
Eliciting Honest Reputation Feedback in a Markov Setting

Jens Witkowski

Department of Computer Science
Albert-Ludwigs-Universität

Freiburg, Germany
witkowsk@informatik.uni-freiburg.de

Abstract

Recently, online reputation mechanisms have been
proposed that reward agents for honest feedback
about products and services with fixed quality.
Many real-world settings, however, are inherently
dynamic. As an example, consider a web service
that wishes to publish the expected download speed
of a file mirrored on different server sites. In con-
trast to the models of Miller, Resnick and Zeck-
hauser and of Jurca and Faltings, the quality of
the service (e. g., a server’s available bandwidth)
changes over time and future agents are solely in-
terested in the present quality levels. We show
that hidden Markov models (HMM) provide natural
generalizations of these static models and design a
payment scheme that elicits honest reports from the
agents after they have experienced the quality of the
service.

1 Introduction

Online reputation mechanisms are a prominent way to estab-
lish trust and cooperation in anonymous online interactions
[e. g., Dellarocas, 2006]. Signaling reputation mechanisms
applied at opinion forums, in particular, have become a popu-
lar source of information. Customers of products and services
give feedback regarding the quality they experienced and the
publication of this previously undisclosed information allows
future customers to make better-informed decisions. From a
game-theoretic point of view, however, most of these mecha-
nisms are problematic. Two aspects of the feedback part stand
out in particular. The first is under-provision. The customers
are usually required to register an account and fill out forms
describing their experiences. This process is time consum-
ing and rational agents will only invest the effort of giving
feedback when remunerated appropriately. The second issue
is honesty. External interests (i. e. biases towards dishonest
reporting) come from a variety of motivations. Imagine two
companies competing for the same group of customers. Both
have incentives to badmouth their competitor, praise their
own products or pay the rating agents to do so. Moreover,
both positive and negative externalities are wide-spread. That
is, an agent’s utility of a good changes if other agents con-
sume it as well. For example, the utility of an agent using a

voice-over-IP service is higher the more agents she can call
with it. Honest reputation feedback is thus crucial to incor-
porate into the design of the mechanism. This task is difficult
because it is not clear how to decide whether a given feed-
back is honest. In contrast to prediction markets, for exam-
ple, where a publicly observable event eventually materializes
[e. g., Wolfers and Zitzewitz, 2004], the inherent quality of a
good is never revealed. Thus, the designer of the mechanism
has to find other ways to condition the payments.

One solution is provided by Miller, Resnick and Zeck-
hauser [2005] (henceforth, MRZ). They compare the quality
reports of two agents about the same good with one another
and apply strictly proper scoring rules [e. g., Cooke, 1991]
to compute a payment scheme that makes honest reporting a
Nash equilibrium. Jurca and Faltings [2006] (henceforth JF)
study a largely similar setting but use automated mechanism
design [Conitzer and Sandholm, 2002] to compute a budget-
optimal payment scheme. Furthermore, they developed nu-
merous extensions to the base model, such as incorporating
collusion resistance [Jurca and Faltings, 2007].

The mechanisms of MRZ and JF, however, critically de-
pend on the good’s quality to stay fixed, while many real-
world settings are inherently dynamic. Applying the static
mechanisms to dynamic settings is problematic for two rea-
sons: first, the payment scheme is rendered useless if the
agents know about the dynamic nature of the process, as by
watching the type belief updates they can derive the posted
signals and use them to learn the parameters of the process.
Second, the mechanism’s type architecture is only capable of
publishing the average abilities whereas the users are inter-
ested in its present quality.

The rest of the paper is organized as follows. In the next
section we present the setting. Section 3 describes the pro-
posed reputation mechanism that generalizes the fixed archi-
tecture of MRZ and JF to hidden Markov models. Motivated
by the example of Section 4, Section 5 shows how the ac-
quisition of signals can be used to make honest reporting the
unique Nash equilibrium. Section 6 provides experimental
results and Section 7 concludes with an outlook.

2 The Setting

A sequence of agents experiences the same product or service
and its quality (henceforth its type) is drawn out of a finite
set of possible types Θ = {θ1, ... , θ|Θ|}. All agents share a
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common prior belief Pr(θ) that the product is of type θ with∑
θ∈Θ Pr(θ) = 1 and Pr(θ) > 0 for all θ ∈ Θ.
The quality observations by the agents are noisy, so that

after experiencing the product, a buying agent does not know
with certainty the product’s actual type. Instead, she receives
a signal drawn out of a set of signals S = {s1, ... , sM}. Let
Oi denote the signal received by agent i and let f(sm| θ) =
Pr(Oi = sm| θ) be the probability that agent i receives the
signal sm ∈ S given that the product is of type θ ∈ Θ. These
signal emissions again constitute a probability distribution:∑M

m=1 f(sm| θ) = 1 ∀θ ∈ Θ. We assume that different
types generate different conditional signal distributions and
that all f(sm| θ) are common knowledge.

In order to incorporate dynamic settings, we introduce
a common-knowledge transition matrix that models quality
changes as a Markov process (MP). Together with the noisy
perception of the signals, the resulting structure is a discrete-
time hidden Markov model (HMM) with a finite set of states.
We use an extended definition of HMMs and allow both null
transitions and multiple observations. That is, in each time
step t, there can be more than one or no agent receiving a
signal. The transition matrix P is given with the problem
definition and stays the same for all t (i. e. the MP is time-
homogeneous). Given type θi, the probability to go to type
θj in the next time step is Pr(θt+1

j | θt
i). This value is stored

in column i and row j so that P is a so-called left stochastic
matrix (i. e. the columns sum up to 1). Left transition matri-
ces allow for a simple way to determine the probability of the
type vector in a certain time step. We demand that P is re-
versible and that at least two columns are different from each
other.

We will allow the mechanism (henceforth, center) to pay
agents for their feedback and we assume quasilinear utilities.
For example, electronic market sites could give away rebates
on future sales. However, payments are not necessarily mon-
etary as long as agents have utility for them. Let Ci be the
costs reflecting agent i’s time and effort required for the rat-
ing process and let Δi(sj , sh) be the external benefit agent i
could gain by falsely announcing signal sh instead of signal
sj (the one actually received). We assume an upper bound
on C and Δ(sj , sh). This way the center does not require
knowledge on individual agent’s preferences.

3 A Reputation Mechanism for Markov

Settings

The reputation mechanism consists of three parts: the pay-
ment scheme, the reference reporter choice rule and the rule
for publication of updated type beliefs. Before elucidating
on these parts, we describe the general procedure and present
the agents’ options: first, an agent buys or requests a prod-
uct or service. After experiencing its quality, the center asks
the agent for feedback regarding the signal she perceived. As
this information is private to the agent, there are three basic
alternatives: the agent can choose to report the signal actually
received, she can lie (i. e. report some other signal s �= Oi)
or she can not report at all. If the agent has chosen to report
a signal, it is compared to that of another agent r(i), called
the reference reporter. The point in time at which the updated

type beliefs (taking into account the announced signal) are
published depends on the rule that is used to choose an agent’s
reference reporter. With exception of the very first agent who
is rated against her successor, we will rate an agent against her
predecessor. This rule has two advantages: first, the center
can pay the reporting agent right away (again, with exception
of the very first agent) and, second, right after the announce-
ment it can update and publish the type beliefs considering
every signal report but the very last. This quick release of
the updated beliefs is generally important but especially so in
dynamic contexts where information out-dates.

Let ai = (ai
1, . . . , a

i
M ) be the reporting strategy of agent

i, such that she reports signal ai
j ∈ S if she received sj . The

honest strategy is ā = (s1, . . . , sM ), i. e. always reporting
the signal received. As becomes clear from the definition of
the agent strategies, we assume they are independent of both
the product and the time step t. This assumption is reason-
able if the reputation mechanism is located at an intermediary,
such as a booking site. Here, agents can neither lie about the
product nor about the time at which they consumed it since
the center already knows this from the booking data. It is,
however, possible that the good’s consumption is postponed
or brought forward if that benefits the agents in the rating
process. While this has no impact on the truthfulness of the
mechanism, it may result in (arguably small) inefficiencies.
Depending on the application it may be required to construct
an online mechanism and we leave this to future work.

3.1 Probability Computations

The central idea of comparing two signal reports is that know-
ing one of the received signals should tell you something
about the other. This concept is called stochastic relevance.
Definition 1. Random variable Oi is stochastically relevant
for random variable Or(i) iff the distribution of Or(i) condi-
tional on Oi is different for different realizations of Oi.
For the fixed setting, MRZ prove that combinations of Pr(θ)
and f(·|·) that fail stochastic relevance occur with probability
0 (i. e. have Lebesgue measure 0). As P is required to have
at least two columns that are different from each other, this
readily extends to the Markov setting. In fact, the added belief
perturbations give the center more power to avert these com-
binations by using another rating agent which then results in a
different scheme. We thus assume stochastic relevance holds.

Without loss of generality, let r(i) receive her signal at time
t1 while agent i receives her signal at t2. Let st1

k and st2
j

denote the signals received by r(i) and agent i, respectively.
The probability that r(i) received st1

k given i received st2
j is:

g(st1
k | st2

j ) = Pr(Or(i) = st1
k |Oi = st2

j ). (1)

This can be written as:

g(st1
k | st2

j ) =

|Θ|X
l=1

Pr(st1
k | θt1

l ) · Pr(θt1
l | st2

j ). (2)

Pr(st1
k | θt1

l ) can be simplified to f(sk| θl) as the probability
of a signal given a certain type is independent of when it is
received. For reasons of clarity, we slightly abuse the notation
and add superscripts to f(·|·) in following equations.
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Applying Bayes’ Theorem to Eq. 2 we obtain:

Pr(θt1
l | st2

j ) =
Pr(st2

j | θt1
l ) · Pr(θt1

l )

Pr(st2
j )

. (3)

Let
Pr(θ) =

`
Pr(θ1), P r(θ2), . . . , P r(θ|Θ|)

´T (4)
be the vector of prior type probabilities. As we know both
the topology and the parameters of the HMM, calculating the
entire probability vector Pr(θt) is straightforward:

Pr(θt) =
`
Pr(θt

1), . . . , P r(θt
|Θ|)

´T
= P t × Pr(θ) (5)

Please note that in the context of a matrix, the superscript
denotes exponentiation: P t = P × . . . × P︸ ︷︷ ︸

t

.

Using Eq. 5, we obtain the signal probability required for
Eq. 3:

Pr(st2
j ) =

|Θ|X
l=1

f(st2
j | θt2

l ) · Pr(θt2
l ). (6)

The probability that agent i receives signal st2
j given the type

was θt1
l (also required for Eq. 3) can be computed as follows:

Pr(st2
j | θt1

l ) =

|Θ|X
o=1

f(st2
j | θt2

o ) · Pr(θt2
o | θt1

l ). (7)

For the probability of a certain type at time t2 knowing the
type at time t1 we need to distinguish two cases:
• t2 ≥ t1 Here, a minor change of Eq. 5 is sufficient:

Pr(θt2 | θt1
l ) = P t2−t1 × `

0, . . . , θt1
l = 1, . . . , 0

´T
, (8)

i. e. the l-th column of P t2−t1 .
• t2 < t1 From Bayes’ Theorem we know

Pr(θt2
o | θt1

l ) =
Pr(θt1

l | θt2
o ) · Pr(θt2

o )

Pr(θt1
l )

(9)

and Pr(θt1
l | θt2

o ) is analogous to the t2 ≥ t1 case.

3.2 The Payment Scheme

Let τ(ai
j , a

r(i)
k ) be the payment that agent i receives if she an-

nounced ai
j and the reference reporter announced a

r(i)
k . The

expected payment to agent i given her received signal and
given an honest report by r(i) is:

E(ai
j , s

t2
j ) =

MX
k=1

g(st1
k | st2

j ) · τ(ai
j , a

r(i)
k ). (10)

Similar to JF, we formulate the payment scheme as a Linear
Program (LP). Its constraints can be divided into two groups.
The first group consists of the honesty constraints which re-
quire that the honest signal announcement by agent i is the
single best response to an honest report by r(i). For every
possible signal observation Oi = sj ∈ S, there exist M − 1
dishonest announcements ai

j �= āj . Given that the reference
report is honest, we want the expected payment of an hon-
est announcement by agent i to be larger than the expected
payment of any other announcement. More accurately, incor-
porating external lying incentives, we want it to be larger by
a margin greater than Δ(sj , sh):

MX
k=1

g(st1
k | st2

j ) ·τ(sj , sk)−
MX

k=1

g(st1
k | st2

j ) ·τ(sh, sk) > Δ(sj , sh)

∀sj , sh ∈ S, sj �= sh

The second group consist of the participation constraints. An
agent will participate in the rating system if and only if she
is remunerated with at least as much as the rating process
costs her. As the agent’s decision whether to participate in
the rating is taken after experiencing the good (i. e. she knows
her own signal) but without knowing the signals received by
the other agents, interim individual rationality is appropriate
[e. g., Parkes, 2001, p. 34f]:

MX
k=1

g(st1
k | st2

j ) · τ(sj , sk) > C ∀sj ∈ S

In addition, we assume there is no possibility to withdraw
credit from the agents, so that we require that all payments are
non-negative. In order to find an assignment of τ(ai, ar(i))
that minimizes the required budget, the objective function is
the expected payment given a certain signal weighted with the
signal’s prior probability. Summarizing, the payment scheme
formulated as an LP in standard form is:

min
MP

j=1

Pr(st2
j )

„
MP

k=1

g(st1
k | st2

j ) · τ(st2
j , st1

k )

«

s.t.
MP

k=1

g(st1
k | st2

j )
`
τ(st2

j , st1
k ) − τ(st2

h , st1
k )

´
> Δ(st2

j , st2
h )

∀st2
j , st2

h ∈ S, st2
j �= st2

h
MP

k=1

g(st1
k | st2

j ) · τ(st2
j , st1

k ) > C ∀st2
j ∈ S

τ(st2
j , st1

k ) ≥ 0; ∀st2
j , st1

k ∈ S

Please note that the objective function uses the expected pay-
ment of the honest equilibrium since this is what the agents
should play given the honesty constraints.

The payment scheme together with the rater choice rule we
use induces a temporal order of extensive games with imper-
fect information. However, the fact that no agent knows the
reported signal of her reference reporter make them equiva-
lent to 2-player strategic games for which we can prove the
following proposition.
Proposition 1. Reporting honestly is a Nash equilibrium in
every strategic game induced by an update of the type beliefs.

Proof. The proof applies induction over the game order.
The basis: The first game is played by agent 1 and 2: agent 1
is rated against agent 2 and given the latter reports honestly,
the LP’s honesty constraints ensure that the honest report is
a best response. Likewise, given an honest report by the first
agent, the second agent’s best response is reporting honestly.
Inductive step: Assume that reporting honestly is an equi-
librium in the n-th game. In game n + 1, agent n + 2 is rated
against agent n + 1 while the latter’s payoff solely depends
on the outcome of game n. That is, agent n + 1 is indifferent
about the outcome of game n + 1. Since honest reporting is
an equilibrium of game n, agent n + 1’s best response was
playing honestly, so that honest play by agent n + 2 is a best
response. Thus, reporting honestly is a Nash equilibrium of
game n + 1.
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Figure 1: Fixed quality setting with conditional signal probabilities.

3.3 Updating the Type Beliefs

Up to this point, we have constructed a payment scheme that
induces agents to give honest feedback about the signals they
receive. What is supposed to be published, though, are the
present beliefs that the product has a certain type. We publish
the type changes inherent in the MP in every time step using
Equation 5. This is different from publishing information that
is updated using signal observations (hence, conditional up-
dates) for when performing the latter we have to ensure that
the respective observations are no longer required as refer-
ence reports.

As before, let agent n denote the n-th agent to make a sig-
nal announcement. Slightly abusing the notation, let tn and
On denote her time step and signal, respectively. At t1 there
is no conditional belief update as there is no other announce-
ment than that of agent 1 who is still needed as a reference
reporter for agent 2. After announcement of On, however,
we incorporate the signal observation at tn−1 as we no longer
rely on agent n − 1 as a reference reporter. This also means
that every conditional belief update incorporates only a single
observation. Thus, we compute the conditional type update
and “overwrite” the old type priors using Equation 3:

Pr(θ) := Pr(θtn−1 |On−1) ∀θ ∈ Θ

4 A Web Service Example

We present an example application from a computing context.
Imagine a web service that wishes to publish the expected
download speed of a file mirrored on different server sites.
The users of the service have to choose one of these mirrors to
download from. Clearly, this choice determines the download
speed as the mirrors vary in both total bandwidth and work
load. Every user wishes to download from the mirror that is
expected to serve him with highest speed. Unfortunately, this
information is only known to the mirrors and they have no
interest in sharing it truthfully as they receive advertisement
premiums for every access of their site. Users also have to
enter a CAPTCHA before downloading which makes it costly
for both the operator of the web service and the users to test
the present speed of all mirrors beforehand.

Therefore, a reputation mechanism is located at the web
service. By logging the user requests, the center can identify
both when the download began and which mirror was cho-
sen. The number of users that are directed to the servers by

Bl Bh Gl Gh
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0.15

0.4

0.1

l

h

0.95

0.15 0.9

0.1

0.05

0.85 0.1

0.9

Figure 2: The dynamic setting allows the underlying types to change
over time. For reasons of clarity, the loops are left out.

Agent i

r(i)
l h

l 1 0
h 0 0.63

Fixed

Agent i

r(i)
l h

l 0.17 0
h 0 0.14

Markov

Figure 3: The payment schemes of both settings at t2 = 0 with C
and Δ(sj , sh) (h �= j) set to 0.1.

the web service is small compared to the servers’ total num-
ber of users, so that the impact of the web service’s agents on
the servers’ behavior is negligible. Furthermore, we assume
that the servers are programmed to serve at their highest pos-
sible speed given their bandwidth and work load. That is, the
servers’ behavior is entirely stochastic.

Let us first consider the example of Figure 1. There are
only two possible types, a good type G and a bad type B.
Furthermore, there are only two possible signals, namely a
high signal h and a low signal l. Types and signals corre-
spond to the servers’ total and load-dependent bandwidths,
respectively. The prior type probabilities are Pr(G) = 0.7
and Pr(B) = 0.3. All other probabilities are depicted.

The fixed setting is very noisy as the dynamics of the work
load cannot be expressed properly. Alternatively, we can
model the servers as the hidden Markov model depicted in
Figure 2. The prior type probabilities are Pr(Bl) = 0.18,
Pr(Bh) = 0.12, Pr(Gl) = 0.14 and Pr(Gh) = 0.56. As
a server may not distribute its bandwidth entirely equally,
it is still possible to receive a high signal given a bad state
and vice versa. The parameters of this dynamic setting are
chosen such that they yield the same prior signal distribution
as the fixed setting of Figure 1, namely Pr(l) = 0.371 and
Pr(h) = 0.629 (please note that the similar values given in
Figure 1 are the conditional signal probabilities). Nonethe-
less, the computed payment schemes for t2 = 0 are different
(see Figure 3). The expected payments are 0.43 and 0.13 for
the fixed and dynamic setting, respectively. Figure 4 shows
that with larger t2 the expected budget of the dynamic scheme
converges to the budget of the fixed setting from below. Thus,
with introduction of the Markov setting we can both gain ex-
pressiveness and further lower the required budget.
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Figure 4: Expected budget for the fixed and dynamic setting.

5 Acquisition of Costly Signals

A drawback of the payment scheme from Section 3 is that
the honest equilibrium is not unique. In fact, it can even be
Pareto-dominated by a lying equilibrium (compare Figure 3).
Unfortunately, as long as the mechanism solely depends on
announcements by selfish agents, multiple equilibria are es-
sentially unavoidable [Jurca and Faltings, 2005]. Depending
on the setting, however, it can be possible for the center to
acquire a costly signal himself. Take the web service exam-
ple: clearly, the costs involved in a signal acquisition by the
operator are higher than the reporting costs of an agent. After
all, that is why we propose to use a reputation mechanism.
Yet, while it is too costly for the operator to learn the speed
of each server before every download, it might be affordable
to acquire some signals that can then be used as reference re-
ports. In fact, we will see that acquiring a single signal is
sufficient to make honest reporting the unique Nash equilib-
rium in every game induced by a type belief update.

The naı̈ve approach is to acquire a new signal for every
agent, rate her against it and update the type beliefs. This
is, however, very costly. A cheaper approach is to utilize an
acquired signal similar to the publicly observable event in a
prediction market: the center commits to an acquisition at
time t and rates every agent up to this point against it. Yet,
thereafter, the center has to acquire another signal as the types
continue to change. Highlighting the importance of the ref-
erence reporter choice rule, we propose to acquire a signal
before any agent announcement, rate the first agent against it
and every subsequent agent against her predecessor. This also
allows us to drop the assumption that P is reversible.

Proposition 2. The acquisition of the first signal is sufficient
to make honest reporting the unique Nash equilibrium of ev-
ery strategic game induced by an update of the type beliefs.

Proof. The proof is similar to that of Proposition 1 and also
applies induction over the game order.
The basis: The first game is now played by the center and
agent 1. Agent 1 is rated against the acquired signal which is
honest by definition. The honesty constraints ensure that hon-
est reporting is the single best response and thus that honest
reporting is the unique Nash equilibrium.

M time (in ms)

2 2.36
4 3.20
6 5.94
8 10.06

10 17.36

M time (in ms)

12 28.47
14 44.14
16 68.89
18 100.94
20 137.64

Table 1: Average CPU time for computation of the payment scheme
with different values of M .

The inductive step is the same as in Proposition 1 except that
game n is assumed to have a unique equilibrium and that in
game n + 1, agent n + 1 is rated against agent n.

Please note that it is also possible to rate every agent against
the acquired signal directly. This would, however, bring about
three other problems: first, it is harder to keep a single signal
undisclosed if every agent learns it. Second, even myopic
agents cannot be allowed to participate again while our pro-
posed choice rule only prohibits successive ratings. Third, the
required budget usually grows with the number of time steps
that lie in between the two raters (compare next section).

6 Experimental results

If not stated otherwise, the parameters for the experiments are
created as described in Appendix A.

6.1 Running Time

There are polynomial algorithms for solving LPs. In prac-
tice, however, the Simplex method with exponential worst-
case running time usually performs better. Thus, in order to
determine whether the reputation mechanism is feasible for
real-world settings, we empirically evaluate it on a custom-
ary computer with a 1.6 GHz CPU.

Let Δ(t) denote |t2 − t1|. Table 1 shows the CPU time
that is required for computation of the payment scheme for
Δ(t) = 0 and different values of M . The running time that
comes with the MP is depicted in Figure 5. In addition to
Δ(t), the runtime also grows with M . This is due to the ma-
trix exponentiation algorithm we use whose running time is
O(|Θ|3 · log t). For larger Δ(t), the factor |Θ|3 = M3 gets
more influence although only multiplied by log t. Yet, values
of Δ(t) should rarely be higher than 10 so that the slowdown
will make up less than 3% even for settings with large sig-
nal set. Taking into account the low numbers of Table 1, we
believe computational complexity is not a limiting factor for
application.

6.2 Expected Budget

In the example of Section 4 the fixed setting requires a higher
budget than an equivalent dynamic setting. Hidden Markov
models, however, are more expressive. In particular, it is pos-
sible that every type can be reached from every other type.
Figure 6 shows the expected costs for different values of
stochastic movement inherent in the fully connected P of the
random setting. The more time passes between the two rat-
ings and the larger ε, the higher are the center’s costs. Note
that this is inherent in the setting as both factors lead to more
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type perturbations through the MP. For larger Δ(t) the prob-
ability of a certain type at t2 conditional on the types at t1
becomes more alike as the MP converges to a stationary dis-
tribution and so do the signal posteriors g(st1

k | st2
j ). As these

make up the coefficients of the LP, the solver needs larger τ
to separate the honest from the dishonest announcements.

7 Conclusions and Future Work

We have presented a reputation mechanism that elicits hon-
est feedback in a Markov setting and requires a lower bud-
get than the equivalent fixed setting. When solely relying on
the announcements of selfish agents, multiple equilibria are
unavoidable. We have shown how in settings where costly
signals can be acquired, the acquisition of a single signal is
sufficient to make honest reporting the unique Nash equilib-
rium of every induced game.

A limitation of the setting we studied, however, is the high
amount of common knowledge. We believe it is an interesting
question under which circumstances it is possible to truthfully
elicit the signal observations and also use them to learn the
probabilistic parameters. For restricted settings such as the
example setting of Section 4 this should be possible: using

the fixed payment scheme, one can elicit the first k agents’
signals and subsequently expand the model to the equivalent
dynamic setting. With the structure and the prior beliefs for
the ground types known, one could then learn the parameters
with the Baum-Welch algorithm. The choice of k depends
on the trade-off between budget and robustness. Please note
that we only need to ensure that the center’s model is better
than that of future reporting agents which is further supported
by only publishing the expected quality (e. g., the expected
speed) instead of the entire distribution.
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A Random Setting

Every type corresponds to a signal, i. e. M = |Θ|. The default
is M = 5. All f(sm|θl) are set according to the rule:

f(sm|θl) =

(
1 − ε m = l

ε/(M − 1) m �= l

P is generated analogously:

Pr(θt+1
j | θt

i) =

(
1 − ε j = i

ε/(|Θ| − 1) j �= i

The default is ε = 10%. The type vector at t = 0 is uniformly
distributed and we set t1 = 0 with t2 ≥ t1. All Δ(sj , sh)
(h �= j) are set to 0.15, C is set to 0.1 and we average over
1000 randomly generated settings.
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