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Abstract

Recently, efficient approximation algorithms for
finding Nash equilibria have been developed for
the interesting class of anonymous games, where
a player’s utility does not depend on the identity of
its opponents. In this paper, we tackle the prob-
lem of computing equilibria in such games with
continuous player types, extending the framework
to encompass settings with imperfect information.
In particular, given the existence result for pure
Bayes-Nash equilibiria in these games, we gener-
alise the fictitious play algorithm by developing a
novel procedure for finding a best response strat-
egy, which is specifically designed to deal with con-
tinuous and, therefore, infinite type spaces. We
then combine the best response computation with
the general fictitious play structure to obtain an
equilibrium. To illustrate the power of this ap-
proach, we apply our algorithm to the domain of
simultaneous auctions with continuous private val-
ues and discrete bids, in which the algorithm shows
quick convergence.

1 Introduction

As multiagent systems scale up, an individual’s influence on
the agents’ interactions becomes ever smaller, and the re-
sulting outcome depends on the aggregated actions taken by
groups of agents (players). Now, the formal framework to
model such situations is that of games with a continuum of
players, which are also referred to as large games.1 Typ-
ically, such games are anonymous, that is, the preferences
of a player do not depend on the identities of its opponents.
Rather, they only depend on action distributions over the pop-
ulation and the player’s own action. This, in turn, is related
to the assumption of perfect competition in large economies
and multiagent systems with many participants, where any
single individual has a negligible global effect. Relevant ap-
plications include the Internet, traffic routing and congestion
settings, and auctions and markets.

1The informal intuition behind the terminology is that the num-
ber of players is so large that the set of players is viewed as a con-
tinuous mass, rather than discrete, separable individuals.

Against this background, in this paper we investigate
games with a continuum of anonymous players (CAPs).
Games with a continuum of players were first analysed in a
pioneering paper by Schmeidler (1973) who proved the exis-
tence of pure strategy equilibria in these games. Later, Mas-
Colell (1984), Rath et al. (1995) and Khan et al. (1997)
found an alternative formulation for Schmeidler’s model and
simplified the existence proof. Interestingly, these results are
also applicable to games with a finite set of players with con-
tinuous types, extending the framework to capture games with
imperfect information, e.g. auctions with private evaluations.

However, besides these existence results, there are very
few characterisation results for CAPs in the literature. Blon-
ski (2001) provides necessary and sufficient conditions for
an equilibrium distribution in CAPs with a finite action set.
Daskalakis and Papadimitriou (2007) tackle the problem of
computing Nash equilibria in anonymous games and develop
efficient approximation algorithms for games with a finite set
of players. However, the computation of equilibria in CAPs
remains a relatively uncharted research direction, which is
nevertheless important to the multiagent systems community
because of the generality of CAPs and their relevance to the
abovementioned applications.

To this end, our paper generalises the fictitious play (FP)
algorithm (Brown, 1951), an iterative procedure whose con-
vergence results in an equilibrium. In so doing, we develop
the first FP-based algorithm which is applicable to CAPs. In
particular, we present a novel procedure that efficiently com-
putes a player’s best response against a continuum of anony-
mous opponents, under some weak assumptions on the struc-
ture of the space of the players’ utilities. We then combine
the best response computation with the general FP structure
to obtain an equilibrium.

Building on this, we apply our generalised FP algorithm to
simultaneous auctions (Gerding et al., 2007), where it quickly
converges, producing a pure Bayes-Nash equilibrium. We
choose this particular domain for its practical importance
and theoretical interest, as this domain has been proven to
be resistant to other computational techniques. In more de-
tail, Reeves and Wellman (2004) provided a procedure to ef-
fectively compute best response strategies in two-player envi-
ronments with utilities fully linear in player types and actions.
While allowing both the private value and the action space to
be continuous, the linearity assumption is extremely restric-
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tive, and does not necessarily hold in many settings. In fact,
as we show in this paper, linearity in actions is explicitly vi-
olated in our simultaneous auctions example. Furthermore, it
is shown that the simple iterative best response procedure em-
ployed in (Reeves and Wellman, 2004) to compute the equi-
librium, does not converge in our example domain.

For more complex domains, several approximation algo-
rithms have been developed. For example, Jordan et al.
(2008) formulated computation of a Nash equilibrium as a
search problem and provided an estimation procedure for a
pure equilibrium in games with large strategy spaces. Their
solution, however, is not directly applicable to games with
private information. This shortcoming has been addressed
by the work of Vorobeychik and Wellman (2008) who ex-
tended search based computation to simulation based games.
In their paper, simulated annealing was applied to compute
approximated equilibria in games with private information.
However, their algorithm, together with more amenable as-
sumptions, required domain specific parameter selection and
function design. In contrast, our FP based approach is generic
and domain independent.

The rest of the paper is organised as follows. In Section 2
we formally define the class of games with a continuum of
anonymous players. In Section 3 we present our generalised
fictitious play algorithm for computing equilibria in CAPs.
Section 4 is devoted to our experimental setting of simultane-
ous auctions, and the results are presented in Section 5. We
conclude in Section 6.

2 Continuum of Anonymous Players

Here we formally define the class of CAPs, closely follow-
ing the model of (Mas-Colell, 1984). Let A denote a com-
pact metric space of actions available to each player, and
let M = M(A) denote the space of all probability mea-
sures on A endowed with the weak convergence topology.
The utility of a player is defined by a continuous function
u : A ×M → R, mapping the player’s action and the action
distribution induced by choices of other players into a reward.
The space of all continuous functions of the above form is de-
noted by U and equipped with the supremum norm.

Notice that a player type can be viewed as just an alterna-
tive (symbolic) name for the utility function, since the space
of the former maps into the space of the latter. Following this
intuition, a game with a finite number of players and a distri-
bution over private types can be alternatively defined in terms
of a distribution over the space of utility functions.

Definition 1 A CAP is given by a probability distribution μ
over the space U of continuous functions of the form u :
A × M → R, where M is the space of distributions over
a compact space of actions A. (Mas-Colell, 1984)

Following this line of thought even further, it becomes
convenient to formalise equilibrium in terms of distributions
as well. Namely, an equilibrium τ of a game μ, termed a
Cournot-Nash Equilibrium (CNE), is a distribution over the
space of type-action pairs U ×A, that satisfies the following:

1. τU = μ

2. τ({(u, a)‖u(a, τA) ≥ u(A, τA)}) = 1,

where τU , τA are the marginals of τ on U and A respectively.
The intuition behind this definition is that, given a global dis-
tribution τ , selecting the best action in response to this distri-
bution itself would not change it en masse.

The important result of (Mas-Colell, 1984) is the proof of
existence of a symmetric equilibrium, where each player type
is assigned exactly one action to follow.

Definition 2 A CNE distribution τ for a CAP game μ is sym-
metric if there is a measurable function h : U → A such
that τ({(u, a)|a = h(u)}) = 1. i.e., players with the same
characteristics play the same action. (Mas-Colell, 1984)

The conditions for the existence of symmetric equilibria
are that the game μ is non-atomic, giving zero probability to
any specific player type to appear, and that the action space
is discrete and finite. In the following sections we will adopt
these conditions to simplify the material exposition, but we
note that only the best response calculation requires them ex-
plicitly. Notice also that the existence of a function h makes
this form of Cournot-Nash Equilibrium equivalent to a pure
Bayes-Nash equilibrium of typed games. For the remainder
of the paper we will use these two terms interchangably.

3 Fictitious Play for CAPs

In this section we outline the basics of FP algorithms (Brown,
1951; von Neumann and Brown, 1950) and introduce our
generalised version for CAPs.

In more detail, the standard algorithm consists of com-
puting and applying a best response to a frequency estimate
(termed FP belief) of the opponent’s actions. The underly-
ing assumption of the FP beliefs is that an opponent samples
its actions from some fixed distribution, i.e. opponents are
assumed to play a fixed mixed strategy. Under this assump-
tion, keeping score of the relative appearance frequencies for
different actions provides a good estimate of the opponents’
strategy, and justifies the application of the best response to
the FP belief. The algorithm, however, dictates performing
the belief updates for all agents of the game, with the intuition
that the agents will continually adapt to each other, eventually
arriving at an equilibrium.

The FP algorithm has two types of convergence. First, it
may converge in terms of the strategy, i.e. after a number
of iterations, the best response strategy of each agent may
stabilise. In this case, the collection of the players’ best re-
sponse strategies constitutes a pure Nash Equilibrium. Un-
fortunately, it is quite easy to construct a game where this
best response stabilisation will not occur, which brings us
to the second type of convergence. A game is said to have
the fictitious play property (FPP), if FP beliefs converge (see
e.g. (Monderer and Shapley, 1996)). The set of converged FP
beliefs then constitutes a mixed Nash equilibrium.

However, the standard notion of FP belief does not include
types. This renders the existing FP algorithm inapplicable to
typed games. In what follows, we introduce the necessary
changes (including the relationship between best response
and type) and generalise FP to CAPs.
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3.1 The Generalised FP Algorithm

Before we formally define FP as it relates to CAPs, let us
make some preliminary observations to clarify its structure.

First, the concept of beliefs needs to be generalised. In
the standard FP, a belief maps the identity of the opponent to
an empirical frequency of action appearance. But in CAPs
the opponent identities are represented by their utility func-
tions, furthermore there is a continuum of such utilities. It
then follows that a belief has to map from the space of utility
functions to the space of action frequencies: f : U → M.
Alternatively, the belief can be represented as a distribution
measure τ over the space U × A with the limitation that τU ,
the marginal on U , will coincide with μ, the game itself. Now,
if the beliefs converge, they converge to a CNE, in a simi-
lar fashion to the convergence of the standard FP beliefs to a
Nash equilibrium. Although the resulting CNE is not neces-
sarily symmetric, if the action space is finite, the equilibrium
can be symmetrised (or purified) (see e.g. (Radner and Rosen-
thal, 1982)) giving rise to a pure Bayes-Nash equilibrium.

Second, we need to reconsider the update of beliefs. In-
stead of taking the distributed view of the standard FP com-
putation, in which every player maintains an independent set
of beliefs and performs the update independently, in CAPs
we have to compute the best response to the current beliefs
(distribution) for all types of players and update all beliefs in
the system to incorporate the best response.

We are now ready to introduce the generalised FP algo-
rithm for CAPs (see Figure 1). The algorithm begins by ini-
tialising the beliefs, τ0, to an arbitrary choice of actions per-
formed by the population. For example, players of all types
may select actions uniformly. The algorithm then enters a
loop that continually computes a best response and updates
the beliefs. At iteration t, the best response is computed (line
2) with respect to the population wide distribution of actions
expressed by the marginal distribution, τ t

A, of the belief τ t.
The detailed procedure for computation of the best response
function, h : U → A, is presented in Section 3.2. Once the
response h is obtained, its inherent joint type-action distribu-
tion is calculated (line 3), and the beliefs of the next iteration
τ t+1 absorb it accordingly (line 4), with the standard update
rate of α(t) = t

t+1 . Finally, if the beliefs indicate conver-

gence (lines 5-6), the resulting distribution τ is returned.

Require:

Set iteration count t = 0
Set τ0 = μ ⊗ m for some m ∈ M

1: loop

2: Compute best response function: h : U → A
3: Compute inherent distribution:

τh(u, a) = μ(h−1(a) ∩ u)
4: Update beliefs:

τ t+1 = α(t) ∗ τ t + (1 − α(t)) ∗ τh

5: if (Convergence precision reached) then

6: return τ = τ t+1

7: end if

8: Set t ← t + 1
9: end loop

Figure 1: Generalised FP algorithm for CAPs.

The generic algorithm (Figure 1) can be simplified further
if the domain of the players’ utility functions is taken into

account. Specifically, any u ∈ U has M as its domain, i.e.
the best response is not based on the entire belief, τ t, but
rather on its action space marginal, τ t

A. This allows us to
reduce the supported beliefs from the space of distributions
over U × A to the space M of distributions over actions (see
Figure 2, especially notice the change in line 3).

Require:

Set iteration count t = 0
Set τ0

A = m for some m ∈ M

1: loop

2: Compute best response function: h : U → A
3: Compute the marginal distribution:

τh,A(a) = μ(h−1(a))

4: Update beliefs:

τ
t+1

A
= α(t) ∗ τ t

A + (1 − α(t)) ∗ τh,A

5: if (Convergence precision reached) then

6: return τA = τ
t+1

A

7: end if

8: Set t ← t + 1
9: end loop

Figure 2: Compact version of generalised FP.

We note that the algorithm presented in Figure 1 directly
produces an equilibrium (line 6 returns a complete distribu-
tion), while the compact version (Figure 2) may require an ad-
ditional step (line 6 returns a marginal distribution). In more
detail, if the algorithm converges in strategies, then the sim-
plified update procedure may be used directly to compute the
equilibrium: we simply need to compute the best response,
hA, to the distribution τA, and then CNE is well defined by
τCNE(u, a) = μ(h−1

A (a) ∩ u). If, however, the algorithm
converges in beliefs, then an additional procedure is neces-
sary to lift τA to τCNE . This procedure is similar to the CNE
purification of Radner and Rosenthal (1982) and is based on
the inclusion-exclusion principle. Notice, however, that in
both cases the final outcome is a symmetric CNE.

3.2 Best Response Computation Procedure

Let us now introduce the specific procedure for computing the
best response function h. Although, in general, computing
the best response may be complex, if the dependence of the
player’s utility on its type is analytically simple, an efficient
procedure can be composed. For ease of exposition, we begin
by considering linear utilities; we then proceed and comment
on more general cases.

In this context, the utility is linear in type if there is a func-
tion, ugen : R × A × M → R, such that for all λ ∈ R

the utility function of the player with type λ is given by
ugen(λ, ·, ·) ∈ U , and the utility ugen(λ, a, m) is linear in
λ. Now, if the action space is discrete and finite, then the
optimal utility, as a function of private value, is piecewise lin-
ear. This is since, when computing the best response to the
distribution of actions τA, the latter is considered to be fixed,
and the value of an action, ua, becomes a linear function of
the private value. More specifically, ua(λ) = ugen(λ, a, τA).
The best utility that a player with a given private value λ can
achieve, is then uh(λ) = max

a∈A
ua(λ), i.e. an upper envelope

of a finite set of linear functions, and thus is piecewise linear.
As a result, the best response function, h(λ) =
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arg maxa∈A ua(λ), can be written as a step function. In other
words, it is possible to create a set of distinct intervals I , that
cover the type space, i.e.

⋃
α∈I α = R, and also:

• For any α ∈ I , if λ1, λ2 ∈ α then h(λ1) = h(λ2)

• For any distinct α1, α2 ∈ I , if λ1 ∈ α1, λ2 ∈ α2 then
h(λ1) �= h(λ2)

The set of intervals corresponds to the set of linear segments
of the optimal utility function uh, and the value of the best
response is the action that creates the corresponding segment.
Notice that, although the number of intervals may change
over the course of a FP run, the maximum number of inter-
vals |I| only depends on |A| and the shape of utility functions,
and thus remains boundeded by a constant. In particular, for
linear utility functions |I| is bounded by |A|.

This piece-wise linear representation allows efficient com-
putation of the global action frequency induced by the best
response. Given type distribution, μ, the probability that the
agent will actually have type in α ∈ I is μ(α). Then, if
all players use their best response, the action frequency in-
duced by the group of players is τh,A(a) = μ(Ia), where
Ia =

⋃
α∈I,h(α)=a

α.

In a general setting with non-linear utilities, a similar pro-
cedure can be used. In fact, as long as we can efficiently com-
pute the maximisation envelope of the set of ua(λ) functions
and inverse them to obtain interval division, the specific de-
pendency of ugen(λ, ·, ·) on the player’s type λ is superfluous.
For example, the procedure works equally well for quadratic
ugen, or it would also be applicable for multidimensional type
spaces, as would appear, for instance, in multi-item auctions
(where a player’s type is represented by a vector of values,
one for each item).

4 Simultaneous Auctions

In this section we describe the simultaneous auctions prob-
lem, and show how the algorithm discussed earlier can be
applied to this model. We choose this setting because, to
date, there is no known pure Nash equilibrium solution. Fur-
thermore, related research has shown that simple iterative
approaches do not converge in this domain (Gerding et al.,
2007). At the same time, simultaneous auctions appear in
many practical settings such as online auctions, where typ-
ically many similar goods are being sold at the same time,
and, furthermore, such auctions are an effective way to al-
locate resources between agents and achieve coordination in
multi-agent systems.

4.1 Auctions, CAPs and CNE

Auctions are usually anonymous in the sense that their out-
come does not depend on the identity of the bidders, but only
on the bids themselves. That is, practically any auction is an
anonymous game. In addition, they possess another feature
that is of special interest to us – namely, the fact that the auc-
tioned item has a valuation that is personal and private to each
of the agents. If in a generic anonymous game a player may
know the exact set of utility functions that drive its opponents,
in an auction only an estimate about the private value, and

thus the utility, of other players can be obtained. It is com-
mon to assume that private values of all the players are inde-
pendently sampled from some continuous distribution, which
is known to all auction participants.

Under this assumption, a transformation occurs to the way
a player considers its opponents. They stop being individuals
and become a sample of a utility function’s population, each
appearing with respect to the probability density of the pri-
vate value. As the opponent values are hidden, the agent has
to consider the entire range of possible value assignments. As
a result, even though the factual number of opponents may be
finite, the player’s decision is computed in response to a (vir-
tual) continuum of players formed by the range of possible
private values.

Given this, auctions may be captured using the notation
and terminology of games with a continuum of anonymous
players described earlier. Specifically, the action space, A,
in auction settings is the space of all possible bids a player
can place. Since the setting is anonymous, a utility function
of an agent will have the form u : A × M → R, where M
is the space of distributions over bids placed by the player’s
opponents. In turn, the specific shape of the utility function is
determined by the private value, and the distribution of private
values will shape the game μ, a distribution over the space U .
This observation allows us to apply CNE existence theorems
and our generalised FP algorithm to auctions in a generic way,
almost independently of the specifics of the auction process.

4.2 The Specific Setting

We consider a market consisting of m auctions
A1, A2, . . . , Am, selling a single item each, and n bid-
ders competing in these auctions. The items are complete
substitutes, that is the bidders are indifferent between them
and derive no additional utility from winning more than one
item. A bidder derives a value v from obtaining one or more
items, and these valuations are i.i.d. drawn from a continuous
distribution with cumulative function F and density f .

We assume that the bids are discrete and that the size of the
bid space (i.e., the allowable bids) is finite. For simplicity, we
assume that the bids are equally spaced, and, without loss
of generality, that bids consist of integer values in the range
[0 : k]. In the following, let B = [0 : k] denote the bid space
of a single auction, Bm = [0 : k]m the joint bid space over all
auctions, and b = (b1, b2, . . . , bm) ∈ Bm a bid vector which
specifies a bid for each auction. Furthermore, we assume that
bidder valuations range between (0,v]. Finally, throughout
we assume that bidders are risk neutral.

We focus on second-price sealed bid simultaneous auc-
tions, in which the bidders need to submit all their bids before
the outcome of any auction is observed. Without loss of gen-
erality, we assume that all bidders place bids (possibly zero)
in all auctions. In this setting, a bidding strategy is a function
S : (0,v] → Bm that maps a value into a vector of bids.
Now, in order to calculate a bidder’s expected utility given
its bids and valuation, a bidder requires information about the
actions of other players. However, although the actions are
not known to the bidder, a bidder maintains beliefs about the
bids of others. That is, a bidder maintains the probability that
a certain bid occurs in an auction.
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Notice that in our setting the bids placed in different auc-
tions are correlated, and hence we are required to consider
joint beliefs, i.e. joint probability distributions. We use the
following notation. Let X1, X2, . . . , Xm denote discrete af-
filiated random variables representing the bids placed by a
player, and let P (b) denote their joint distribution. Similarly,
we use Pi(bi) to denote the bid distribution for a single auc-
tion i, and PI(b) the joint distribution of bids in a subset
I ⊆ [A1 : Am] of auctions.

The player’s utility function consists of two parts: the ex-
pected benefits, which is the valuation multiplied by the prob-
ability of winning at least one auction, minus the expected
costs, the latter being the sum of the expected payments for
each individual auction conditional on winning that auction:

U(v,b) = v PW (∪m
i=1Ai|b) −

m∑
i=1

PW (Ai|b)C(Ai|bi),

where PW (·) stands for a probability of winning, and C(·) is
the expected cost paid in case of winning. Note that this cost
only depends on the bid in auction Ai, and not on the bids in
other auctions:

C(Ai|bi) =
1

Pi(bi)n−1

bi∑
x=1

(x−1)[Pi(x)n−1−Pi(x−1)n−1],

where Pi(·)
n−1 stands for the highest order statis-

tics, which, in fact, defines the probability of win-
ning in auction Ai as a function of the bid placed
in the auction.2 Thus, PW (Ai|b) = Pi(bi)

n−1, and
PW (∩i∈IAi|b) = ×Ai∈IPi(bi)

n−1 = PI(b)n−1 is the
probability of winning all of the auctions in subset I . Finally,

PW (∪m
i=1Ai|b) =

m∑
j=1

(−1)
j−1

∑
I⊂[1:m] s.t.|I|=j

PI(b)n−1,

where |I| is the cardinality of I . Clearly, the utility function
is linear in the continuous valuation, v, and our generalised
FP algorithm can be applied directly to this problem.

5 Empirical Evaluation

To demonstrate the effectiveness of the generalised FP algo-
rithm we performed a set of experiments and applied our
algorithm to the simultaneous auctions domain described
above. The success of FP in these experiments is three-
fold. First, the algorithm converged in this non-trivial setting,
which makes it a viable solution to a set of complex auction
domains. Second, the algorithm showed quick convergence,
which makes it an empirically efficient solution, in spite of
its weak theoretical convergence properties. Third, this is the
first time a pure Bayes-Nash equilibrium could be obtained
for simultaneous auctions with continuous private values.

We now proceed and present our experimental setting and
results in more detail. Since the auctions in our setting are

2The tie breaking rule we employ in cases where two or more
players place the same highest bid in an auction, are omitted from
this version of the paper, due to space limitations.

0 10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

Iteration

C
on

ve
rg

en
ce

 E
rr

or

10 agents
15 agents
20 agents

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7
x 10

−3

Iteration

A
ve

ra
ge

 R
eg

re
t

10 agents
15 agents
20 agents

Figure 3: Convergence error (top) and average regret (bot-
tom) for 4 auctions.

identical, many equivalent equilibria may occur, only differ-
ing by the order of the auctions (clearly, in the case of two
auctions, bidding high in one auction and low in the other re-
sults in the same payoff to a player as for doing the reverse).
To eliminate such repetitions, we assume that different play-
ers may have different orderings for the auctions. Thus, for
any individual bidder, it appears as though other players are
placing their bids randomly between the auctions. Anonymis-
ing the auctions in this way, besides eliminating equivalent
equilibria, has the advantage of reducing the action space,
which, in turn, makes the calculation of the best response
more efficient. Namely, without loss of generality, the space
of actions can be replaced by the space of nondecreasing bid
vectors, i.e. vectors in which a bid in auction Ai is greater
than a bid in auction Aj only if i > j.

Furthermore, we assume that the players’ private values for
an auctioned item are uniformly distributed in the [0, 1] inter-
val, and that the bid space is discretised to form 10 distinctive
bid levels. Even though the number of distinct bids seems
to be small, the space of all possible joint bids is very large,

namely Ω
(

|B|m

m!

)
, where m is the number of auctions and

|B| is number of bid levels.

To evaluate the performance of our algorithm, we simu-
late and run the simultaneous auctions domain with a varying
number of auctions and bidders, and measure convergence
of the algorithm using two indicators. First, we measure the
convergence in beliefs, by calculating the convergence error,
CE, which is determined by the infinity norm of the differ-
ence between two consecutive action distribution estimates
τ t
A and τ t+1

A : CE = maxa∈A |τ t+1
A (a)−τ t

A(a)|. If CE < 1
t
,

the algorithm converges in beliefs.

Second, we compute the average regret, where regret is the
difference between the utility obtained by a bidder if every-

249



0 10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

Iteration

C
on

ve
rg

en
ce

 E
rr

or

3 auctions
4 auctions
5 auctions

0 10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

Iteration

A
ve

ra
ge

 R
eg

re
t

3 auctions
4 auctions
5 auctions

Figure 4: Convergence error (top) and average regret (bot-
tom) for 15 bidders.

one is playing the same strategy at time t, and the utility of
a player who ‘deviates’ and plays a best response given the
current beliefs. This difference is then averaged over the en-
tire range of player types to produce the average regret. The
average regret serves as an indicator of the convergence in
strategies (as opposed to the convergence in beliefs).

In more detail, Figures 3 and 4 depict the convergence er-
ror and average regret for a varying number of bidders in 4
simultaneous auctions, and for a varying number of auctions
with 15 bidders, respectively.3 These figures show that the
convergence error drops exponentially fast as the algorithm
proceeds. Furthermore, it converges even faster with respect
to the regret factor.4 We conjecture that the relative speedup
of the regret factor convergence follows from the fact that
similar, though distinct, policies may produce the same re-
gret. As a result, the policy continues to change gradually,
still keeping the beliefs error CE away from zero, while the
regret has already reached low values.

Additional data analysis confirms that the generalised FP
algorithm converges in our setting in the strong sense – that is,
it converges to a best response strategy, and the corresponding
response function h results in a pure Bayes-Nash equilibrium.
Moreover, it confirms and expands upon previous conjectures
(such as Gerding et al. (2008)) on the quality and properties
of equilibria in simultaneous auctions. For instance, rather
than forming completely distinct graphs, bidding strategies
exhibit bifurcation behaviour, holding the same bid value for
large intervals in the private value space.5

3We obtain similar results in other settings.
4The variance of convergence rate across the experimental runs

was below 10
−5.

5We omit the details due to space limitations.

6 Conclusions

In this paper we presented a generic procedure for determin-
ing the best response computation in anonymous games with
continuous player types. Specifically, we constructed a gen-
eralised version of the FP algorithm for this setting. We then
used the fact that CAPs encompass a significant number of
games with private information and applied our generalised
FP algorithm to the setting of simultaneous auctions. The al-
gorithm experimentally showed quick convergence and pro-
vided, for the first time, a pure Bayes-Nash equilibrium solu-
tion for simultaneous auctions with continuous private values.

For the future, we seek to extend this work in the following
directions. First, although we have shown convergence em-
pirically for a specific domain, it remains to be seen whether
it is possible to derive theoretical guarantees for the FP al-
gorithm to converge in the auction domain, or rather that FP
converges generally in CAPs. Our preliminary studies show
that, if types can be grouped based on the best response equiv-
alence, FP may not converge, which suggests that additional
conditions are needed to obtain convergence. Second, we in-
tend to extend our algorithm to capture continuous (and there-
fore, infinite) action spaces.
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