
Multi-Way Number Partitioning

Richard E. Korf

Computer Science Department

University of California, Los Angeles

Los Angeles, CA 90095

korf@cs.ucla.edu

Abstract

The number partitioning problem is to divide a
given set of integers into a collection of subsets,
so that the sum of the numbers in each subset are
as nearly equal as possible. While a very efficient
algorithm exists for optimal two-way partitioning,
it is not nearly as effective for multi-way partition-
ing. We develop two new linear-space algorithms
for multi-way partitioning, and demonstrate their
performance on three, four, and five-way partition-
ing. In each case, our algorithms outperform the
previous state of the art by orders of magnitude, in
one case by over six orders of magnitude. Empiri-
cal analysis of the running times of our algorithms
strongly suggest that their asymptotic growth is less
than that of previous algorithms. The key insight
behind both our new algorithms is that if an op-
timal k-way partition includes a particular subset,
then optimally partitioning the numbers not in that
set k−1 ways results in an optimal k-way partition.

1 Introduction: Number Partitioning

Given a set of integers, the number partitioning problem is to
divide them into a collection of mutually exclusive and col-
lectively exhaustive subsets so that the sum of the numbers
in each subset are as nearly equal as possible. For example,
given the integers (4, 5, 6, 7, 8), if we divide them into the
subsets (4, 5, 6) and (7, 8), the sum of the numbers in each
subset is 15, and the difference between the subset sums is
zero, which is optimal. For partitioning into more than two
subsets, the objective function to be minimized is the differ-
ence between the maximum and minimum subset sums. We
focus here on optimal solutions. All the algorithms described
here use space that is only linear in the number of numbers.

Number-partitioning is NP-complete, and one of the easi-
est NP-complete problems to describe. It is also a very sim-
ple scheduling problem, often referred to as “multi-processor
scheduling”[Garey and Johnson, 1979]. For example, given a
set of jobs, each with an associated completion time, and two
or more identical processors, assign each job to a processor
to minimize the total time to complete all the jobs.

1.1 Easy-Hard-Easy Complexity Transition

An important feature of this problem is that its difficulty
shows a classic easy-hard-easy transition as the problem size
increases. Let n be the number of numbers, k the number
of subsets, and m the maximum possible value. Problems
with small n are easy since there are only kn partitions. As
n grows, the number of partitions grows as kn, but the num-
ber of different possible values for the difference of the subset
sums grows only as n·m. Thus, for fixed m and k and large n,
there are many more partitions than subset sum differences,
and hence most differences have many associated partitions.

In particular, if the sum of all the numbers is divisible by k,
there can be a subset sum difference of zero, and otherwise,
the minimum possible subset sum difference is one. Once
such a “perfect partition” is found, search is terminated. For
uniform random instances, as n grows large, the number of
perfect partitions increases, making them easier to find, and
the problem easier. The most difficult problems occur where
the probability of a perfect partition is about one-half. Much
has been written about this “phase transition”, e.g. [Mertens,
1998], but it is tangential to our work, as we are concerned
exclusively with algorithms for finding optimal partitions.

2 Previous Work

Here we briefly review previous work on this problem. For
simplicity, we focus on two-way partitioning, but all these
algorithms are extensible to multi-way partitioning as well.

2.1 Greedy Heuristic

The obvious greedy heuristic for this problem is to sort the
numbers in decreasing order, and then assign each number in
turn to the subset with the smaller sum so far. For example,
given the numbers (8,7,6,5,4), we would assign the 8 and 7 to
different subsets, the 6 to the subset with the 7, the 5 to the
subset with the 8, and finally the 4 to either subset, yielding
for example the partition (8,5,4) and (7,6), with a subset dif-
ference of 17 − 13 = 4. The average solution quality of this
heuristic is on the order of the smallest number.

2.2 Complete Greedy Algorithm (CGA)

This heuristic is easily extended to a complete greedy algo-
rithm (CGA) [Korf, 1995; 1998]. First we sort the numbers
in decreasing order, and then search a binary tree, where each

538



level assigns a different number, and each branch point alter-
nately assigns that number to one subset or the other. Each
leaf of this tree corresponds to a complete partition.

Several pruning rules can improve the efficiency of CGA:
1) If a complete partition is found with a difference of zero or
one, it is returned and the search is terminated. 2) If the cur-
rent difference between the two partial subset sums is at least
the sum of the numbers not yet assigned, then all remain-
ing numbers are assigned to the subset with the smaller sum,
terminating that branch. 3) If both partial subsets have the
same sum, the next number is only assigned to one of them,
to eliminate duplicate nodes. Finally, to minimize the time to
find a perfect partition, we always assign the next number to
the subset with the smaller sum first.

CGA is easily extended to partitioning into k subsets. In-
stead of a binary tree, we search a k-ary tree, where at each
branch the corresponding number is assigned to one of the
k subsets. The second pruning rule above is replaced by the
following. Let t be the sum of all the numbers, s the current
largest subset sum, and d the difference of the best complete
partition found so far. If s− t−s

k−1
≥ d, terminate this branch.

The reason is that the best we could do would be to perfectly
equalize the remaining k− 1 subsets, and if this would result
in a partition no better than the best so far, there is no reason
to continue searching that path. At each branch, we place the
next number in the subsets in increasing order of their sums,
to minimize the time to find a good solution.

2.3 Karmarkar-Karp Heuristic (KK)

A heuristic much better than greedy was called set differenc-
ing by its authors [Karmarkar and Karp, 1982], but is usu-
ally referred to as the KK heuristic. It places the two largest
numbers in different subsets, without determining which sub-
set each goes into. This is equivalent to replacing the two
numbers with their difference. For example, placing 8 in sub-
set A and 7 in subset B is equivalent to placing their differ-
ence of 1 in subset A, since we can always subtract the same
amount from both sets without affecting the solution. Swap-
ping their positions is equivalent to placing the 1 in subset B.
The KK heuristic repeatedly replaces the two largest numbers
with their difference, inserting the new number in the sorted
order, until there is only one number left, which is the final
partition difference. In our example, this results in the series
of sets (8,7,6,5,4), (6,5,4,1), (4,1,1), (3,1), (2). Some addi-
tional bookkeeping is required to extract the actual partition,
which in this case is (7,5,4) and (8,6), with a partition dif-
ference of 16-14=2. The solution quality of this heuristic is
the last remaining number, which is much smaller than the
smallest original number, due to the repeated differencing.

2.4 Complete Karmarkar-Karp Algorithm (CKK)

We extended the KK heuristic to the complete Karmarkar-
Karp algorithm (CKK) [Korf, 1998]. While the KK heuristic
always places the two largest numbers in different subsets,
the only other option is to assign them to the same subset.
This is done by replacing the two largest numbers by their
sum. CKK searches a binary tree where at each node the left
branch replaces the two largest numbers by their difference,
and the right branch replaces them by their sum. By searching

from left to right, the first solution found is the KK solution.
If we find a complete partition with a difference of zero or
one, the search terminates. In addition, if the largest number
is greater than or equal to the sum of the remaining numbers,
we place all the remaining numbers in the opposite subset
from the largest, since this is the best we can do. For two-way
partitioning, CKK is slightly faster than CGA for problem
instances without a perfect partition, but is much faster for
problem instances with many perfect partitions, since it finds
one much faster [Korf, 1998].

The extension of the KK heuristic and CKK algorithm to
multi-way partitioning is more complex than for the greedy
heuristic and CGA [Korf, 1998]. We describe here their ex-
tension to three-way partitioning. A state of the KK algorithm
is described by a set of triples of partial subset sums, with
each triple sorted in decreasing order, and the triples sorted in
decreasing order of their largest sum. Initially, each number is
in a separate triple, with zero for the remaining numbers. For
example, the initial state of a three-way KK partition of the set
(4,5,6,7,8) would be ((8,0,0),(7,0,0),(6,0,0),(5,0,0),(4,0,0)).
At each step of the KK heuristic, if (a, b, c) and (x, y, z) are
the triples with the largest numbers, they are replaced with
(a + z, b + y, c + x), which is then normalized by subtract-
ing the smallest element of the triple from each element. This
combination is chosen to minimize the largest values. In our
example, this results in the set ((8,7,0)(6,0,0)(5,0,0)(4,0,0)).
Combining the next two largest triples results in the set,
((8,7,6)(5,0,0)(4,0,0)), which after normalization is repre-
sented by ((5,0,0),(4,0,0),(2,1,0)). Combining the next two
results in ((5,4,0),(2,1,0)), and combing the last two produces
(5,5,2) or (3,3,0) after normalizing, for a final partition differ-
ence of 3, corresponding to the partition (8), (7,4), and (6,5),
which happens to be optimal in this case.

For the complete CKK algorithm, at each node we com-
bine the two triples with the largest sums in every possible
way rather than just one way, branching on each combination.
For three-way partitioning, there are six ways to combine two
triples, corresponding to different permutations of three ele-
ments, and for k-way partitioning, there are k! branches at
each node. For example, given the triples (a,b,c) and (x,y,z),
their different possible combinations are (a+x, b+ y, c+ z),
(a+x, b+z, c+y), (a+y, b+x, c+z), (a+y, b+z, c+x),
(a+z, b+x, c+y), and (a+z, b+y, c+x). Since the small-
est sum of each k-tuple is always zero after normalization, we
only maintain tuples of k − 1 sums for k-way partitioning.

2.5 Pseudo-Polynomial-Time Algorithms

Technically, number partitioning is not strongly NP-
complete, but can be solved in pseudo-polynomial-time by
dynamic programming. This requires memory that is propor-
tional to n(k − 1) · mk−1 for k-way partitioning of n num-
bers with a maximum value of m. As a result, these algo-
rithms are not practical for multi-way partitioning. For ex-
ample, three-way partitioning of 40 7-digit integers requires
a petabyte (1015) of storage.

2.6 Previous State-Of-The-Art

For two-way partitioning, CKK is the algorithm of choice.
It is slightly faster than CGA without perfect partitions, and

539



much faster with many perfect partitions. In fact, if we restrict
the numbers to 32-bit integers, arbitrarily large instances can
be solved in less than a second. The success of this algorithm
probably contributed to the complete absence of papers on
algorithms for optimal number partitioning in the last decade.

For three-way partitioning, CKK also outperforms CGA.
To solve large problems, however, the precision of the num-
bers must be restricted. For 3-way partitioning of six-digit
numbers, for example, CKK takes about a minute to solve the
hardest random instances, which contain 30 numbers. We are
not aware of any literature on optimal four-way partitioning.

For partitioning four or more ways, CGA is much more ef-
ficient than CKK. The reason is that CKK gets increasingly
complex as k increases, increasing the constant time per node
generation. Our implementation of CKK for three-way parti-
tioning is specialized to three subsets, but this is impractical
with more subsets, since the number of ways of combining
tuples is k!. Specializing CGA for a particular value of k is
easy, however. On problems without perfect partitions, our
general implementation of CKK for four-way partitioning is
ten times slower per node than our specialized CGA.

We now present our new work.

3 Principle of Optimality

The key property of multi-way partitioning that underlies
both our new algorithms is the following principle of optimal-
ity. In any optimal three-way partition, the numbers in any
two of the subsets must be optimally partitioned two ways.
More generally, if an optimal k-way partition includes a par-
ticular subset, then optimally partitioning the numbers not in
that subset k−1 ways will yieldy an optimal k-way partition.

To prove this, there are three cases to consider: 1) If the
given subset has neither the smallest nor the largest sum, then
it doesn’t affect the partition difference, and the remaining
numbers must be optimally partitioned k − 1 ways to mini-
mize the partition difference. 2) If the given subset has the
smallest sum, then an optimal k − 1 way partition of the re-
maining numbers minimizes the largest subset sum, thus min-
imizing the overall partition difference. 3) Similarly, if the
given subset has the largest sum, then an optimal k − 1 way
partition of the remaining numbers maximizes the smallest
subset sum, thus minimizing the overall partition difference.

Note that it is not the case that in any optimal partition,
any collection of subsets must be optimally partitioned. For
example, in an optimal four-way partition, the two subsets
with intermediate sums need not be optimally partitioned two
ways, since they don’t affect the partition difference.

4 Sequential Number Partitioning (SNP)

We now introduce the first of our two new algorithms, called
sequential number partitioning (SNP), using three-way par-
titioning as our first example. We first choose one complete
subset, and then optimally partition the remaining numbers
two ways. Since we can’t identify a priori a subset in an opti-
mal partition, we generate each subset that could possibly be
part of an optimal three-way partition, and for each such sub-
set, we use CKK to optimally partition the remaining num-
bers two ways to get a complete three-way partition.

The standard way to generate subsets is to search an
inclusion-exclusion binary tree, in which leaf nodes represent
all possible subsets. Each level of the tree corresponds to a
particular number, and at each branch we either include the
corresponding number in the subset, or exclude it. For exam-
ple, the left subtree of the root contains all subsets that include
the first number, and the right subtree of the root contains all
subsets that exclude the first number.

We reduce the number of subsets considered by an upper
bound on their sum. To eliminate duplicate partitions that
differ only by permuting the subsets, we require that the first
subset have the smallest sum. If t is the sum of all the num-
bers, the first subset sum can be no larger than t/3, or one of
the remaining subsets would have to have a smaller sum.

We also enforce a lower bound on the first subset sum. For
a given first subset, the best we could do would be to perfectly
partition the remaining numbers two ways. Thus, the differ-
ence between half the sum of the numbers excluded from the
first subset, and the first subset sum, is a lower-bound on the
three-way partition difference. If this difference is greater
than or equal to the best three-way partition difference found
so far, the corresponding first subset cannot be part of a better
solution. In particular, if t is the sum of all the numbers, and
d is the difference of the best three-way partition found so far,
then the first subset sum must be at least (t− 2d)/3.

Given these lower and upper bounds on the first subset
sum, we prune the inclusion-exclusion tree as follows: Any
branch where the sum of the numbers included so far exceeds
the upper bound is pruned. Also, any branch where the sum
of the included numbers, and the numbers not yet included
nor excluded is less than the lower bound is also pruned.

To efficiently search this inclusion-exclusion tree, we first
sort the numbers in decreasing order, and decide whether to
include or exclude the largest numbers first. The reason is
that the largest numbers have the greatest impact on the sum
so far, and the sum of the remaining numbers, resulting in
more pruning near the root of the tree.

The overall algorithm for three-way partitioning works as
follows: We first run the KK heuristic to get an approxi-
mate three-way partition, and use this to compute the lower
bound on the first subset sum. Next we search an inclusion-
exclusion tree for subsets within the lower and upper bounds.
For each such subset, we optimally partition the remaining
numbers two ways using CKK. We then compute the corre-
sponding three-way partition difference. If this solution is
better than the best one found so far, we increase the lower
bound on the first subset sum, and continue exploring all first
subsets that could possibly lead to a better solution.

Extending this algorithm to four-way partitioning is
straightforward. We first run KK to get an approximate four-
way partition with a difference of d. We then select first sub-
sets by searching an inclusion-exclusion tree with an upper
bound of t/4, and a lower bound of (t−3d)/4. For each such
first subset, we call SNP to optimally partition the remaining
elements three ways. This involves selecting a second sub-
set by searching another inclusion-exclusion tree, with a sum
greater than or equal to that of the first subset, since the sub-
set sums are chosen in non-decreasing order. The extension
to more than four subsets follows analogously.

540



5 Recursive Number Partitioning (RNP)

The main drawback of SNP is that CKK is only used to de-
termine the last two subsets, leaving the much less efficient
inclusion-exclusion tree searches to determine all the previ-
ous subsets. Here we propose an alternative algorithm, which
we call recursive number partitioning (RNP).

We begin with the example of four-way partitioning. We
first run the KK heuristic to get an approximate four-way par-
tition. Then we divide all the numbers into two subsets, each
of which will later be partitioned two ways. This top-level
partitioning is done in every way that could possibly lead to
a four-way partition better than the best one found so far. For
a given top-level partition, the best we could do would be to
perfectly partition each of the two subsets. Thus, half of the
larger subset sum minus half of the smaller subset sum is a
lower bound on the difference of any four-way partition de-
rived from a given top-level partition. This bound must be
less than the current best four-way partition difference for a
given top-level partition to lead to a better solution. Thus, the
current best solution imposes an upper bound on the differ-
ence of the top-level partitions. The top-level partitioning is
done using CKK with this upper bound, but returning all two-
way partitions within the bound, rather than a single optimal
partition. We use CKK instead of CGA because it finds better
top-level partitions sooner.

For each such top-level partition, we use CKK to optimally
partition the smaller of the two subsets. If the resulting par-
tition, combined with a perfect partition of the larger subset,
would lead to a better four-way partition, we optimally par-
tition the larger subset as well. We compute the overall par-
tition difference by subtracting the smallest of the four sub-
set sums from the largest. If this four-way partition is better
than the best one found so far, we update the upper bound on
the initial top-level partitioning. In either case, we continue
generating top-level partitions within the bound, in the order
generated by CKK, until all such partitions that could lead to
a better four-way partition have been explored.

For three-way partitioning, SNP and RNP are identical, but
they differ for four or more subsets. For five-way partitioning,
for example, RNP first searches an inclusion-exclusion tree
to select a first subset, and then calls RNP to optimally parti-
tion the remaining numbers four ways. For six-way partition-
ing, RNP first partitions all the numbers two ways, and then
calls RNP, or equivalently SNP, to optimally partition each
of the two subsets into three subsets each. In general, for an
even number of subsets, RNP starts with two-way partition-
ing at the top level, and then recursively partitions each half.
With an odd number of subsets, RNP searches an inclusion-
exclusion tree for a first subset, then calls RNP to divide the
remaining numbers two ways, etc.

6 Experimental Results

We experimented with three, four, and five-way partitioning.
Each timing shows the total time to solve 100 problem in-
stances, in the form days:hours:minutes:seconds. The aver-
age time for a single instance is one-hundredth of these val-
ues. The numbers were uniformly distributed from zero to the
maximum value. In our first set of experiments, maximum

values were chosen to allow solving the hardest instances
with the existing algorithms. All experiments were run on an
IBM Intellistation with a two gigahertz AMD Opteron pro-
cessor. All the algorithms run in space that is linear in the
number of numbers n, since all searches are depth first.

6.1 Three-Way Partitioning

For three-way partitioning, CKK is the best previous algo-
rithm, and was used for comparison. We choose a maximum
value of ten million, since these are the largest integers for
which CKK could solve the hardest instances. Table 1 shows
our results. The first column contains the problem size N,
or number of numbers. The second column gives the aver-
age optimal partition difference. The third column shows the
running time for CKK to optimally solve all 100 problem in-
stances, and the fourth column shows the running time for
SNP to solve the same instances. RNP is the same as SNP
for three-way partitioning. The last column shows the run-
ning time of CKK divided by the running time of SNP, which
represents the speedup over the previous state of the art.

N Diff CKK SNP CKK/SNP

25 84.48 4:01 :01 212
26 51.10 10:46 :02 321
27 31.50 30:51 :04 501
28 15.38 1:17:51 :06 732
29 9.91 3:41:39 :12 1,142
30 5.68 8:52:50 :20 1,589
31 3.25 1:00:47:51 :34 2,613
32 1.98 2:01:58:24 :49 3,702
33 1.31 4:10:15:02 1:01 6,260
34 .87 5:01:52:22 :43 10,131
35 .59 5:13:23:05 :19 24,884
36 .62 3:12:43:33 :14 21,973
37 .71 1:14:44:28 :09 15,389
38 .66 1:08:39:13 :10 13,436
39 .61 1:04:20:18 :08 13,009
40 .67 :23:25:56 :07 11,619

Table 1: Three-Way Partitioning of 100 7-Digit Integers

The first thing to notice is that the running times of both al-
gorithms exhibit the easy-hard-easy transition characteristic
of number partitioning. We don’t know why the most diffi-
cult problems for CKK contain 35 numbers while the most
difficult problems for SNP contain only 33 numbers.

The next thing to notice is that SNP is much faster than
CKK. While CKK takes over an hour on average to solve the
hardest problem instances, SNP solves the hardest instances
in less than a second on average. For partitioning 35 numbers,
SNP runs almost 25,000 times faster than CKK.

6.2 Four-Way Partitioning

Table 2 shows our results for four-way partitioning, in the
same format as Table 1. For four-way partitioning, CGA is
faster than CKK, and thus CGA is used for comparison. Here
we used a maximum value of a hundred thousand, as these
are the largest integers for which CGA could solve the hardest
instances. We also ran both SNP and RNP on these problems.

541



The last column shows the ratios of the running times of RNP
and CGA. In the empty positions, SNP and RNP took less
than half a second to solve all 100 problem instances.

N Diff CGA SNP RNP RNP/CGA

20 79.24 :06
21 56.55 :22
22 33.64 1:18
23 21.52 3:59 :01 :01 422
24 14.52 16:30 :01 :01 1,013
25 9.76 45:08 :02 :02 1,605
26 5.91 2:37:23 :03 :03 3,551
27 3.59 9:04:02 :05 :04 7,871
28 2.24 1:05:58:18 :07 :06 17,310
29 1.54 2:09:47:12 :09 :06 32,059
30 .92 4:23:25:17 :09 :04 104,197
31 .76 7:05:59:05 :09 :03 232,669
32 .70 5:03:19:33 :11 :01 383,066
33 .71 8:22:49:28 :17 1,769,720

Table 2: Four-Way Partitioning of 100 5-Digit Integers

Again we see running times going from days to seconds
on the hardest problems. RNP partitions 33 numbers over
a million times faster than CGA, reducing the running time
from almost 9 days to less than half a second for 100 problem
instances. RNP is consistently faster than SNP. The running
time of SNP keeps increasing on the harder problems, while
that of RNP decreases beyond 29 numbers.

6.3 Five-Way Partitioning

Table 3 shows our results for five-way partitioning, in the
same format as Tables 1 and 2. As for four-way partition-
ing, CGA is more efficient than CKK, and thus CGA is used
for comparison. Here we used a maximum value of ten thou-
sand, since these were the largest integers for which CGA
could solve the hardest problems. We also ran both SNP and
RNP on these problems. The last column shows the ratios of
the running times of RNP and CGA.

N Diff CGA SNP RNP RNP/CGA

20 38.95 :11 :01 :01 18
21 24.01 :28 :01 :01 31
22 17.08 1:24 :03 :02 50
23 10.16 7:20 :05 :03 156
24 6.89 31:02 :11 :06 334
25 4.84 2:15:35 :22 :10 828
26 2.98 9:01:11 :54 :20 1,640
27 1.98 1:10:19:00 2:10 :39 3,197
28 1.40 3:01:09:18 4:26 1:12 3,666
29 .99 6:04:27:31 10:14 2:08 4,183
30 .83 9:00:10:16 19:23 4:14 3,066

Table 3: Five-Way Partitioning of 100 4-Digit Integers

Again we see orders of magnitude speedup, although not as
large as for three and four-way partitioning. The reason may
be the inability of CGA to solve problems with larger values.
For partitioning 29 numbers, RNP runs over four thousand

times faster than CGA. Here we see a larger difference be-
tween the performance of RNP and SNP. For example, RNP
partitions 29 or 30 numbers almost five times faster than SNP.

6.4 Empirical Asymptotic Time Complexity

These dramatic performance improvements, and the fact that
the ratios of the running times increase with increasing prob-
lem difficulty, suggest that both SNP and RNP are asymptot-
ically faster than CKK and CGA. Due to the pruning rules
employed, however, these algorithms are very difficult to an-
alyze. The next best thing is to empirically estimate their
asymptotic complexity. We do this by computing the ratios
of the running times for pairs of successively larger problem
instances. To do this, we chose problem instances without
many perfect partitions, since as perfect partitions become
more common, the running times of these algorithms de-
crease. Furthermore, without perfect partitions, the running
times of these algorithms are insensitive to the size of the
numbers. Thus, we chose integers uniformly distributed from
zero to 100 million, since these are the largest integers we
could handle using 32-bit arithmetic with up to 40 numbers.

Table 4 shows the results of partitioning these numbers
three, four, and five ways. The left-most column shows the
number of numbers. The next four columns show results
for three-way partitioning, the middle four for four-way par-
titioning, and the last four for five-way partitioning. Each
group of columns starts with the total running time for the
best previous algorithm to solve 100 uniform random prob-
lem instances, which is CKK for three-way partitioning, and
CGA for four and five-way partitioning. The next column
in each group gives the running time for the given number
of numbers divided by the running time for one less number,
from the line immediately above it. This ratio is the geomet-
ric growth between the two levels. The next two columns in
each group give the corresponding data for RNP.

For three-way partitioning, the geometric growth rate for
CKK ranges between about 2.5 and 3. The corresponding
growth rate for RNP stabilizes at about 1.8 for up to 35 num-
bers. For more numbers, the growth rate decreases as the
problems get easier because perfect partitions become more
common. This shows that RNP can optimally solve arbitrar-
ily large three-way problems with up to 8-digit numbers.

For four-way partitioning, the geometric growth of CGA
ranges between about 3 and 4. The corresponding growth
rate for RNP varies from about 1.8 to 1.9. This data oscillates
between even and odd problem sizes. Again, we see clear ev-
idence of an asymptotic improvement. If we compare three-
way to four-way partitioning with RNP, four-way partitioning
is only slightly more expensive for hard problems.

For five-way partitioning, the geometric growth rate of
CGA ranges between about 3 and 5. The corresponding
growth rate for RNP ranges between about 2 and 2.4 for hard
problems, with consecutive outliers at 2.98 and 1.76. The ge-
ometric mean of these two values is 2.29.

These data strongly suggest that the asymptotic growth rate
of RNP is lower than that of CKK or CGA. Since these values
represent the base of the exponential complexity of the algo-
rithms, any significant difference between them will eventu-
ally produce arbitrarily large constant factor speedups.

542



N Three-Way Partitioning Four-Way Partitioning Five-Way Partitioning

CKK ratio RNP ratio CGA ratio RNP ratio CGA ratio RNP ratio

20 :02 :07 :06 :01
21 :05 2.36 :20 2.96 :24 3.77 :01 1.88
22 :13 2.65 1:06 3.39 1:21 3.40 :02 1.47
23 :33 2.62 3:32 3.19 5:01 3.72 :03 1.75
24 1:25 2.58 11:17 3.20 17:35 3.51 :06 2.00
25 4:01 2.83 :01 44:33 3.95 :02 1:30:09 5.13 :10 1.70
26 10:01 2.50 :02 1.75 2:07:17 2.86 :03 1.64 4:40:18 3.11 :27 2.63
27 28:51 2.88 :04 1.82 7:51:33 3.70 :05 1.74 20:58:41 4.49 :36 1.32
28 1:23:21 2.89 :07 1.80 1:06:34:13 3.89 :09 1.71 4:10:23:28 5.07 1:33 2.57
29 3:29:42 2.52 :11 1.75 3:23:52:38 3.14 :15 1.74 3:06 2.00
30 10:22:52 2.97 :22 1.89 :27 1.80 6:15 2.02
31 1:01:47:27 2.48 :39 1.83 :48 1.78 12:55 2.07
32 1:13 1.87 1:29 1.85 26:15 2.03
33 2:11 1.78 2:38 1.78 55:38 2.12
34 3:51 1.78 4:50 1.83 2:46:04 2.98
35 6:54 1.79 8:37 1.78 4:52:20 1.76
36 11:16 1.63 16:14 1.88 11:38:42 2.39
37 15:10 1.35 29:13 1.80 2:02:33:05 2.35
38 12:32 .83 55:05 1.89
39 6:42 .53 1:38:56 1.80
40 2:54 .43 3:09:34 1.92

Table 4: Asymptotic Growth of Three, Four, and Five-Way Partitioning of 100 8-Digit Integers

7 Further Work

To optimize performance, the implementations of all these
algorithms were specialized for partitioning into three, four,
and five subsets. The next step is to partition numbers into
more subsets, using general implementations of these algo-
rithms, to see if the same trends continue. In addition, a chal-
lenging task will be to prove theoretically that our new algo-
rithms are in fact asymptotically faster than CKK and CGA.

8 Conclusions

We have introduced two new algorithms for multi-way num-
ber partitioning, sequential number partitioning (SNP) and
recursive number partitioning (RNP). Both algorithms rely
on the insight that if an optimal k-way partition of a set of
numbers includes a particular subset, then optimally parti-
tioning the remaining numbers not in that subset k − 1 ways
results in an optimal k-way partition. Both algorithms dra-
matically outperform the best previous algorithms for this
problem, the complete greedy algorithm (CGA) and the com-
plete Karmarkar-Karp algorithm (CKK), by orders of mag-
nitude. For four-way partitioning of 33 5-digit numbers, for
example, RNP runs over a million times faster than CGA.
For three-way partitioning of eight-digit numbers, SNP, or
equivalently RNP, can solve the hardest random problem in-
stances in less than ten seconds on average. For partitioning
into four or more sets, RNP outperforms SNP. An empiri-
cal exploration of the performance of RNP on problem in-
stances without perfect partitions strongly suggests that it is
asymptotically faster than both CGA and CKK. In addition
to the specific contributions to number partitioning, this work
demonstrates that better search techniques can still achieve

enormous speedups over the previous state-of-the-art in sim-
ple combinatorial problems.

Acknowledgments

This research was supported by NSF grant No. IIS-0713178.
Thanks to Satish Gupta and IBM for providing the machine
these experiments were run on,

References

[Garey and Johnson, 1979] Michael R. Garey and David S.
Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, New York,
NY, 1979.

[Karmarkar and Karp, 1982] Narendra Karmarkar and
Richard M. Karp. The differencing method of set parti-
tioning. Technical Report UCB/CSD 82/113, Computer
Science Division, University of California, Berkeley,
1982.

[Korf, 1995] Richard E. Korf. From approximate to opti-
mal solutions: A case study of number partitioning. In
Proceedings of the International Joint Conference on Ar-
tificial Intelligence (IJCAI-95), pages 266–272, Montreal,
Canada, Aug 1995.

[Korf, 1998] Richard E. Korf. A complete anytime algo-
rithm for number partitioning. Artificial Intelligence,
106(2):181–203, December 1998.

[Mertens, 1998] Stephen Mertens. Phase transition in the
number partitioning problem. Physical Review Letters,
81(20):4281–4284, November 1998.

543


