite different model, is the work
of Zuckerman et al. [2008] on quota manipulation in weighted
voting games.

There is a growing body of work on manipulation that re-
gards frequency of (non)hardness of election problems (see,
e.g., [Conitzer and Sandholm, 2006; Friedgut et al., 2008;
Dobzinski and Procaccia, 2008; Xia and Conitzer, 2008b;
2008a]). This work studies whether a given NP-hard election
problem (to date only manipulation/winner problems have
been studied) can be often solved in practice (assuming some
distribution of votes). Such results are of course very relevant
when one’s goal is to protect elections from manipulative ac-
tions. However, in this paper we typically take the role of
an attacker and design control algorithms that are fast on all
instances.

Faliszewski et al. [to appear] provides an overview of some
complexity-of-election issues.
Organization. In Section 2 we present the standard model of
elections and describe relevant voting systems. In Section 3
we introduce multiprong control and provide initial results
regarding multiprong control, and show how existing suscep-
tibility, vulnerability, and resistance results interact with this
model. In Section 4 we provide complexity analysis of candi-
date control in maximin elections, showing how multiprong
control is useful in doing so. Section 5 provides conclusions
and open problems.

2 Elections

An election is a pair (C,V ), where C = {c1, . . . ,cm} is the set
of candidates and V = (v1, . . . ,vn) is a collection of voters.
Each voter vi is represented via his or her preference list. For
example, if we have three candidates, c1, c2, and c3, a voter
who likes c1 most, then c2, and then c3 would have preference

list c1 > c2 > c3. Given an election E = (C,V ), by NE(ci,c j),
where ci,c j ∈C and i �= j, we denote the number of voters in
V who prefer ci to c j.

An election system is an algorithm that given an election
(C,V ) outputs a subset W ⊆ C, the winners of the election.
In the nonunique-winner model each member of W wins the
election, but in the unique-winner model a candidate has to be
the only member of W to claim victory. We take the unique-
winner model as the default in this paper as is most common
in studies of control.

We consider the following five voting systems: plurality,
Copeland, maximin, approval, and Condorcet. Except Con-
dorcet, each of them assigns points to candidates and elects
those that receive the most points. Let E = (C,V ) be an elec-
tion, where C = {c1, . . . ,cm} and V = (v1, . . . ,vn). In plural-
ity, each candidate receives a single point for each voter who
ranks him or her first. In maximin, the score of a candidate
ci in E is defined as minc j∈C−{ci}NE(ci,c j). For each rational
α , 0≤ α ≤ 1, in Copelandα candidate ci receives 1 point for
each candidate c j, j �= i, such that NE(ci,c j) > NE(c j,ci) and
α points for each candidate c j, j �= i, such that NE(ci,c j) =
NE(c j,ci). That is, the parameter α describes the value of
ties in head-to-head majority contests. In approval, instead of
preference lists each voter has a 0-1 vector, where each en-
try denotes whether the voter approves of the corresponding
candidate (gives the corresponding candidate a point). For
example, vector (1,0,0,1) means that the voter approves of
the first and fourth candidates, but not of the second and third.

We use scoreE(ci) to denote the score of candidate ci in
election E (the particular election system used will always be
clear from context). A candidate c is a Condorcet winner of
an election E = (C,V ) if for each other candidate c′ ∈ C it
holds that NE(c,c′) > NE(c′,c). Clearly, each election has at
most one Condorcet winner. (Not every election has a Con-
dorcet winner, but our notion of an election system allows
that.)

3 Control and Multiprong Control

Multiprong control model. In this section we introduce mul-
tiprong control, that is, control types that combine several
standard types of control. We consider combinations of con-
trol via adding/deleting candidates/voters.

Definition 3.1. Let E be an election system. In the unique-
winner1 constructive E -AC+DC+AV+DV problem we are
given:

(a) two disjoint sets of candidates, C and A,

(b) two disjoint collections of voters, V and W, containing
voters with preference lists over C∪A,

(c) a preferred candidate p ∈C, and

(d) four nonnegative integers, kAC, kDC, kAV, and kDV.

We ask whether it is possible to find two sets, A′ ⊆ A and
C′ ⊂C, and two subcollections of voters, V ′ ⊆V and W ′ ⊆W,
such that:

1One can easily adapt the definition to the nonunique-winner
model.

129



(e) p is a unique winner of E election ((C−C′)∪A′,(V −
V ′)∪W ′),

(f) p /∈C′, and

(g) ‖A′‖ ≤ kAC, ‖C′‖ ≤ kDC, ‖W ′‖ ≤ kAV, and ‖V ′‖ ≤ kDV.

In the unique-winner, destructive variant of the problem, we
replace item (e) above with: “p is not a unique winner of E
election ((C−C′)∪A′,(V −V ′)∪W ′).” (In addition, in the
destructive variant we refer to p as “the despised candidate”
rather than as “the preferred candidate.”)

The phrase AC+DC+AV+DV in the problem name corre-
sponds to four of the standard types of control: adding can-
didates (AC), deleting candidates (DC), adding voters (AV),
and deleting voters (DV); we will refer to these four as the
basic types of control.

Almost always instead of considering all of AC, DC, AV,
and DV we are interested in some subset of them, and thus we
consider special cases of the AC+DC+AV+DV problem. For
example, we write DC+AV (without the other acronyms) to
refer to a variant of the AC+DC+AV+DV problem where only
deleting candidates and adding voters is allowed (i.e., where
we fix kAC = kDV = 0). If we name only a single type of con-
trol, we in effect obtain one of the standard control problems.
We for historical reasons consider also a special case of the
AC control type, denoted ACu (and called control by adding
an unlimited number of candidates), where there is no limit
on the number of candidates to add, i.e., kAC = ‖A‖.

There is at least one more way in which we could define
multiprong control. The model in the above definition can
be called the separate-resource model as the extent to which
we can use each basic type of control is bounded separately.
In the shared-resource model one pool of action allowances
must be allocated among the allowed control types (so in
the definition above we would replace kAC,kDC,kAV, and kDV
with a single value, k, and require that ‖C′‖+‖D′‖+‖V ′‖+
‖W ′‖ ≤ k). While one could make arguments as to which
model is more appropriate, their computational complexity is
related.

Theorem 3.2. If there is a polynomial-time algorithm for a
given variant of multiprong control in the separate-resource
model then there is one for the shared-resource model as well.

Proof. Let E be an election system. We will describe the idea
of our proof on the example of the constructive E -AC+AV
problem. The idea easily generalizes to any other set of al-
lowed control actions (complexity-theory savvy readers will
quickly see that we, in essence, give a disjunctive truth-table
reduction).

We are given an instance I of the constructive E -AC+AV
problem in the shared-resource model, where k is the limit on
the sum of the number of candidates and voters that we may
add. Given a polynomial-time algorithm for the separate-
resource variant of the problem, we solve I using the follow-
ing method. (If k > ‖A‖+ ‖W‖ then set k = ‖A‖+ ‖W‖.)
We form a sequence I0, . . . , Ik of instances of the separate-
resource variant of the problem, where each I�, 0 ≤ � ≤ k is
identical to I, except that we are allowed to add at most � can-
didates and at most k−� voters. We accept if at least one of I�

is a “yes”-instance of the separate-resource, constructive E -
AC+AV problem. Clearly, this algorithm is correct and runs
in polynomial time.

It would be interesting to consider a variant of the shared-
resource model where various actions come at different
costs (e.g., adding some candidate c′ might be much more
expensive—or difficult—than adding some other candidate
c′′). This approach would be close in spirit to priced bribery
of [Faliszewski et al., 2006]. Analysis of such a priced con-
trol is beyond the scope of the current paper.
Susceptibility, Immunity, Vulnerability, and Resistance.
As is standard in the election-control literature, we consider
vulnerability, immunity, susceptibility, and resistance to con-
trol. Let E be an election system and let C be a type of con-
trol. We say that E is susceptible to constructive (destructive)
C control if there is a scenario in which effectuating C makes
someone become (stop being) the unique winner of some E
election E. E is immune to constructive (destructive) C con-
trol if it is not susceptible to it. We say that E is vulnerable
to constructive (destructive) C control if it is susceptible to
C and there is a polynomial-time algorithm that decides the
constructive (destructive) E -C problem. (And this paper’s
algorithms—both those given and those omitted—go further
and in fact will produce the successful control action.) E is
resistant to constructive (destructive) C control if it is suscep-
tible to it and the constructive (destructive) E -C problem is
NP-hard.

The next theorems describe how multiprong control prob-
lems can inherit susceptibility, immunity, and resistance from
the basic control types that they are built from.

Theorem 3.3. Let E be an election system and let C1 + · · ·+
Ck be a variant of multiprong control (so 1≤ k ≤ 4 and each
Ci is a basic type of control). E is susceptible to constructive
(destructive) C1 + · · ·+Ck control if and only if E is suscep-
tible to at least one of constructive (destructive) C1, . . . ,Ck
control.

Proof. The “if” direction is trivial: The attacker can always
choose to use only the type of control to which E is suscepti-
ble. As to the “only if” direction, it is not hard to see that if
there is some input election for which by a C1 + · · ·+Ck action
we can achieve our desired change (of creating or removing
unique-winnerhood for p, depending on the case), then there
is some election (not necessarily our input election) for which
one of those actions alone achieves our desired change.

Theorem 3.4. Let E be an election system and let C1 + · · ·+
Ck, 1≤ k ≤ 4, be a variant of multiprong control. If for some
i, 1 ≤ i ≤ k, E is resistant to constructive (destructive) Ci
control, then E is resistant to constructive (destructive) C1 +
· · ·+Ck control.

This theorem can be shown from Theorem 3.3 plus the fact
that each individual prong’s stand-alone control problem is
essentially (give or take syntax) an embedded subproblem of
each multiprong control problem that includes it.

Theorem 3.4 immediately yields many “free” resistance re-
sults based on the previous work on control. But we will fo-
cus on the more interesting issue of proving that even multi-

130



prong control is easy for some election systems whose control
has already been studied (in the “combining vulnerabilities”
section) and for candidate control in maximin (Section 4).

In general, we do not consider partition cases in this paper,
however, we make an exception for the next example, which
shows how even types of control to which a given election
system is immune may prove useful in multiprong control. In
constructive control by partition of candidates (reminder: this
is not a “basic” control type) in the ties-eliminate model (PC-
TE control type), we are given an election E = (C,V ) and a
preferred candidate p ∈C, and we ask whether it is possible
to partition the candidate set C into C1 and C2 such that p is a
winner of the following two-round election: We first find the
winner sets, W1 and W2, of elections (C1,V ) and (C2,V ). If
either W1 or W2 contains more than one candidate, we replace
it with an empty set (ties eliminate). The candidates who win
election (W1∪W2,V ) are the winners of the whole two-stage
election.

Now, let us look at constructive approval-AC+PC-TE con-
trol, where (by definition, let us say) we first add new candi-
dates and then perform the partition action. We consider an
approval election with two candidates, p and c, where p has
50 approvals and c has 100. We are also allowed to add can-
didate c′, who has 100 approvals. Clearly, it is impossible to
make p a winner via adding c′. Exercising the partition action
alone does not ensure p’s victory either. However, combin-
ing both AC and PC-TE does the job! If we first add c′ to
the election and then partition candidates into {p} and {c,c′}
then, due to the ties-eliminate rule, p becomes a winner. It is
rather interesting that even though approval is immune to con-
structive AC control, there are cases where one has to apply
AC control to open the possibility of effectively using other
types of control.
Combining vulnerabilities. In the next theorem we show
that for all election systems considered in [Bartholdi et al.,
1992], [Hemaspaandra et al., 2007a], and [Faliszewski et al.,
2008], all constructive vulnerabilities to AC, DC, AV and DV
combine, and all destructive vulnerabilities to AC, DC, AV,
and DV combine. That is, for each election system studied in
these three papers, if it is separately vulnerable to some basic
control types C1, . . . ,Ck, where each Ci ∈ {AC, DC, AV, DV},
it is also vulnerable to C1 + · · ·+Ck.
Theorem 3.5. (a) Plurality is vulnerable to both construc-
tive AV+DV control and destructive AV+DV control. (b)
Both Condorcet and approval are vulnerable to destructive
AC+AV+DV control. (c) For each rational α , 0 ≤ α ≤ 1,
Copelandα is vulnerable to destructive AC+DC control.

Proof. (a) Let us consider an instance I of constructive
plurality-AV+DV control where we want to ensure candidate
p’s victory: It is enough to add all the voters who vote for
p (or as many as we are allowed) and then, in a loop, keep
deleting those voters who vote for candidates who still have
more points than p. If p becomes a unique winner before
we exceed the number of voters we can delete, then accept.
Otherwise reject. We omit the easy proof for the destructive
case.
(b) Let I be an instance of destructive Condorcet-
AC+AV+DV, where our goal is to prevent candidate p from

being a Condorcet winner (we assume that p is a Condorcet
winner before any control action is performed). It is enough
to ensure that some candidate c wins a head-to-head contest
with p. Our algorithm works as follows.

Let C be the set of candidates originally in the election and
let A be the set of candidates that we can add (we take A = /0
if we are not allowed to add any candidates). For each c ∈
(C∪A)−{p} we do the following:

1. Add as many voters who prefer c to p as possible.
2. Delete as many voters who prefer p to c as possible.

If after these actions c wins his or her head-to-head contest
with p then we accept. If no c ∈ (C∪A)−{p} leads to ac-
ceptance, then we reject. It is easy to see that this algorithm
is correct and runs in polynomial time. (We point out that it
is enough to add only a single candidate, the candidate c that
prevents p from winning, if he or she happens to be a member
of A).

We omit the analogous proof for the case of approval.
(c) The idea is to combine Copelandα destructive-AC and
destructive-DC algorithms [Faliszewski et al., 2008], how-
ever we omit the proof due to space restrictions.

We mention that by using techniques from plurality bribery
models, such as regarding weighted voters/etc., we can also
prove vulnerability for weighted/etc. plurality AV+DV con-
trol.

4 Candidate Control in Maximin

In this section we initiate the study of control in the maximin
election system. Maximin is related to Copeland voting in
that both are, loosely speaking, defined in terms of the pair-
wise head-to-head contests, and thus one might expect that
both systems would show similar resistance to control. In
fact, there are very interesting differences.

As is the case for Copelandα , 0≤ α ≤ 1, maximin is resis-
tant to control by adding candidates.
Theorem 4.1. Maximin is resistant to constructive AC con-
trol.

Proof. It is easy to see that the problem is in NP. To
show completeness, we give a reduction from the well-
known NP-complete problem exact cover by 3-sets (X3C,
see, e.g., [Garey and Johnson, 1979]). In X3C we are given
a pair (B,S ), where B = {b1, . . . ,b3k} is a set of 3k ele-
ments and S = {S1, . . . ,Sn} is a set of 3-subsets of B. We
ask whether there is a subset S′ of exactly k elements of S
such that their union is exactly B (we call such a set S′ an
exact cover of B).

Given an instance of X3C as described above, we form an
election E = (C∪A,V ), where C = B∪{p}, A = {a1, . . . ,an},
and V = (v1, . . . ,v2n+2). (Candidates in A are the spoiler
candidates, which the attacker has the ability to add to elec-
tion (C,V ).) Before we describe preference lists of voters in
V , let us describe a useful convention for specifying prefer-
ence lists: Putting some set D of candidates as an item in a
preference list means listing all the members of this set in
some fixed, arbitrary order, and listing

←−
D means listing all

the members of D, but in the reverse order.

131



Voters in V have the following preferences. For each Si ∈
S , voter vi reports preference list p > B− Si > ai > Si >

A−{ai} and voter vn+i reports preference list
←−−−−−
A−{ai}> ai >←−

Si >
←−−−
B−Si > p. Voter v2n+1 reports p > A > B and voter

v2n+2 reports
←−
B > p >

←−
A .

We claim that there is a set A′ ⊆ A such that ‖A′‖ ≤ k and
p is the unique winner of (C∪A′,V ) if and only if (B,S ) is
a “yes”-instance of X3C.

To show the claim, let E ′ = (C,V ). For each pair of distinct
elements bi,b j ∈ B, we have NE ′(bi,b j) = n+1, NE ′(p,bi) =
n+1, and NE ′(bi, p) = n+1. That is, all candidates in E ′ tie.
Now consider some set A′′ ⊆ A, ‖A′′‖ ≤ k, and an election
E ′′ = (C ∪A′′,V ). Values of NE ′′ and NE ′ are the same for
each pair of candidates in {p}∪B. For each pair of distinct
elements ai,a j ∈A′′, we have NE ′′(p,ai) = n+2, NE ′′(ai, p) =
n, and NE ′′(ai,a j) = n+1. For each bi ∈ B and each a j ∈ A′′
we have that

NE ′′(bi,a j) =
{

n if bi ∈ S j,
n+1 if bi /∈ S j,

and, of course, NE ′′(a j,bi) = 2n + 2−NE ′′(bi,a j). Thus, by
definition of maximin, we have the following scores in E ′′:
(a) scoreE ′′(p) = n+1, (b) for each a j ∈ A′′, scoreE ′′(a j) = n,
and (c) for each bi ∈ B,

scoreE ′′(bi) =
{

n if (∃a j ∈ A′′)[bi ∈ S j],
n+1 otherwise.

A′′ corresponds to a family S′′ of 3-sets from S such that
for each j, 1 ≤ j ≤ n, S′′ contains set S j if and only if A′′
contains a j. Since ‖A′′‖ ≤ k, it is easy to see that p is the
unique winner of E ′′ if and only if S′′ is an exact cover of
B.

Copelandα , 0≤ α ≤ 1, is resistant to constructive AC con-
trol, but for α ∈ {0,1}, Copelandα is vulnerable to construc-
tive control by adding an unlimited number of candidates. It
turns out that so is maximin. However, very interestingly,
maximin is also vulnerable to DC control, and in fact even
to ACu+DC control. Intuitively, in constructive ACu+DC
control we should add as many candidates as possible (be-
cause adding a candidate generally decreases other candi-
dates’ scores, making our preferred candidate’s way to vic-
tory easier) and then delete those candidates who stand in our
candidate’s way (i.e., those whose existence blocks his or her
score from increasing). Studying constructive ACu+DC con-
trol for maximin jointly leads to a compact, coherent algo-
rithm. If we were to consider both control types separately,
we would have to give two fairly similar algorithms while
obtaining a weaker result.
Theorem 4.2. Maximin is vulnerable to constructive
ACu+DC control.

Proof. We give a polynomial-time algorithm for constructive
maximin-ACu+DC control. The input contains an election
E = (C,V ), a set of spoiler candidates A, a preferred candi-
date p ∈C, and a nonnegative integer kDC. Voters in V have
preference lists over the candidates in C∪A. We ask whether
there are sets A′ ⊆ A and C′ ⊆ C such that (a) ‖C′‖ ≤ kDC

and (b) p is the unique winner of election ((C−C′)∪A′,V ).
If kDC ≥ ‖C‖ − 1, we accept immediately because we can
delete all candidates but p. Otherwise, we use the following
algorithm.

We rename the candidates in C and A so that C =
{p,c1, . . . ,cm} and A = {cm+1, . . . ,cm+m′ }. Let E ′ = (C ∪
A,V ) and let P = {NE ′(p,ci) | ci ∈ C∪A}. That is, P con-
tains all the values that candidate p may obtain as scores
upon deleting some candidates from E ′. For each k ∈ P, let
Q(k) = {ci | ci ∈C∪A∧NE ′(p,ci) < k}. Intuitively, Q(k) is
the set of candidates in E ′ that prevent p from having exactly
k points.

For each value of k ∈ P, our algorithm tests whether by
deleting at most kDC candidates from C and any number of
candidates from A it is possible to ensure that p obtains ex-
actly k points and becomes the unique winner of E ′. Let us
fix some value k ∈ P. We build a set D of candidates to delete.
Initially, we set D = Q(k). It is easy to see that deleting can-
didates in Q(k) is a necessary and sufficient condition for p to
have score k. However, deleting candidates in Q(k) is not nec-
essarily sufficient to ensure that p is a winner because candi-
dates with scores greater or equal to k may exist. We execute
the following loop (which we will call the fixing loop): (1) Set
E ′′ = ((C∪A)−D,V ). (2) Pick a candidate d ∈ (C∪A)−D
such that scoreE ′′(d)≥ k (break from the loop if no such can-
didate exists). (3) Add d to D and jump back to step (1). We
accept if C∩D ≤ kDC and we proceed to the next value of k
otherwise.2 If none of the values k ∈ P leads to acceptance
then we reject.

Let us now briefly explain why the above algorithm is cor-
rect. It is easy to see that in maximin adding some candidate c
to an election does not increase other candidates’ scores, and
deleting some candidate d from an election does not decrease
other candidates’ scores. Thus, if after deleting candidates in
Q(k) there still are candidates other than p with k points or
more, the only way to ensure p’s victory is by deleting those
candidates. Also, clearly, the only way to ensure that p has
exactly k points is by deleting candidates Q(k).

Note that during the execution of the fixing loop, the score
of p might increase to some value k′ > k. If that happens, it
means that it is impossible to ensure p’s victory while keeping
his or her score equal to k. However, we do not need to change
k to k′ in that iteration of the main loop as we will consider k′
in a different iteration.

Maximin is also vulnerable to destructive AC+DC control.
(We omit the proof—which is easier than the above proof—
due to space limits.)

Theorem 4.3. Maximin is vulnerable to destructive AC+DC
control.

The focus of this section is on candidate control, but we do
mention that maximin is resistant to voter control. (We omit
the proof due to space limits.)

2If we accept, D implicitly describes the control action that en-
sures p’s victory: We should delete from C the candidates in C∩D
and add from A the candidates in A−D.

132



Theorem 4.4. Maximin is resistant to constructive and de-
structive AV control and to constructive and destructive DV
control.

5 Conclusions and Open Problems

We have shown that combining various types of control into
multiprong control attacks is a useful technique. It allows us
to study more realistic control models, to express control vul-
nerability results and proofs in a compact way, and to obtain
vulnerability results that are stronger than would be obtained
for single prongs alone.

The research presented in this paper leads to several open
questions. We are very pressingly interested in finding an ex-
ample of an existing, natural election system that is resistant
to some multipronged control C1 + . . .+Ck even though it is
vulnerable to each separate Ci. Although space does not al-
low the proof to be included here (it will be included in the
full version), we have proven that there is an election system
that is vulnerable to constructive AV control and to construc-
tive AC control, yet is resistant to constructive AV+AC con-
trol. However, the system we construct to achieve this is a
new, artificial system and not an existing, natural system such
as those discussed in the rest of this paper.

As mentioned earlier, the framework of multiprong con-
trol can be extended to include manipulation/bribery. We’ll
discuss this further in the full version.

An involved, long-term research goal is to study multiple
control attackers competing with each other. It is interesting
to consider both game-theoretic scenarios and situations in
which, for example, an attacker seeks a control action that
succeeds irrespective of the action of the other attacker.

Acknowledgments

Supported in part by NSF grants CCF-0426761 and IIS-
0713061, AGH-UST grant 11.11.120.777, the ESF’s EURO-
CORES program LogICCC, and Friedrich Wilhelm Bessel
Research Awards to Edith Hemaspaandra and Lane A. Hema-
spaandra. We thank the anonymous IJCAI referees for helpful
comments.

References

[Bartholdi et al., 1989] J. Bartholdi, III, C. Tovey, and
M. Trick. The computational difficulty of manipulating an
election. Social Choice and Welfare, 6(3):227–241, 1989.

[Bartholdi et al., 1992] J. Bartholdi, III, C. Tovey, and
M. Trick. How hard is it to control an election? Math-
ematical and Computer Modeling, 16(8/9):27–40, 1992.

[Conitzer and Sandholm, 2006] V. Conitzer and T. Sand-
holm. Nonexistence of voting rules that are usually hard to
manipulate. In Proceedings of AAAI-06, pages 627–634.
AAAI Press, July 2006.

[Dobzinski and Procaccia, 2008] S. Dobzinski and A. Pro-
caccia. Frequent manipulability of elections: The case
of two voters. In Proceedings of WINE-08, pages 653–
664. Springer-Verlag Lecture Notes in Computer Science
#5385, December 2008.

[Erdélyi et al., 2008] G. Erdélyi, M. Nowak, and J. Rothe.
Sincere-strategy preference-based approval voting broadly
resists control. In Proceedings of MFCS-08, pages 311–
322. Springer-Verlag Lecture Notes in Computer Science
#5162, August 2008.

[Faliszewski et al., 2006] P. Faliszewski, E. Hemaspaandra,
and L. Hemaspaandra. The complexity of bribery in elec-
tions. In Proceedings of AAAI-06, pages 641–646. AAAI
Press, July 2006. Full version to appear in the Journal of
Artificial Intelligence Research.

[Faliszewski et al., 2008] P. Faliszewski, E. Hemaspaandra,
L. Hemaspaandra, and J. Rothe. Copeland voting fully
resists constructive control. In Proceedings of AAIM-08,
pages 165–176. Springer-Verlag Lecture Notes in Com-
puter Science #5034, June 2008. Full version to appear
in the Journal of Artificial Intelligence Research.

[Faliszewski et al., to appear] P. Faliszewski, E. Hemaspaan-
dra, L. Hemaspaandra, and J. Rothe. A richer understand-
ing of the complexity of election systems. In S. Ravi
and S. Shukla, editors, Fundamental Problems in Comput-
ing: Essays in Honor of Professor Daniel J. Rosenkrantz.
Springer, to appear.

[Friedgut et al., 2008] E. Friedgut, G. Kalai, and N. Nisan.
Elections can be manipulated often. In Proceedings of
FOCS-08, pages 243–249. IEEE Computer Society, Oc-
tober 2008.

[Garey and Johnson, 1979] M. Garey and D. Johnson. Com-
puters and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman and Company, 1979.

[Hemaspaandra et al., 2007a] E. Hemaspaandra, L. Hema-
spaandra, and J. Rothe. Anyone but him: The complexity
of precluding an alternative. Artificial Intelligence, 171(5-
6):255–285, 2007.

[Hemaspaandra et al., 2007b] E. Hemaspaandra, L. Hem-
aspaandra, and J. Rothe. Hybrid elections broaden
complexity-theoretic resistance to control. In Proceed-
ings of IJCAI-07, pages 1308–1314. AAAI Press, January
2007.

[Meir et al., 2008] R. Meir, A. Procaccia, J. Rosenschein,
and A. Zohar. The complexity of strategic behavior in
multi-winner elections. Journal of Artificial Intelligence
Research, 33:149–178, 2008.

[Xia and Conitzer, 2008a] L. Xia and V. Conitzer. General-
ized scoring rules and the frequency of coalitional manip-
ulability. In Proceedings of ACM EC-08, pages 109–118.
ACM Press, July 2008.

[Xia and Conitzer, 2008b] L. Xia and V. Conitzer. A suffi-
cient condition for voting rules to be frequently manipula-
ble. In Proceedings of ACM EC-08, pages 99–108. ACM
Press, July 2008.

[Zuckerman et al., 2008] M. Zuckerman, P. Faliszewski,
Y. Bachrach, and E. Elkind. Manipulating quota value in
weighted voting games. In Proceedings of AAAI-08, pages
215–220. AAAI Press, July 2008.

133


