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Abstract

Decomposition is an effective technique for solving
discrete Constraint Optimization Problems (COPs)
with low tree-width. On problems with high tree-
width, however, existing decomposition algorithms
offer little advantage over branch and bound search
(B&B). In this paper we propose a method for ex-
ploiting decomposition on problems with high tree-
width. Our technique involves modifying B&B to
detect and exploit decomposition on a selected sub-
set of the problem’s objectives. Decompositions
over this subset, generated during search, are ex-
ploited to compute tighter bounds allowing B&B
to prune more of its search space. We present
a heuristic for selecting an appropriate subset of
objectives—one that readily decomposes during
search and yet can still provide good bounds. We
demonstrate empirically that our approach can sig-
nificantly improve B&B’s performance and outper-
form standard decomposition algorithms on a vari-
ety of high tree-width problems.

1 Introduction

In this paper, we develop a technique for exploiting decompo-
sition in discrete Constraint Optimization Problems (COPs)
when the problems instances have high tree-width. In par-
ticular, we examine COPs whose objective function can be
expressed as a sum of sub-objectives.

Exploiting decomposition can reduce the worst case time

complexity of search algorithms for COPs from 2O(n) to

nO(1)2O(w) where n is the number of variables and w is the
tree-width of the constraint graph generated by the objectives
[Darwiche, 2001; Bacchus et al., 2009]. Algorithms such
as AND-OR search, OR-Decomposition, and BTD have all
successfully exploited the theoretical benefits of decomposi-
tion in COPs to obtain significant performance improvements
[Marinescu and Dechter, 2005; Kitching and Bacchus, 2008;
de Givry et al., 2006]. Unfortunately, all of these approaches
rely on problem instances with low tree-width. On problems
with high tree-width the theoretical advantages of decompo-
sition erode, and its practical advantages over ordinary branch
and bound search fade.

Here we demonstrate how bounds can be computed from
a selected subset of the problem’s objectives, and used by
branch and bound search to prune its search space. We de-
velop an algorithmic technique that can exploit decomposi-
tion over the selected subset of objectives to enable efficient
computation of these bounds without interfering with and
without imposing a large computation overhead on the nor-
mal operation of the branch and bound search. Because we
are selecting a subset of the objectives, we can obtain effec-
tive dynamic decompositions over this subset during search
even though the complete problem does not decompose due
to its high tree-width.

Unlike previous techniques for computing bounds from a
simplified version of the problem [Dechter and Rish, 1998;
Choi et al., 2007], our method imposes only a small addi-
tional computational burden on the branch and bound search
even when dynamic variable orderings are utilized. Since
dynamic variable orderings are very effective in branch and
bound search, this is a significant advantage over previous
techniques which generally were only effective with static
variable orderings [Marinescu and Dechter, 2004].

In this paper, we first review branch and bound search as
well as state-of-the-art decomposition techniques. A new al-
gorithm is then presented that increases the quality of bound
information during branch and bound search by exploiting
decompositions found in a subset of objectives of the original
COP. A greedy algorithm for selecting an appropriate subset
of the objectives is then offered, and we conclude with em-
pirical results demonstrating the potential of the approach.

2 Background

A discrete Constraint Optimization Problem (COP), P , is
specified by a tuple 〈Vars ,Dom,Obj 〉, where Vars is a set of
variables, for each V ∈ Vars , Dom [V ] is the finite domain of
V , and Obj is an objective function that maps every complete
assignment to Vars to a cost. An optimal solution of P is a
complete set of assignments to Vars that minimizes Obj .

The techniques discussed in this paper are effective on
COPs whose objective function Obj is expressed as a sum
of (sub) objectives oi, such that: (1) each oi is dependent on
a set of variables scope(oi) ⊆ Vars; (2) each oi maps assign-
ments to the variables in scope(oi) to a real value; and (3) on
any complete assignment A to Vars: Obj (A) =

∑
i
oi(A).

Note that hard constraints can be expressed in this framework
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as objectives that map satisfying assignments to 0 and violat-
ing assignments to ∞.

During search, assignments to variables will be made. Let
A be any set of assignments to a subset of Vars: varsOf (A)
is the set of variables assigned by A; cost(A,P) is the sum of
the costs of all objectives in the COP P that are fully instan-
tiated by A; and mincost(P) is the minimum cost(A∗,P)
over all complete assignments A∗ to Vars (i.e., the optimal
objective value for P).

We use GUB to represent a known upper bound on
mincost(P). Starting with a known upper bound, GUB is up-
dated during search as better complete assignments are found.

A set of assignments, A, reduces the original COP P to
a smaller COP P|A, whose variables (P|A.Vars) are the
variables unassigned by A and whose objectives (P|A.Objs)
are the original objectives with all assigned variables in their
scope fixed to the values specified in A. For any set of assign-
ments A, cost(A,P) + mincost(P|A) is the minimal cost
that can be achieved by any extension of A on the COP P .
Thus A can be rejected during search if a lower bound on
cost(A,P) + mincost(P|A) fails to be lower than the value
of the currently best known complete assignment: no exten-
sion of A can yield a better value.

COP solvers typically employ a bounding function to com-
pute a lower bound on mincost(P|A). Since cost(A,P) is
easily to compute, the bounding function allows branch and
bound to backtrack away from partial assignments A during
search by detecting that no extension of A can yield an op-
timal solution to the problem. The function getBound(P)
returns a valid lower bound for a problem P , and is ap-
plied to P|A during search. This bounding function can be
any admissible bounding function such as soft arc consis-
tency, mini-buckets, or linear relaxation [Cooper et al., 2007;
Dechter, 1997; Hooker, 2009].

The techniques offered in this paper are applicable to prob-
lems with high tree-width, which for our purposes we define
to be problems with induced width greater than |Vars|/2.
The results offered in the experimental section illustrate that
when the tree-width of a COP is near |Vars |, the techniques
described in this paper offer considerable advantages over
branch and bound and and over standard decomposition tech-
niques. As the tree-width decreases, however, the advan-
tages of our approach over standard decomposition algo-
rithms erode.

Branch and Bound is a standard technique for solving COPs
using backtracking search (Algorithm 1). It works by build-
ing up partial variable assignments in a depth-first manner
while using bounding to prune the search space. As a pre-
processing step, a GUB ≥ mincost(P) is found for the prob-
lem P . Each recursion takes as input a set of assignments A
and the reduction of the original COP by A (Pcur = P|A).
Initially, the algorithm is invoked on the empty set of assign-
ments and the original problem P .

If the current set of assignments, A, makes it impossible to
find a better solution (line 3) the algorithm returns. If there
are no variables remaining in Pcur.Vars, then search is at a
leaf node and Algorithm 1 can update GUB and return. Oth-
erwise, A can be extended by choosing some variable and
trying each of its values using a recursion on the augmented

Algorithm 1: Branch and Bound

BB
`
A,Pcur)1

begin2

if
`
getBound (Pcur) + cost(A,P)

´
≥ GUB then3

return4

if
`
|Pcur.Vars | = 0) then5

GUB = cost(A,P); return6

choose (a variable V ∈ Pcur.Vars)7

foreach d ∈ Dom[V ] do8

BB(A∪ {V = d}, Pcur|V =d)9

end10

set of assignments A ∪ {V = d} and the reduced problem
Pcur|V =d. The recursion will either return with GUB un-
changed or updated dependent on whether or not a better so-
lution was found. Note that every time GUB is updated, the
algorithm can also record the complete assignment responsi-
ble for the new best value (line 6). The last recorded complete
assignment will be a solution to the problem.

Branch and Bound with Decomposition: For problems
with low tree-width, decomposition is an effective technique
for reducing the search space. One approach that exploits
decomposition is AND-OR search [Marinescu and Dechter,
2005], where variables are assigned until the reduced prob-
lem splits into disjoint components. When the reduced prob-
lem splits into components, each component is solved with an
independently recursive call, and the resulting solutions com-
bined. Updated lower and upper bounds of components are
calculated based on the exploration of the components, and
can be cached and reused later in search.

It is important to note that AND-OR search does not ex-
plore a standard backtracking search tree like that explored
by Branch and Bound. AND-OR search is a mixture of back-
tracking and divide and conquer: it searches in the space of
partial variable assignments like backtracking and exploits
decomposition by solving each component in a separate com-
putation like divide and conquer.

OR-Decomposition is an alternate algorithm for exploiting
decomposition in COPs [Kitching and Bacchus, 2008]. It ex-
ploits decomposition while searching a standard backtracking
search tree, using the caching techniques of [Bacchus et al.,
2009] rather than separate recursions to obtain the computa-
tional advantages of decompositions. In the terminology of
[Marinescu and Dechter, 2005] it explores a standard OR tree
rather than an AND-OR tree. The algorithm maintains and
updates bounds information for the components it encounters
during search in its cache, and exploits these bounds to prune
the search space. As with AND-OR search, these bounds can
be reused later in the search.

3 Decomposition Bounding

Unfortunately, if a problem has high tree-width, the problem
will not split into disjoint components until search has de-
scended far down the search tree. For example, if the problem
has a (sub) objective whose scope includes all of the variables
(e.g., a global constraint) then it will never split into disjoint
components during search. Hence, both AND-OR search and
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Algorithm 2: Decomposition Bounding

DB (A,Pcur,K, C)1

begin2

BO = getBound(Pcur) + cost(A,P)3

BD = cost(A,P) +
P

κ∈K
κ.lb + getBound(C)4

if (BO ≥ GUB ∨ BD ≥ GUB) then5

return6

if
`
|Pcur.Vars | = 0) then7

GUB = cost(A,P); return8

choose (a variable V ∈ Pcur.Vars)9

τ = the component in K such that V ∈ τ.Vars10

foreach d ∈ τ.Dom[V ] do11

Δd = cost(V = d, τ )12

Kd = toComponents(τ |V =d)13

foreach κd ∈ Kd do14

κd.lb = MAX
`
getBound(κd), getCache(κd)

´
15

DB(A∪ {V =d},Pcur|V =d,K− τ ∪ Kd, C|V =d)16

lbd =
P

κd∈Kd κd.lb + Δd
17

τ.lb = MAX
`
τ.lb, MINd∈Dom[V ] lbd)18

setCache(τ.lb)19

end20

OR-decomposition have limited value on problems with high
tree-width (this is also true for the related technique of BTD
[de Givry et al., 2006]).

The key contribution of this paper is to demonstrate how
decomposition can be exploited on problems with high tree-
width to efficiently compute useful bounds. The method
employs a standard branch and bound search while simul-
taneously using the techniques of OR-Decomposition to ex-
ploit decompositions. Unlike OR-Decomposition, however,
the algorithm does not look for decompositions of the entire
problem—on problems of high tree-width these occur infre-
quently. Rather it selects a subset of the problem’s objec-
tives and looks for decompositions over this subset. Decom-
positions of this subset are exploited so as to more efficiently
compute bounds from this subset of objectives. These bounds
can then be used by the overall branch and bound search to
more effectively prune its search space. Our approach ex-
ploits the fact that OR-Decomposition operates on a standard
backtracking search tree. Thus it can function without inter-
fering with the branch and bound search.

Our new algorithm, Decomposition Bounding (DB) is
shown in Algorithm 2. We perform some preprocessing on
the original problem P before invoking DB. First, we split P
into two subproblems: let PD be the decomposable subprob-
lem where PD.Vars and PD.Dom remain unchanged from
the original problem, but PD.Obj ⊆ P .Obj is a selected
subset of the original objectives (we discuss how this subset
is chosen in the next section). The second subproblem, PC

is the complement of PD where PC .Vars and PC .Dom re-
main unchanged from the original problem, and PC .Obj =
P .Obj − PD.Obj , i.e., the remaining objectives.

Second, we break PD into a set of components, K. This
can be efficiently accomplished by a connected components
computation on PD’s constraint graph [Kitching and Bac-
chus, 2008]. In Algorithm 2, the function toComponents

performs such a computation. For each component τ ∈ K we
then compute a valid lower bound using our bounding func-
tion getBound(τ), and store this lower bound in the field τ.lb.

The algorithm takes the following parameters as input;
The current assignment A; the current problem Pcur (P|A),
the current decomposable subproblem maintained as a set of
components K (equivalent to toComponents(PD|A)), and
the current complementary problem C (PC |A). Initially DB is
invoked with an empty set of assignments, the original prob-
lem P , the decomposable subproblem broken up into compo-
nents K, and the complement subproblem PC .

DB operates much like branch and bound: it returns if GUB

cannot be beat (line 5), and it updates GUB and returns if there
are no remaining uninstantiated variables (line 8). Otherwise
it selects some unassigned variable and calls itself recursively
on each possible assignment to that variable (lines 9, 11, and
16). (Ignore for now the modifications to the last two argu-
ments of DB in the recursive call).

The difference between DB and branch and bound lies
in the additional bounds test BD ≥ GUB (line 5), where
BD = cost(A,P) +

∑
κ∈K

κ.lb + getBound(C). To un-
derstand this test note that A can be rejected if any lower
bound on cost(A,P) + mincost(PD|A) + mincost(PC |A)
fails to be lower than the value of the currently best known
complete assignment: a lower bound on this sum is also a
lower bound on cost(A,P) + mincost(P|A), the minimal
cost that can be achieved for P by any extension of A. In par-
ticular, mincost(PD|A)+mincost(PC |A) ≤ mincost(P|A)
since a lower cost can be achieved by optimizing the objec-
tives ofPD|A andPC |A independently of each other. Clearly
getBound(C) = getBound(PC |A) ≤ mincost(PC |A),
and since K is PD|A broken into independent components,∑

κ∈K
κ.lb ≤ mincost(PD|A).

The bound BD ≥ GUB is made effective by the use of de-
composition to compute and cache good bounds on the vari-
ous components in K that are encountered during search. This
computation of good bounds “goes along for the ride” dur-
ing the branch and bound search. Whenever the assignment
V = d is made by the search, the component τ ∈ K contain-
ing V is reduced. (Note that since the variables of PD are
the same as P there is always a component τ ∈ K containing
the chosen variable.) The assignment generates an immedi-
ate cost Δd for τ determined by the objectives of τ it fully
instantiates, and it also reduces τ into a set of components

Kd. Thus lbd = Δd +
∑

κd∈Kd κd.lb (line 17) is a lower
bound on the value that τ can achieve given that V = d.
Since V must have be assigned some value, the optimal value

mincost(τ) is lower bounded by the minimum lbd taken over
all d ∈ Dom[V ]. Note that the lower bound τ.lb is also a
valid lower bound, thus the tightest lower bound on τ ’s value
is the maximum of these two bounds (line 18).

Typically, the minimum of lbd will be the tighter of these
two bounds, as it is derived from more information: i.e., from
trying the various values of the variable V and examining the
components that τ decomposes into under these assignments
(however, in the case where τ.lb was retrieved from a cache
lookup, it is possible for τ.lb to be the tighter bound). Further-
more, since the components τ decomposes into are passed to
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the recursive call by unioning Kd into K (line 16) their lower
bounds might be further refined in the search of the subtree

below making the lbd values even more informative. It should
also be noted that the other components of K are also passed
to the recursive call. Their lower bounds can also be improved
by the search below, and since they are independent of V ’s
value, these improved bounds can serve to prune the search
required when testing the subsequent values of V .

Finally DB also caches the computed component lower
bounds (line 19), and when new components are generated
it checks the cache to determine if it contains a tighter lower
bound for those components (line 15). Since the decompos-
able subproblem PD is constructed so that it has low tree-
width (see the next section), it is frequently the case that the
same component can be generated many times during search.
Thus caching improves DB’s performance.

It can be seen that the core branch and bound search is not
affected by the extra bound computations, except beneficially
when the extra bounds can be used to prune its search space.
In particular, the search is still free to choose the next variable
(line 9) in any way it wants, including utilizing dynamic vari-
able orderings, and to iterate over the values of that variable
(line 11) in any order it wants.

It should also be noted that our technique of using decom-
position to compute these extra bounds imposes very little
additional overhead to the branch and bound search. The
overhead mainly comes from the cache lookup on line 15 and
from computing the new components of τ |V =d on line 13.
Furthermore, the templating techniques described in [Kitch-
ing and Bacchus, 2007] that, e.g., allowing low cost compo-
nent detection via watched variables, can be used to signifi-
cantly reduce these overheads.

Finally, note that the components found in D are generally
not components of Pcur since D contains only a subset of the
objectives of Pcur. Hence there is no obvious way of using
the separate recursions of AND-OR search to exploit the de-
compositions of D in a way that has a similar low overhead
to the solving of Pcur.

Value pruning is an important technique used by many
bounding techniques. During search, values can be pruned
if it can be inferred that the value cannot lead to a better so-
lution given the current partial assignment. In Algorithm 2,
value prunings can be shared between the various subprob-
lems; for example, suppose Algorithm 2 branches on variable
V , and from D it can be inferred that d ∈ Dom [V ′], V ′ 
= V
cannot be extended to a better solution. That is, the assign-
ment V ′ = d would cause BD to exceed GUB. In this case, d
is removed from D.Dom[V ′], but it can also be removed from
Pcur.Dom[V ′], which may allow Pcur to make additional in-
ferences and value prunings. The one exception is that values
in D cannot be pruned due to value prunings inferred by Pcur

or C. This is because D must build valid lower bounds based
only on the objectives of D.Obj in order to cache and reuse
these bounds. This is why DB tests all values of τ.Dom [V ]
rather than only the values Pcur.Dom [V ] at line 11.

Although DB can only decrease the number of nodes
branch and bound must search, it does require extra work be
performed at each node. As mentioned above, it must do ex-

tra work to detect components to store and look up the ca-
che. In addition, DB requires calls to getBound on C and
on the components of D. However, this overhead can be
reduced by using weaker, cheaper, getBound functions on
these subproblems. In particular, since the quality of bounds
found for D are derived largely from decomposition during
the search, a cheaper getBound function can be used on
the components of D. For example, when soft local consis-
tency is used to calculate bounds, DB can use the effective
but costly FDAC [Larrosa and Schiex, 2003] algorithm when
calling getBound(Pcur), but use the much faster but weaker
forward checking algorithm for getBound on C and on the
components of D.

Mini-Buckets. The technique of relaxing a COP in order to
better exploit decomposition has been employed in previous
work. Mini-bucket elimination and variable splitting are two
such techniques [Dechter and Rish, 1998; Choi et al., 2007].
Both of these approaches use exact inference on a relaxation
of the original problem to obtain bounds that can be used dur-
ing search in a manner similar to the bounds generated by DB.

There are, however, two main differences with the ap-
proach we present here. The first, and more minor difference,
lies in the way the relaxation is generated. DB relaxes its
problem by ignoring some of the problem’s objectives. This
technique can thus be used with problems containing objec-
tives of high arity (by simply ignoring such objectives). The
mini-bucket technique does not ignore any objectives, thus it
will not be effective when, e.g., the problem contains a con-
straint over all of its variables. Nevertheless, this difference is
relatively minor since the mini-buckets technique can easily
be adapted to similarly ignore some of problem’s objectives.

The more significant difference lies in the overhead our
technique imposes during search, especially when dynamic
variable orderings are employed. Mini-buckets and variable
splitting both employ exact inference on the relaxed problem.
Although this is cheaper than exact inference on the origi-
nal problem, it can still imposes a significant overhead when
employed at every node of the search. If a static variable or-
dering is used all of the computation can be performed as a
preprocessing step. However, when dynamic variable order-
ings are used the computation must be done during search at
the nodes of the search space. The overhead of doing this
computation becomes excessive and can result in a large in-
crease in the running time of the algorithm [Marinescu and
Dechter, 2004].

In contrast, rather than invoking a separate computation
on the relaxed problem, DB obtains most of its information
about the relaxed problem from the search that branch and
bound is already employing. Generally it does not solve the
relaxed problem exactly, but rather computes bounds on the
relaxed problem. The quality of these bounds depends en-
tirely on the search space traversed by branch and bound—it
can “go along for the ride” or it can try to guide the search
so as to produce better bounds. Hence, in one sense, DB is
performing approximate inference on the approximate prob-
lem. In a deeper sense, however, modulo the computations
performed when it invokes getBound on the relaxed prob-
lem, it is not actually performing inference on the approxi-
mate problem at all. Rather, it is simply accumulating infor-
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Algorithm 3: Create the Decomposible Problem PD

Create Decomposible Problem (P)1

begin2

Objs = P .Objs - HighArityObjectives3

SortedObjs = sort(Objs)4

NumberObjs = λ ∗ |P .Vars | ∗ log2(|P .Vars |)5

for (objectives = 0; objectives < NumberObjs) do6

PD.Objs = PD.Objs ∪ SortedObjs [objectives ]7

TreeDec = FindTreeDecomposition(PD .Objs)8

PD.Objs = PD.Objs ∪ AddObjs(TreeDec,Objs)9

end10

mation from the search branch and bound is already perform-
ing. This makes its overhead much more manageable when
dynamic variable ordering is used.

4 Finding Decomposition Subsets

DB exploits decompositions found in a decomposable sub-
problem PD. Intuitively, PD should have a low tree-width,
allowing ready decomposition, but still support the genera-
tion of effective bounds. To generate effective bounds PD

should include objectives of high cost. We propose an al-
gorithm which greedily selects objectives of high cost to be
included in PD.Objs .

The cost added by an objective depends on the values as-
signed to the variables in its scope. So we estimate an objec-
tive’s cost by computing its expected cost. For an objective,
o, let T be the set of all possible assignments to the vari-
ables in scope(o). Then E(o) =

(∑
α∈T

o(α)
)
/|T | is the

expected cost of o. (That is, the average cost added by o
over all possible instantiations of its variables). If the size
of scope(o) makes this computation intractable, E(o) can
be estimated in other ways.1 For a set of objectives define
E(O) =

∑
o∈O

E(o).
Given a problem with n = |P .Vars| variables, Algo-

rithm 3 selects a number of objectives (NumberObjs) with
the goal that the primal graph defined by these objectives
is decomposable, yet is dense enough to give meaningful
bounds. We found that by setting NumberObjs to be λ ∗
n log2(n), with λ ≈ 0.4, the resulting constraint graphs for
our problem sets have low tree-width but high enough ex-
pected cost to produce meaningful bounds. Hence in our ex-
periments we set λ = 0.4.

Algorithm 3 first eliminates high arity objectives from P
(those objectives with arity greater than n ∗λ), and then sorts
the remaining objectives from highest expected cost to low-
est expected cost. The NumberObjs highest cost objectives
are then added to PD.Obj . Next a tree-decomposition based
on PD.Obj is computed (different options exist for comput-
ing reasonably good tree-decompositions). Finally, additional
objectives are added to PD.Obj if their inclusion would not
violate the calculated tree-decomposition (e.g., all unary ob-
jectives are added to PD.Obj ).

1Typically, objectives with large scope have some other structure
that allows them to be represented compactly. That structure can be
exploited to estimate the expected cost.

Figure 1: CELAR6-SUB1 Problem

For example, Figure1 a) represents the primal graph of one
of the RLFAP benchmarks. This COP P has only binary ob-
jectives, represented by the edges between nodes (variables).
The second graph b) is the primal graph of PD computed by
Algorithm 3 when run on P with λ = 0.4.

The induced width of PD is 3 compared to an induced
width of 9 found in P . E(PD.Obj )/E(P .Obj ) = 0.76, i.e.,
76% of the expected cost of the entire problem is found in the
objectives of PD.

Consider the running of DB using PD. Suppose the fol-
lowing assignments are made: V8 ← a, V7 ← x, and V5 is
selected as the next variable to assign (Line 9 of Algorithm 2).
τ will be the component 〈{V5, V6},P .Dom, {O56}〉. K

d will
include components whose variables are {V0, V1, V12, V13},
{V2, V3, V10, V11}, {V4, V9} and {V6}. Note that P has not
decomposed at this point in search.

5 Experiments

We have implemented the algorithms described above, and
tested them on weighted-CSP (wCSP) problems with high
tree-width. It should be noted that our approach is not de-
signed for problems of low tree-width—on such problems tra-
ditional decomposition algorithms like AND-OR search and
OR-Decomposition will typically be better choices.

It can also be observed that DB is able to prune the branch
and bound search space either when BD ≥ GUB or BO ≥
GUB (line 5 of DB). That is, either with the bounds computed
via decomposition over the subproblem PD (BD) or with
the ordinary bounds computed by branch and bound (BO).
Hence, there is some tension in the choice of which variable
to instantiate next. Variables that encourage PD to decom-
pose can be chosen to enable better bounds BD from PD, or
variables that branch and bound would normally select (us-
ing whatever heuristic it is operating with) can be chosen to
enable better bounds BO from the full problem P .

We experimented with the Earth Observing Satellites
with Global Constraints (SPOT5+Global) problems. These
problems involve selecting a subset of candidate photographs
so that some imperative constraints are satisfied and the total
importance of the selected photographs is maximized. The
problems have been formulated as wCSP’s with binary and
ternary constraints in the SPOT5 benchmark [Bensana et al.,
1999]. The original SPOT5 problems have relatively low
tree-width, so to make them applicable for our experiments
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Instance BB DB DB+P

1502b 8.7 1.1 0.5

29b 3.0 0.2 0.3

404b 94.3 10.4 0.4

503b - - 7.6

54b 0.1 0.1 0.1

1502 9.4 1.6 0.6

29 3.2 0.2 0.4

404 148.3 158.7 3.1

503 - - 370.9

54 0.4 0.7 0.3

Table 1: Global+Spot5 problems, best times in bold.

we have added two global constraints to every instance.2 First
we imposed a parity constraint on the assigned values, requir-
ing that the sum of the assigned values be equal to 0 mod 2,
and second we imposed a constraint requiring that the sum of
the assigned values be less that 0.9 times the sum of the maxi-
mum values in the variable domains. Basic forward checking
is used for both of these constraints. Since the scope of these
constraints contain all of the problem’s variables they make
the tree-width of the problems equal to the number of vari-
ables minus one. Algorithm 3 generates a decomposible sub-
problem that simply excludes these two global constraints.

Table 1 show our results on this problem suite. The SPOT5
benchmark contains 42 problems, but we only show those
problems that could be solved by at least one of the tested
algorithms within a 1200 second time limit when run on
2.66GHz machines with 8GB of memory. The table shows
results from the following algorithms: standard branch and
bound BB and our proposed decomposition bounding algo-
rithm run with two different variable ordering heuristics, DB
and DB+P. Note that standard decomposition algorithms like
AND-OR search and OR-Decomposition offer no advantage
over BB on these problems - the full problem never decom-
poses during search.

The algorithms were implemented on top of the state-of-
the art solver Toolbar [Bouveret et al., 2008], and they em-
ploy the extensive FDAC propagation method [Larrosa and
Schiex, 2003] to generate strong bounds. As mentioned
above, however, DB and DB+P utilize FDAC for bounding
the full problem Pcur and weaker forward checking to bound
the subproblems D and C.

BB utilizes a standard Dom/Deg variable ordering heuris-
tic which gives preference to variables with low current do-
main sizes and high degree. DB uses exactly the same
Dom/Deg variable ordering. For DB+P we first compute
a tree-decomposition of the subproblem D using a standard
min-fill heuristic. DB+P always selects a variable from
the top most unset label of this tree-decomposition, using
Dom/Deg to decide which of the unset variables in this la-
bel to select first. Hence, DB+P gives priority to generating
good bounds from BD by encouraging decomposition in PD,
while DB gives priority to generating bounds from the full
problem. All of the algorithms order the values of the selected

2Note that it can often be the case that in practice when solving
a COP various additional situation specific constraints have to be
considered.

Instance NVar IW(P) IW(PD)
E[PD]
E[P]

CELAR6-0 16 7 3 0.92

CELAR6-1 14 9 3 0.77

CELAR6-2 16 10 4 0.81

CELAR7-2 16 10 4 0.95

CELAR7-4-22 22 11 4 0.96

Table 2: Algorithm 3’s results on the RLFAP problems

Instance BB AO OR DB DB+P

CELAR6-0 0.3 0.2 0.2 0.3 1.1

CELAR6-1-24 9.1 8.6 10.1 3.6 3.6

CELAR6-1 202.3 124.7 162.7 42.1 31.1

CELAR6-2 752.6 373.0 383.0 73.6 172.2

CELAR6-3 - 752.7 981.55 271.8 396.2

CELAR6-4-20 - 22.5 32.42 26.2 34.9

CELAR7-0 0.4 0.3 0.4 0.1 0.1

CELAR7-1-20 0.2 0.2 0.2 0.1 0.2

CELAR7-1 11.8 11.6 13.0 7.1 7.0

CELAR7-2 239.1 245.4 248.0 248.9 206.5

CELAR7-4-22 - 577.5 740.8 37.3 964.0

Table 3: RLFAP problems, best times in bold.

variable using the unary objectives computed by FDAC. That
is, the values for each selected variable V are branched on in
order lowest unary objective cost first.

The results show that DB yields a significant improvement
over BB, providing a 5 to 16 fold performance improvement
on 5 of the problems, roughly the same performance on 2 of
the problems, and about a 50% decrease in performance on
one (very easy) problem. When the variable ordering gives
preference to generating decompositions over PD however,
we get a even more profound improvement, with DB+P solv-
ing two problems the other algorithms cannot solve.

Our second set of experiments are with the Radio Link
Frequency Assignment Problem (RLFAP) problems. These
problems involve assigning frequencies to a set of radio links
so that all the links may operate together without noticeable
interference. The RLFAP instances are cast as binary wCSP’s
[Cabon et al., 1999]. Unlike the previous experiments, we
did not make any changes to these problems since many of
the problems have relatively high tree-width in their original
form, although we only considered problems with induced
width greater than |Vars|/2.

Table 2 shows the the results of running Algorithm 3. The
induced width (IW) of the original problem P and the gener-
ated decomposible subproblem PD are shown as is the pro-
portion of expected objective cost allocated to PD. The in-
duced widths are computed from a min-fill ordering, which
only approximates the true tree width. Nevertheless, the re-
sults indicates that our heuristic approach often yields a PD

that has significantly lower tree width that P , while still re-
taining many of the most costly objectives. The results on the
other problems not shown here are quite similar.

Table 3 show our results on the RLFAP problem suite.
Running with on the same machines and timeout as before
the table shows the results obtained from branch and bound
BB, AND-OR search AO, OR-Decomposition search OR,
and our decomposition bounding algorithm DB and DB+P.
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BB, DB and DB+P are as in the previous results. AO and
OR first compute a tree-decomposition over the full prob-
lem using min-fill. They then operate like DB+P, select-
ing the Dom/Deg best variable from amongst the unset vari-
ables contained in the top most unset label of this tree-
decomposition. They also both use FDAC and the same value
ordering scheme as the other algorithms (as described above).
Finally, AO orders its components so as to solve the compo-
nent with the most variables first.

The benchmark family includes 32 problems, although
only 11 of the problems have high tree-width. The results
shows that DB and DB+P generally perform better than the
other algorithms, displaying the best performance on 9 out
of the 11 problems. On this problem suite, however, there
is no clear winner between DB and DB+P, indicating that
on many of these problems the best bounds are generated by
the original problem P . Although the results for the low-tree
width instances are not reported in this paper, traditional de-
composition does perform better than DB and BB. It should
be noted that the tree-width of instances can be quickly esti-
mated by, e.g., the min-fill heuristic, as a preprocessing step.
If the tree-width is found to be low, traditional decomposition
algorithms can be used instead of DB.

6 Conclusions

COPs can benefit greatly from decomposition, but traditional
decomposition techniques are ineffective on problems with
high tree-width. In this paper, we have introduced a way of
exploiting decomposition on such problems that is compat-
ible with a fully flexible branch and bound search employ-
ing dynamic variable and value ordering. We have tested this
method on a number of benchmarks, and showed that it can
yield improvements over current state-of-the-art algorithms.
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