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Abstract

This paper considers the setting wherein a group of
agents (e.g., robots) is seeking to obtain a given tan-
gible good, potentially available at different loca-
tions in a physical environment. Traveling between
locations, as well as acquiring the good at any given
location consumes from the resources available to
the agents (e.g., battery charge). The availability of
the good at any given location, as well as the ex-
act cost of acquiring the good at the location is not
fully known in advance, and observed only upon
physically arriving at the location. However, a-
priori probabilities on the availability and poten-
tial cost are provided. Given such as setting, the
problem is to find a strategy/plan that maximizes
the probability of acquiring the good while mini-
mizing resource consumption. Sample applications
include agents in exploration and patrol missions,
e.g., rovers on Mars seeking to mine a specific min-
eral. Although this model captures many real world
scenarios, it has not been investigated so far.

We focus on the case where locations are aligned
along a path, and study several variants of the prob-
lem, analyzing the effects of communication and
coordination. For the case that agents can com-
municate, we present a polynomial algorithm that
works for any fixed number of agents. For non-
communicating agents, we present a polynomial al-
gorithm that is suitable for any number of agents.
Finally, we analyze the difference between homo-
geneous and heterogeneous agents, both with re-
spect to their allotted resources and with respect to
their capabilities.

1 Introduction

In many Multi-Agent Settings (MAS), agents need to explore
the environment in order to fulfill their task. For example,
consider Rover robots seeking to mine a certain mineral on
the face of Mars. While there may be prior knowledge re-
garding candidate mining sites (e.g., based on satellite im-
ages), the actual availability at any given location may only
be determined upon reaching the location. Furthermore, the

cost associated with the mining, e.g., in terms of battery con-
sumption, may depend on the exact conditions at each site
(e.g., soil type, terrain, etc.), and hence fully known only upon
reaching the site. In fact, in some cases the cost may be pro-
hibitive - i.e. when the Rover lacks sufficient battery charge.
Thus, successful exploration of the environment is crucial for
completing the task. However, in physical environments, ex-
ploration itself comes at a cost, namely - battery power for
travel. Thus, while exploration is essential for mining, the
two competes with each other for resources.

In physical environments, exploration itself entails com-
plex tradeoffs, as traveling to one site may increase, or de-
crease, the distance to other sites. Thus, with multiple agents
at hand, geographically subdividing the search space among
the different agents may be the way to go. However, if agents
have means of communication, then they may not wish to
become too distant, as they can call upon each other for assis-
tance. For example, even if a Rover does not have sufficient
battery power for mining at a given location, it may be use-
ful for it to travel to the site in order to determine the exact
mining cost, and call for other robots that do have the neces-
sary battery power. In this case, the scheduling of the robots’
travel times is key, and must be carefully planned.

Finally, agents may be of different types, or with differ-
ent amounts of resources. For example, Rover robots may
be entering the mission with differing initial battery charges.
They may also differ in their capabilities, like a team of rovers
where some were specifically designed for mining missions,
and thus require less battery power for the same mining task.

This paper aims at taking the first steps in understanding
the characteristics of such multi-agent physical environment
settings, and developing efficient exploration strategies for
the like. To the best of our knowledge, it is the first to do
so. As a start, we focus on the case where the mining sites
are located along a path, as in the case of a perimeter patrol
by a team of robots. We note that many multi-agent cov-
erage algorithms convert their complex environment into a
simple long path [Spires and Goldsmith, 1998; Gabriely and
Rimon, 2001; Hazon and Kaminka, 2005]. Furthermore, the
problem in more general metric spaces can be shown to be
NP-complete, even for the planer graphs. We also focus on
the case where mining costs are rounded/estimated to one of
a constant number of possible options (e.g., one, two or three
hours).
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We consider two variants of the problem. In the first vari-
ant, coined Max-Probability, we are provided with a group
of agents, each with an initial resource budget (e.g., battery
charge), and the goal is to maximize the probability of suc-
cessfully completing the task (e.g., obtain the mineral). In the
second variant, coined Min-Budget, we are required to guar-
antee some pre-determined success probability, and the goal
is to minimize the initial resource allotments necessary in or-
der to achieve said success probability.

Of course, Mars rovers are only one example of the general
setting of exploration in a physical environment, and the dis-
cussion and results of this paper are relevant to any such set-
ting, provided that exploration and fulfilling the task use the
same type of resource. Another example would be a setting
where agents need to acquire a good, potentially available at
one of several shops, but need to pay for transportation from
one shop to another.

Results. We separately consider the setting where agents
can communicate and the setting where they cannot. For
non-communicating agents we show a polynomial algorithm
for the Max-Probability problem that is suitable for any
number of agents. For the Min-Budget problem with non-
communicating agents, we present a polynomial algorithm
for the case that all agents must be allotted identical re-
sources, but show that the problem is NP-hard for the general
case (unless the number of agents is fixed). Next we consider
agents that can communicate, and can call upon each other for
assistance. As noted above, in this case the scheduling of the
different agents’ moves must also to be carefully planned. We
present polynomial algorithms for both the Max-probability
problem and the Min-Budget problem that work for any con-
stant number of agents (but become non-polynomial when the
number of agents is not constant). Finally, we extend our re-
sults to the case of heterogenous agents with different capa-
bilities.

1.1 Related Work

Models of a single agent search process with prior probabilis-
tic knowledge have been studied in the economic literature
for years, promoting several reviews [Lippman and McCall,
1976; McMillan and Rothschild, 1994]. They have also been
extended to multi-agent environments in [Sarne and Kraus,
2005]. Nevertheless, these economic-based search models
assume that the cost associated with observing a given oppor-
tunity is stationary (i.e., does not change along the search pro-
cess). While this assumption facilitates the analysis of search
models, it is frequently impractical in the physical world. The
use of changing search costs suggests an optimal search strat-
egy structure different from the one used in traditional eco-
nomic search models: other than deciding when to terminate
its search, the agent needs to integrate into its decision mak-
ing process exploration sequence considerations.

Changing search costs has been previously considered in
the MAS domain in the context of Graph Search Problems
[Koutsoupias et al., 1996]. Here, the agent is seeking a sin-
gle item, and a distribution is defined over all probabilities of
finding it in each of the graph’s nodes [Ausiello et al., 2000].
Nevertheless, upon arriving at a node the success factor is
binary: either the item is there or not. Extensions of these

applications to scenarios where the item is mobile are of the
same character [Gal, 1980; Koopman, 1980].

The work of [Aumann et al., 2008] is the first to analyze
physical search problems with the assumption of prior proba-
bilistic knowledge. Their work provides fundamental results
for the single-agent case, showing that a physical search prob-
lem is hard on metric spaces and analyzing the case where the
locations are aligned along a path like in [Spires and Gold-
smith, 1998; Gabriely and Rimon, 2001]. Even under these
settings some problems remain hard, unless the number of
possible costs is constant. Unfortunately, their extension to
the multi-agent case handles only a basic model. In their
model all the resources and costs are shared among a group of
homogeneous agents, with a simple coordination mechanism.
They also assume that communication is available all the time
among all the agents. Their assumptions may be realistic for
a group of agents that has the same bank account and they
charge it simultaneously for the use of movement and pur-
chase. It is not applicable to a variety of physical search tasks
where each agent has its own private budget, like in the Rover
robots example where each one has its own battery (corre-
sponding to its private budget) that it uses for movement and
mining.

1.2 Terminology and Definitions

We are provided with m sites - S = {u1, . . . , um}, which
represent potential mining locations, together with a distance
function dis : S × S → R+ - determining the travel costs
between any two sites. Since we focus on the case in which
the sites are all on a single path we can assume that, WLOG
(without loss of generality) all sites are points located on the
line, and do away with the distance function dis. Rather, the
distance between ui and uj is simply |ui − uj|. Furthermore,
WLOG we may assume that the sites are ordered from left-
to-right, i.e. u1 < u2 < · · · < um. We are also provided
with a cost probability function pi(c) - stating the probability
that the cost of obtaining the good at location i is c. Let D
be the set of distinct costs with a non-zero probability, and let
d = |D|. We assume that d is bounded and that the actual cost
at a site is only revealed upon reaching it. In addition, we are
provided with k agents and a vector of their initial locations

(u
(1)
s , . . . , u

(k)
s ), each of which is assumed to be, WLOG, one

of the sites ui (the probability of obtaining the good at this site
may be 0). Again, WLOG we may assume that the agents are

ordered from left-to-right, i.e. u
(1)
s < u

(2)
s < · · · < u

(k)
s .

Finally, each agent j has its own initial budget Bj (unlike the
shared budget model proposed by [Aumann et al., 2008]).

Given these inputs, the goal is to find a plan that maximizes
the probability of obtaining the good (by any of the agents),
while minimizing the necessary budget. We assume that the
goal is not individualized; the agents seek to obtain only one
good and having multiple goods is not beneficial. Further-
more, they do not care which agent will obtain the good. The
standard approach in such multi-criterion optimization prob-
lems is to optimize one of the objectives while bounding the
other. In our case, we get two concrete problem formulations:

1. Max-Probability: given initial budgets Bj , for each
agent j, maximize the probability of obtaining the good.
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2. Min-Budget: given a target success probability psucc,
minimize the agents’ initial budgets necessary to guar-
antee obtaining the good with a probability of at least
psucc.

In the Min-Budget problem it is also important to distinguish
between two different agents models:

• Identical budgets: the initial budgets of all the agents
must be the same. The problem is to minimize
this initial budget, and we denote the problem as

Min-Budgetidentical.

• Distinct: the agents’ initial budgets may be differ-
ent. In this case the problem is to minimize the av-
erage initial budget, and we denote the problem as

Min-Budgetdistinct.

2 Non-Communicating Agents

We first consider the case where agents cannot communicate
with each other. In this case agents cannot assist each other.
Hence a solution is a strategy comprising of a set of ordered
lists, one for each agent, determining the sequence of sites
this agent must visit.

The success probability of a strategy is the probability that
at least one of the agents will succeed in its task. Technically,
it is easier to calculate the complementary failure probabil-
ity: the probability that all the agents will not succeed in their
tasks. For example, suppose that the sites and agents are lo-
cated as illustrated in Figure 1, and consider the illustrated
strategy. This strategy fails if for both agents and each of the
sites they visit the cost of the item is higher than their remain-
ing budget. This will happen with probability 1

2 ·
1
4 ·

1
2 ·

4
5 = 1

20 .

Hence, the success probability of this strategy is 19
20 .
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Figure 1: A possible input with a suggested strategy. The
numbers on the edges represent traveling costs. A table at
each site ui represents the cost probability function pi(c).
The strategy of each agent is illustrated by arrows.

We start by considering the Max-Probability problem. We
prove:

Theorem 1 In the no communication case if the number of
possible costs is constant then Max-Probability can be solved
in polynomial time for any number of agents.

The proof is based on the following definitions and lemmata.
Note that multiple strategies may result in the same suc-

cess probability. In this case we say that the strategies are
equivalent. In particular there may be more than one optimal
strategy.

Definition Let S be a strategy. Agents i and ī are said to be
separated by S if each site that is reached by i is not reached
by ī.

Lemma 2 If agents i and ī are not separated by any optimal
strategy. Then in any optimal strategy at least one of these
agents must pass the initial location of the other.

Proof WLOG assume that i is on the right side of ī. Con-
sider an optimal strategy S. Let r be the rightmost site that
is reached by i and l̄ the leftmost site that is reached by ī.
Assume that none of the agents passes the initial location of
the other in S. Thus, there is at least one site between their
initial locations that is reached by both agents. WLOG as-
sume that ī reaches at least one site with a higher budget than
i’s remaining budget when reaching it, and denote by r̄∗ the
rightmost such site. Consider the following modified strat-
egy: i goes according to S till the stage it has to reach r̄∗. If
i did not reach r yet then instead of reaching r̄∗ it goes all
the way straight to r. Otherwise, it stops just before reaching
r̄∗. ī goes according to S till the stage it has to reach r̄∗. If ī
did not reach l̄ yet then after reaching r̄∗ it goes all the way
straight to l̄. Otherwise, it stops after reaching r̄∗. Agents i
and ī are separated by this strategy and it has at least the same
success probability as S, in contradiction.

Lemma 3 Suppose that agents i and ī are not separated by
any optimal strategy. Let S be an optimal strategy. Suppose
that in S agent i passes the initial location of agent ī and
agent ī does not stay in its initial location. Then, there is an
optimal strategy such that one of the following holds:

• ī moves only in one direction which is opposite to the
final movement’s direction of i. Furthermore, if the final
movement’s direction of i is right(left) then ī passes the
leftmost(rightmost) site that is reached by i.

• either i or ī does not move.

Proof WLOG assume that i is on the right side of ī. Let [l, r]
be the interval of sites covered by i. Since i passes the initial

location of ī, l is located on the left of u
(̄i)
s and r is located on

the right of u
(̄i)
s .

First we show that we may assume that ī reaches at least
one site outside the interval [l, r]. If this is not the case, con-
sider two cases. If i’s remaining budget at each site is always
as high as ī’s remaining budget then ī does not have to move
and the theorem holds. Otherwise, let r̄∗ the rightmost site
where ī’s remaining budget is higher than i’s remaining bud-
get. If r̄∗ is on the left side of i’s initial location, then as in
the proof of Lemma 2, the agents can be separated. If r̄∗ is
on the right side of i’s initial location and it equals r, there is

no need for i to reach r since at each site in [u
(i)
s , r], ī has at

least the same budget as i. Thus, there is an optimal strategy
where either i does not move or it moves only to the left, so
ī passes the rightmost site that is reached by i. If r̄∗ is on the
right side of i but on the left side of r then there is no need
for ī to go beyond r̄∗. Since it has more budget than i at this
location, ī can move to l while i moves to r. Thus, again,
there is an optimal strategy where either i does not move or
it moves only to the right, so ī passes the leftmost site that is
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reached by i. Thus, we may assume that ī reaches at least one
site outside the interval [l, r].

WLOG assume that i’s final movement’s direction is left
and suppose that ī reaches at least one site outside the interval
[l, r] to the left of l. If ī’s budget at l is higher than i’s remain-

ing budget there, then it is also higher at u
(̄i)
s , and again the

agents can be separated. If ī’s budget at l is not higher than
i’s remaining budget, than ī does not have to move since i can
reach the same sites to the left of l.

Now suppose that ī moves to the right (which is the op-

posite direction of i’s final movement) and passes u
(i)
s , but it

also changes its direction. The only reason for ī to change di-
rections is to reach a site on the left side of its initial location,
with a higher budget than i has at this site, or to reach a site
that i does not reach at all. In both cases ī must reach each
site in [l, u

(i)
s ] with at least the same budget as i has at the

same location, so either S is not optimal, or we can modify S
by letting only ī to move while i does not move at all.

Using these lemmata we observe that for any two agents,
there are only a constant number of possible cases where the
agents are not separated by the optimal strategies. Figure 2
illustrates the three core cases (the others are symmetrical).
Here, agents 1 and 3 are non-separated agents. Note that ev-
ery agent between them, like agent 2, does not have to move
at all in the optimal strategy.
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Figure 2: The only three cases where a pair of agents may not
be separated.

Therefore we can use a dynamic programming approach to
find an optimal strategy whereby all the agents are separated,
but we also check the non-separated strategies individually.

Recall that in our problem the objective is to maximize the
success probability, given the initial budgets. Technically, it is
easy to work with the failure probability instead of the success
probability.

Definition fail[ui, j] is the minimal failure probability if the

only reachable sites are in the interval [u1, ui], and only
agents 1, · · · , j are allowed to move. act[ui, j] is the opti-
mal strategy achieving fail[ui, j], under the same conditions
1.

Note that where ui < u
(j)
s , fail[ui, j] is not defined. Given

act[ui, j], fail[ui, j] can be easily computed in O(m) steps.
For technical reasons we add another agent, 0, with a bud-
get of zero and set its initial location to the leftmost site, i.e

u
(0)
s = u1. fail[ui, 0]=1 for all i, and this agent doesn’t affect

the failure probability of any policy.
We are now ready to prove Theorem 1

Proof of Theorem 1 We use dynamic programming to cal-
culate fail[um, k] and act[um, k]. For fail[ui, 1] and act[ui, 1],
which is the single agent case, we employ the polynomial al-
gorithm of [Aumann et al., 2008].

Given any agent j̄ we first consider the case where ui =

u
(j̄)
s . In this case in the optimal strategy j̄ moves only to the

left, or not at all. Let u
(j̄)
l be the leftmost site visited by j̄

with the optimal strategy for the given interval, and agent l be

the one such that u
(l)
s ≤ u

(j̄)
l (l may equal 0). Each agent t

such that l < t < j̄ does not move in the optimal strategy.
Otherwise, agents t and j̄ are not separated and according to

Lemma 3 agent t must pass the rightmost site u
(j̄)
s , which

is not possible. The same argument shows that each agent t

such that t ≤ l does not reach u
(j̄)
l . Therefore act[ui, j̄] is

composed of act[u
(j̄)
l−1, l], which are already known, together

with the movement of agent j̄ to u
(j̄)
l . Thus, computing u

(j̄)
l

takes O(m) steps.

Next, consider the case where ui > u
(j̄)
s . In this case, in

the optimal strategy j̄ may move in both directions, or not

move at all. Let u
(j̄)
l be the leftmost site visited by j̄ with the

optimal strategy for this interval, and agent l is the one such

that u
(l)
s ≤ u

(j̄)
l . First note that each agent t, t ≤ l, and j̄ are

separated by the optimal policy, or j̄ does not move. Other-
wise, according to Lemma 2 t must pass the initial location
of j̄ but according to Lemma 3 j̄ must reach a site outside the

interval [u
(l)
s , u

(j̄)
s ] which does not occur. Since j̄ passes the

initial locations of every agent t, l < t < j̄, if one of them
moves it goes only in the opposite direction of the final move-
ment direction of j̄ according to Lemma 3 , and as illustrated
in Figure 2. Since they all must move in the same direction,
according to the same Lemma at most one of them moves in
the optimal policy. Therefore, to compute act[uī, j̄] we check

only the following options, and choose the best one:

1. j̄ does not move, and act[uī, j̄] = act[uī, j̄ − 1].

2. Each agent t, t ≤ l, does not move. Thus, act[uī, j̄] is

composed of act[u
(j̄)
l−1, l], with the optimal movement of

agent j̄ in the interval [u
(j̄)
l , ui].

1There may be more than one strategy with the same failure prob-
ability, act[ui, j] is one of them
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The previous two options assumes that j̄ and every other
agent are separated. Otherwise:

3. One agent t, t ≤ l, moves. Let u
(t̄)
l be the leftmost site

visited by either agent t or j̄, with the optimal strategy,

and agent l is the one such that u
(l)
s ≤ u

(t̄)
l . act[uī, j̄] is

composed of act[u
(t̄)
l−1, l], with the optimal movement of

the two agents j̄ and t in the interval [u
(t̄)
l , ui].

There are at most m possible options for u
(j̄)
l . In each option

we check for at most k agents m possible options for u
(t̄)
l .

Therefore for each agent j and site ui act[ui, j] can be found
in O(m2k) steps, and act[um, k] can be found in O(m3k2)
time steps using O(mk) space.

For the Min-Budget problem we obtain:

Theorem 4 In the no communication setting, if the number

of costs is constant, then Min-Budgetidentical can be solved
in polynomial time for any number of agents.

Proof By Theorem 1, given a budget B̄, we can calculate
the maximum achievable success probability. Thus we can
run a binary search over the possible values of B̄ to find the
minimal one that still guarantees a success probability psucc.
The maximum required budget is 2 · |u1 − um|, which is part
of the input. Thus the binary search will require a polynomial
number of steps.

Theorem 5 If the number of agents is a parameter,

Min-Budgetdistinct with no communication is NP-Hard even
for a single possible cost.

Proof Aumann et al [Aumann et al., 2008] consider the
shared budget case and prove that when the number of agents
is not constant the Min-Budget problem is NP-hard. In the

Min-Budgetdistinct problem the objective is to minimize the
average budget, which is the same as minimizing the total
budget. Thus, the hardness of the problem follows from that
of the Min-Budget problem in [Aumann et al., 2008].

3 Communicating Agents

Once communication is added agents can call upon each other
for assistance and the relative scheduling between the agents
moves must also be considered. In this case a solution is an
ordered list of moves, where each move is a pair stating an
agent and its next destination.

The success probability of a solution is now calculated ac-
cording to the moves order. For example, suppose that the
sites and agents are located as illustrated in Figure 3.

Consider the following solution: agent 2 first goes to u4

and then agent 1 goes to u2. Agent 2 is the only one which
can succeed at u4, with a probability of 0.8. With probability
0.2 it will not succeed and agent 1 has a probability of 0.2 to
succeed at u2. Hence, the success probability is 0.8 + 0.2 ·
0.2 = 0.84. If we switch the moves order we get a probability
of 0.9 to succeed at u2 with the first move, since agent 2 will
be called for assistance if the cost required is less than 100. If

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�������� 

	� �� �� 

�������� 

�� �� �� ��

� �

��� ���

�� ��

��� ��

� �

��� ���

��� 	�

Figure 3: A possible input with suggested moves. The num-
bers on the edges represent traveling costs. A table at each
site ui represents the cost probability function pi(c). The
moves are illustrated by arrows.

not, agent 2 will move to u5 as before. Hence, this solution
success probability is 0.9 + 0.1 · 0.8 = 0.98.

When the number of agents is not fixed, Max-Probability,

Min-Budgetidentical and Min-Budgetdistinct are not known
to be solvable in polynomial time. However, in many physical
environments where several agents cooperate in exploration
and search, the number of agents is relatively small. In this
case we can show that all the three problems can be solved in
polynomial time. We show:

Theorem 6 In the setting of communicating agents, if
the number of agents and the number of different costs

is fixed then Max-Probability, Min-Budgetidentical and

Min-Budgetdistinct can be solved in polynomial time.

For brevity, we focus on the Max-Probability problem. The
same algorithm and similar analysis work also for the other
two problems.

First note that in Max-Probability, we need to maximize
the probability of obtaining the good given the initial bud-
gets Bi, but there is no requirement to minimize the actual
resources consumed. Thus, at any site, if agents can obtain
the good for a cost no greater than its remaining budget, the
search is over. Furthermore, if the cost is beyond the agent’s
available budget, but there is another agent with enough bud-
get to both travel from its current location and to obtain the
good, then this agent is called upon and the search is also over.
Otherwise, the good will not be obtained at this site under any
circumstances. Thus, the basic strategy structure, which de-
termines which agent go where, remains the same. Unless the
search has to be terminated, the decision of one agent where
to go next is not affected by the knowledge gained by others.

Let c1 > c2 > · · · > cd be the set of costs. For each

agent j and for each ci there is an interval I
(j)
i = [u�, ur] of

sites covered while the agent’s remaining budget is at least

ci. Furthermore, for each j and for all i, I
(j)
i ⊆ I

(j)
i+1. Thus,

consider for each agent the incremental area covered when its

remaining budget ci but less than ci−1, Δ
(j)
i = I

(j)
i − I

(j)
i−1

(with Δ
(j)
1 = I

(j)
1 ). Each Δ

(j)
i is a union of an interval at

left of u
(j)
s and an interval at the right of u

(j)
s (both possibly

empty). Since there is communication, an agent may continue
to reach sites even if it does not have any chance of obtaining
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the good there, in order to reveal the cost for the use of other
agents. Thus, the optimal strategy may define also an interval

I
(j)
d+1 = [u�, ur] of sites covered while the remaining budget

of j is greater than 0. For brevity, we denote d̄ instead of d+1.
The next lemma, which is the multi agent Max-Probability
analogue of Lemma 2 in [Aumann et al., 2008] states that
there are only two possible optimal strategies to cover each

Δ
(j)
i :

Lemma 7 Consider the optimal solution and the incremen-

tal areas for each agent j, Δ
(j)
i (i = 1, . . . , d̄) defined by this

solution. For i ∈ 1, . . . , d̄, let u
(j)
�i

be the leftmost site in Δ
(j)
i

and u
(j)
ri

the rightmost site. Suppose that in the optimal strat-

egy the covering of Δ
(j)
i starts at location u

(j)
si

. Then, WLOG
we may assume that the optimal strategy for each j is either

(u
(j)
si

� u
(j)
ri

� u
(j)
�i

) or (u
(j)
si

� u
(j)
�i

� u
(j)
ri

). Further-

more, the starting point for covering Δ
(j)
i+1 is the ending point

of covering Δ
(j)
i .

Proof Any strategy other than the ones specified in the
lemma would reach all the sites covered by the optimal so-
lution with at most the same available budget.

Corollary 8 For k constant, one needs only to consider a
polynomial number of options for the set of moves of the
agents.

Proof By the previous lemma, the moves of each agent are
fully determined by the leftmost and rightmost sites of each

Δ
(j)
i , together with the choice for the ending points of cov-

ering each area. For each j there are m2d̄/(2d̄)! possible

choices for the external sites of the Δ
(j)
i ’s, and there are a

total of 2d̄ options to consider for the covering of each. Thus,
the total number of options is polynomial (in m).

It thus remains to consider the scheduling between the moves,
i.e. their order. Theoretically, with n moves there are n! dif-
ferent possible orderings. We show, however, that for any
given set of moves, we need only to consider a polynomial
number of possible orderings.

Consider a given set of moves M , determining the sets

Δ
(j)
i . Note that for each agent, M fully determines the or-

der of the moves of this agent. A subset M ′ of M is said to
be a prefix of M , if for each agent the moves in M ′ are a pre-
fix of the moves of this agent in M . A subset M ′ is a suffix
of M if M − M ′ is a prefix. We now inductively define the
notion of a cascading order:

1. The trivial order on moves of a single agent is cascading.

2. Let M be a set of moves, and let ci0 be the highest cost
that any agent can pay. An order S on M is cascading
if M and S can be decomposed M = Mpre ∪ Mmid ∪
Mpost and S = Spre ◦ Smid ◦ Spost, such that:

• Mpre is a prefix of M consisting only of moves
of agents with budget less than ci0 and Spre is a
cascading order on Mpre.

• There exists an agent j′ with budget at least ci0

such that Mmid consists of all the moves of j′ in

Δ
(j′)
i0

and Smid is the (one possible) order on these
moves.

• Mpost are the remaining moves in M and Spost is
a cascading order on them.

We prove (by induction) that cascading orders are optimal.

Lemma 9 For any set of moves M there exists a cascading
order with optimal success probability.

Proof The proof is by induction on the number of agents and
the number of moves in M . If there is only one agent moving
in M then the order is cascading. Otherwise, consider any
other order S on M and let Ai0 be the set of agents with
budget at least ci0 . Let j′ be the first agent in Ai0 to cover

its Δj′

i0
and let t0 be the time it completes covering it. Mpre

includes all the moves taken by agents not in Ai0 prior to t0;

Mmid includes all the moves of j′ in Δ
(j′)
i0

; and Mpost the
rest of the moves in M . We show that we do not decrease
the success probability by first making all moves of Mpre
then all those of Mmid, and finally those of Mpost. By the
inductive hypothesis Spre, Smid and Spost are optimal for
Mpre, Mmid and Mpost, respectively and the result follows.

Before t0 all agents in Ai0 have a higher budget than any
agent not in Ai0 . Thus, before t0 agents of Ai0 will never call
upon those not in Ai0 . Thus, it cannot decrease the success
probability if we let the agents not in Ai0 take their moves
first. Thus, we can allow to first perform all moves of Mpre.

Also, before t0 no agents of Ai0 needs to call upon each
other for assistance (since they are all in the same resource
bracket). Thus, we may allow them to take their moves in-
dependently without decreasing the success probability. In

particular, we can allow j′ to complete its covering of Δ
(j′)
i0

before any other member of Ai0 moves. Thus, we get that
first having the moves of Mpre and then of Mmid does not
decrease the success probability. The moves of Mpost are the

remaining moves.

Finally we show that the number of cascading orders is poly-
nomial:

Lemma 10 For fixed k and d and any set of moves M there
are a polynomial number of cascading orders on M .

Proof Set f(n, k, d, �) be the number of cascading orders
with k agents, n moves, d costs and � agents in Ai0 . We prove
by induction that f is a polynomial in n. Since � ≤ k, the re-
sult follows. Clearly, for any �, f(n, k, 0, �) = �! (all of which
are useless). Then, by the definition of cascading orders
f(n, k, d, �) ≤ �nk−�f(n, k− �, d−1, k− �)f(n, k, d, �−1)
(the nk being for the choice of Mpre). By the inductive hy-

pothesis f(n, k − �, d − 1, k − �) and f(n, k, d, � − 1) are
polynomials in n. Thus, so is f(n, k, d, �).

Together with Corollary 8 we get that the total number of op-
tions to consider is polynomial, proving the Max-Probability
part of Theorem 6. The proof for the other two problems is
similar.
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4 Heterogenous Agents

The analysis so far assumes that all agents are of the same
type, with identical capabilities. Specifically, the cost of ob-
taining the good at any given site is assumed to be the same
for all agents. However, agents may be of different types and
hence with different capabilities. For example, some agents
may be equipped with a drilling arm, which allows them to
consume less battery power while mining. In this section we
consider such situations of heterogenous agents, and show
that the results can be extended to such settings. Due to lack
of space we do not provide the full proofs here, but only the
core proof directions.

While agents may have different capabilities, in many
cases it is reasonable to assume that if one agent is more ca-
pable than the other at one site, it is also more capable at all
other sites (or at least no less capable). Hence the following
definition:

Definition We say that agents are inconsistent if there exist
budgets B, B′, agents j, j′, and sites i, i′, such that at location
i with budget B

Pr[j can obtain the good] < Pr[j′ can obtain the good]

but at location i′ with budget B′

Pr[j can obtain the good] > Pr[j′ can obtain the good]

Theorem 11 In the no communication setting, if the num-
ber of different costs for each agent is constant, then Max-

Probability and Min-Budgetidentical can be solved in polyno-
mial time with any number of heterogenous agents, provided
that the agents are consistent.

The algorithm is essentially the same dynamic programming
algorithm described in Section 2. The consistency assump-
tion is necessary for lemmata 2 and 3 to remain true.

In the case where agents can communicate, we can do away
with the consistency assumption. Clearly, however, we do
need to assume that upon reaching a site, agents can assess the
cost for obtaining the good for all other agents. Otherwise,
communication would be meaningless as agents would not
know which other agent to call. We obtain:

Theorem 12 In the setting of communicating agents, with a
constant number of agents, and a constant number of different

costs for each agent, Max-Probability, Min-Budgetidentical

and Min-Budgetdistinct can be solved in polynomial time
even with inconsistent heterogenous agents.

The algorithm and proof remain essentially the same as those
for the homogenous agents case.

5 Extending our Results - Discussion

In this paper we focused on the case where the sites are lo-
cated along a path (either closed or a non-closed). There
are many settings where this assumption holds. For exam-
ple, the assumption faithfully captures the setting of perime-
ter patrol applications (see [Williams and Burdick, 2006;

Elmaliach et al., 2008]). Also, as pointed out in the intro-
duction, many coverage algorithms convert their complex en-
vironment into a simple path. However, many physical envi-
ronments may only be represented by a planar graph. [Au-
mann et al., 2008] showed that physical search problems are
NPC even on trees and even with a single agent, but find-
ing heuristic is of practical interest nonetheless. It seems that
the first steps in building such heuristic will be to utilize our
results. For example, one should try to avoid repeated cover-
age as much as possible and to restrict the number of cases
where such coverage is necessary, as we showed in theorem
1. Another idea is to convert the complex graph structure
into a path, where each site on the path represents a region of
strongly-connected nodes on the original graph. Many graphs
which represent real physical environments consist of some
regions with strongly-connected nodes, but few edges con-
nect these regions (for example, cities, which has many roads
inside, but are connected with few highways). A heuristic al-
gorithm for these graphs may use our algorithm to construct
a strategy for the sites along the path, and use an additional
heuristic for visiting the sites inside a region.

We also considered only the case where mining costs are
rounded/estimated to one of a constant number of possible
options. We believe that this assumption is appropriate since
the given input for our problems includes prior probabilistic
knowledge. Usually, this data comes from some sort of esti-
mation so it is reasonable to assume that the number of op-
tions is fixed. Nevertheless, if the number of costs will not be
a constant it can be rounded to a fixed number of costs, which
yields a PTAS (polynomial-time approximation scheme) for
our problems.

We also assumed that the agents are after only one good.
As soon as we allow more than one good that must be ob-
tained, our results do not hold anymore, and it seems that the
problems turn to be in NPC.

6 Conclusions and future work

This paper considers multi-agent physical search with prior
probabilistic knowledge. Each agent is equipped with its own
budget, which is used both for exploration and for fulfilling
the task. We showed that for non-communicating agents there
exists a polynomial algorithm that is suitable for any number
of agents. This result emphasizes the difference between our
model and the shared budget model proposed of [Aumann
et al., 2008] where all problem variants are NP-Complete.
For agents that do communicate, we presented a polynomial
algorithm that works for any fixed number of agents. We also
extended the analysis to heterogenous agents.

There are still many interesting open problems. First and
foremost, the complexity of the problem with a non-constant
number of communicating agents is open. Also, considering
agents with differing travel capabilities would be interesting.
Finally, metric spaces beyond the line remain an open chal-
lenge.
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