
Variety Reasoning for Multiset Constraint Propagation∗

Y.C. Law, J.H.M. Lee, and M.H.C. Woo

Department of Computer Science and Engineering

The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

{yclaw,jlee,hcwoo}@cse.cuhk.edu.hk

Abstract

Set variables in constraint satisfaction problems
(CSPs) are typically propagated by enforcing set
bounds consistency together with cardinality rea-
soning, which uses some inference rules involving
the cardinality of a set variable to produce more
prunings than set bounds propagation alone. Mul-
tiset variables are a generalization of set variables
by allowing the elements to have repetitions. In
this paper, we generalize cardinality reasoning for
multiset variables. In addition, we propose to ex-
ploit the variety of a multiset—the number of dis-
tinct elements in it—to improve modeling expres-
siveness and further enhance constraint propaga-
tion. We derive a number of inference rules involv-
ing the varieties of multiset variables. The rules in-
teract varieties with the traditional components of
multiset variables (such as cardinalities) to obtain
stronger propagation. We also demonstrate how
to apply the rules to perform variety reasoning on
some common multiset constraints. Experimental
results show that performing variety reasoning on
top of cardinality reasoning can effectively reduce
more search space and achieve better runtime in
solving multiset CSPs.

1 Introduction

Many combinatorial design problems can be modeled as
constraint satisfaction problems (CSPs) using set variables,
which can take collections of distinct elements as their val-
ues. The domain of a set variable is typically represented by
its set upper and lower bounds [Gervet, 1997] and propagated
by enforcing set bounds consistency [Gervet, 1997] together
with cardinality reasoning [Azevedo and Barahona, 2000].
By considering also the cardinality of a set variable during
propagation, more prunings can be produced than set bounds
propagation alone and further reduce the search space.

∗We thank the anonymous referees for their constructive com-
ments. The work described in this paper was substantially sup-
ported by grants (CUHK413207 and CUHK413808) from the Re-
search Grants Council of Hong Kong SAR.

Multiset variables are a generalization of set variables by
allowing the elements to have repetitions. Consider the tem-
plate design problem (prob002 in CSPLib) which is to as-
sign some designs to printing templates subject to some con-
straints. Each template has a fixed number of slots for the de-
signs. One possible modeling is to use an integer variable for
each slot in a template. However, this model introduces un-
necessary symmetries as the slots are indistinguishable. Since
a design can appear multiple times in one template, a more
“natural” model is to use a multiset variable for each tem-
plate to avoid the symmetries. The domain of each variable
is the set of all possible multisets of designs that can be as-
signed to the template. Other than this problem, Frisch et
al. listed a collection of ESSENCE specifications1 containing
many problems that can be modeled using multiset variables.

The cardinality of a set reveals the total number of ele-
ments in it. Incorporating a cardinality variable to a set vari-
able [Azevedo and Barahona, 2000] enjoys success in en-
hancing propagation for set constraints. On the other hand,
the number of distinct elements, which we call variety, is
a property specific to multisets. In this paper, we propose
a multiset variable representation which is an improvement
over the occurrence representation [Kiziltan and Walsh, 2002;
Walsh, 2003]. We incorporate a cardinality variable as well
as a variety variable to the representation which do not just
allow to express certain problem constraints much more eas-
ily (i.e., better modeling expressiveness), but also increase the
opportunities to infer more domain prunings for better solv-
ing efficiency. We derive a number of inference rules involv-
ing the varieties of multiset variables and show how the tradi-
tional components of multiset variables (such as cardinalities)
interact with the varieties to achieve stronger constraint prop-
agation. We also apply our rules to perform variety reasoning
on some common multiset constraints. Experimental results
confirm that performing variety reasoning on top of cardinal-
ity reasoning can further reduce the search space and give a
better runtime in solving multiset CSPs.

2 Background

A constraint satisfaction problem (CSP) is a triple P =
(X ,D, C), where X = {X1, . . . , Xn} is a finite set of vari-

1Available at http://www.cs.york.ac.uk/aig/
constraints/AutoModel/Essence/specs120/

552



Equality X = Y iff occ(i, X) = occ(i, Y )
Subset X ⊆ Y iff occ(i, X) ≤ occ(i, Y )
Union X ∪ Y = Z iff occ(i, Z) = max(occ(i, X), occ(i, Y ))
Union-Plus X � Y = Z iff occ(i, Z) = occ(i, X) + occ(i, Y )
Intersection X ∩ Y = Z iff occ(i, Z) = min(occ(i, X), occ(i, Y ))

Table 1: Some common multiset operations

ables, D = {Dx1
, . . . , Dxn

} is a set of finite domains of pos-
sible values, and C is a set of constraints. Each constraint
involves a subset of the variables in X , limiting the combi-
nation of values that the variables in the subset can take. A
solution of P is to assign a value to every variable Xi ∈ X
from its domain DXi

such that all the constraints in C are
satisfied.

A set is an unordered list of elements without repetitions.
The cardinality of a set S is the number of elements in S, de-
noted as |S|. Gervet [1997] proposed to represent the domain
of a set variable S with an interval [RS(S), PS(S)] such that
DS = {m|RS(S) ⊆ m ⊆ PS(S)}. The required set RS(S)
contains all the elements which must exist in the set, while the
possible set PS(S) contains any element which may exist in
the set. S is said to be bound when its lower bound equals its
upper bound (i.e., RS(S) = PS(S)).

Traditional domain reasoning for integer variables is not
practical for set variables, as their domains are exponential
to the size of possible sets. Gervet [1997] proposed using
bounds reasoning to maintain consistency on set variables. A
set variable S with set interval domain [RS(S), PS(S)] is set
bounds consistent with respect to a constraint C if and only
if RS(S) =

⋂
domS(C) and PS(S) =

⋃
domS(C), where

domS(C) denotes the domain values of S that satisfy C.

A multiset is a generalization of set by allowing the el-
ements to have repetitions. We denote a multiset S as
S = {{· · · }} and its cardinality as |S|. For example, if
S = {{1, 1, 2, 2, 3}}, then |S| = 5. In this paper, without
loss of generality, we assume that multiset elements are pos-
itive integers from 1 to n. We shall use ∅ to denote both
the empty set and the empty multiset. Since the number
of occurrences of an element in a multiset variable can be
more than one, enumerating all possible multisets to rep-
resent a multiset variable domain is even more impractical.
Thus, Kiziltan and Walsh [2002; 2003] suggested to rep-
resent a multiset variable S with n elements by a vector
of occurrence (integer) variables 〈occ(1, S), . . . , occ(n, S)〉.
Each variable occ(i, S) models the number of occurrences
of an element i in S. Its domain is denoted as the interval
Docc(i,S) = [occr(i, S), occp(i, S)]. We also define sr as the

multiset whose occurrence of each element i is occr(i, S).
Similarly, sp is the multiset whose occurrence of each ele-
ment i is occp(i, S). The multisets sr and sp are in fact the
required multiset RS(S) and the possible multiset PS(S) of
S respectively (i.e., DS = [RS(S), PS(S)] = [sr, sp]). This
occurrence representation is compact but cannot represent all
forms of disjunctions. Most set constraints can be general-
ized to their multiset counterparts. Table 1 gives some com-
mon multiset constraints, in which X , Y , and Z are multiset
variables and i is an element.

Multiset variables are usually propagated by enforcing

multiset bounds consistency, which can be defined using
the occurrence representation. A multiset variable S con-
sisting of a vector of occurrence variables occ(i, S) with
interval domain [occr(i, S), occp(i, S)] is multiset bounds
consistent with respect to a constraint C if and only
if occr(i, S) = min(domocc(i,S)(C)) and occp(i, S) =
max(domocc(i,S)(C)), where domocc(i,S)(C) denotes the
domain values of the number of occurrences of element i in
S that satisfy C. This definition is equivalent to the notion
BC by Kiziltan and Walsh [2002; 2003].

3 Variety

A multiset S allows repeated elements. Its cardinality |S| re-
veals only the total number of elements, but not the number of
distinct elements, which we define as variety and denoted as
‖S‖. Note that ‖S‖ can never be greater than |S|. In fact, S
degenerates to a set when |S| = ‖S‖ (i.e., the number of oc-
currences of all elements equals one). In this section, we shall
formally define a multiset variable in terms of variety. Then,
we describe a naive approach to model variety using meta-
constraints, which can hinder propagation. Subsequently, we
propose some inference rules which improve over the naive
approach. We also demonstrate how variety can help increase
propagation for multiset constraints by variety reasoning.

3.1 Multiset Variable with Cardinality and Variety

We define a multiset variable S consisting of three com-
ponents. The first is a vector of finite domain variables
〈occ(1, S), . . . , occ(n, S)〉 [Kiziltan and Walsh, 2002; Walsh,
2003] modeling the number of occurrences of each element
in S. On top of the occurrence representation, the sec-
ond component is a cardinality variable CS [Azevedo and
Barahona, 2000] whose domain is denoted as the interval
DCS

= [cr, cp], modeling the total number of elements in
S (denoted as |S|). The third is a variety variable VS whose
domain is denoted as the interval DVS

= [vr, vp], modeling
the number of distinct elements in S (denoted as ‖S‖).

For example, suppose n = 4 and consider a multiset
variable S whose components have the following domains:
Docc(1,S) = [0, 1], Docc(2,S) = [0, 2], Docc(3,S) = [0, 3],
Docc(4,S) = [0, 1], DCS

= [0, 7], and DVS
= [0, 4]. Then,

we have (1) sr = ∅, as the lower bounds of all the occurrence
variables are 0; and (2) sp = {{1, 2, 2, 3, 3, 3, 4}}, as the upper
bounds of the occurrence variables of elements 1, 2, 3, and 4
are 1, 2, 3, and 1 respectively. The domain of S is in fact the
multiset interval [∅, {{1, 2, 2, 3, 3, 3, 4}}].

Introducing a variety variable to the representation allows
us to model the domain of a multiset variable in a more pre-
cise way (although still inexact). Consider S in the previ-
ous example and suppose we are interested in only the do-
main values whose varieties are 1. Without the variety vari-
able VS , we can only set DCS

to [1, 3]. This domain ac-
cepts, for example, the multiset {{1, 2}}, which obviously
should not be included. However, with VS , we can simply
set DVS

= [1, 1] to further remove the multisets which con-
tain more than one kind of elements. This essentially models
DS = {{{1}}, {{2}}, {{2, 2}}, {{3}}, {{3, 3}}, {{3, 3, 3}}, {{4}}}, a
much more precise representation.

553



Another advantage is to improve modeling expressiveness
by allowing to post variety constraints to limit the number of
distinct elements in multiset variables. For example, in the
template design problem, we may want to restrict a template
T to have at most three distinct designs in its slots. Using
our representation, posting a variety constraint ‖T ‖ ≤ 3 sim-
ply means to propagate the simple unary constraint VT ≤ 3.
Without VT , we need to post a number of meta-constraints to
model the requirement, which may hinder propagation. The
advantage becomes more obvious when the form of the vari-
ety constraints is more complicated, e.g., ‖T1‖ + ‖T2‖ ≤ 4.
The next subsection describes the naive approach of using
meta-constraints to model variety.

3.2 Naive Approach

Consider a multiset variable S with its three components: oc-
currence occ(i, S) where i is the possible elements in S, car-
dinality CS , and variety VS . We can model the cardinality CS

and the variety VS using the constraints CS =
∑

i occ(i, S)
and VS =

∑
i(occ(i, S) > 0) for each distinct element i in

S respectively. Note that the latter one is a meta-constraint.
Its propagation is usually weak in most constraint solvers. In
fact, propagating the meta-constraints neglects the direct rela-
tionship between VS and CS , and also the more complicated
relationship among occ(i, S), CS , and VS , as can be shown
in the following example.

Consider two multiset variables S1 and S2 where DS1
=

[{{1}}, {{1, 2, 3, 3}}] (i.e., Docc(1,S1) = [1, 1], Docc(2,S1) =
[0, 1], Docc(3,S1) = [0, 2]), DCS1

= [3, 3], DVS1
= [1, 3],

and DS2
= [{{1}}, {{1, 4, 5, 5}}] (i.e., Docc(1,S2) = [1, 1],

Docc(4,S2) = [0, 1], Docc(5,S2) = [0, 2]), DCS2
= [3, 3],

DVS2
= [1, 3]. Suppose we now post a constraint in which

the variety of the union-plus of S1 and S2 is not greater than
3 (i.e., ‖S1 � S2‖ ≤ 3). Reasoning on this constraint re-
veals that S1 and S2 cannot contain elements 2 and 4 respec-
tively, because the cardinalities of both S1 and S2 must be
3 and their union-plus can contain at most three different el-
ements. S1 and S2 should then be bound to {{1, 3, 3}} and
{{1, 5, 5}} respectively. However, using the meta-constraint
∑5

i=1(occ(i, S1) + occ(i, S2) > 0) ≤ 3, the domains of S1

and S2 remain unchanged.
By exploiting the relationships between the three compo-

nents of a multiset variable, we propose a number of infer-
ence rules to strengthen propagation. In the next subsection,
we shall systematically enumerate the possible relationships.

3.3 Inferences within One Multiset Variable

Upon creation of a multiset variable S, the vector of oc-
currence variables 〈occ(1, S), . . . occ(n, S)〉, the cardinality
variable CS , and the variety variable VS will also be created.
A number of inference rules are subsequently maintained. In-
ferences occur between any two kinds of variables (i.e., be-
tween occ(i, S) and CS , between occ(i, S) and VS , or be-
tween CS and VS), or among all three of them. Inference
rules will be formally described as rewriting rules as in the
following schematic figure:

(trigger condition)
conditions(which can be nil)

changes in constraint store

(1) Inferences between occ(i, S) and CS

The cardinality CS must always remain inside the limits given
by the multiset bounds sr and sp [Azevedo and Barahona,
2000]. (Recall that sr and sp can be computed using the oc-
currence variables.)

(S changed bounds)
α = |sr|, β = |sp|

{} �→ {CS ≥ α, CS ≤ β}

The cardinality CS is the sum of the number of occurrences
of all elements in a multiset variable. Thus, the number of oc-
currences of each element is updated when there are changes
in the lower bound cr and the upper bound cp of the cardi-
nality variable. Here, we only concern with the elements that
have not yet been included in the lower bound (i.e., sp \ sr,
which is defined as occ(i, sp \ sr) = max{0, occ(i, sp) −
occ(i, sr)} for all elements i).

(CS changed bounds)
α = cr, β = cp

{} �→ {|K| − occ(i, K) ≥ α− |sr|, occ(i, K) ≤ β − |sr|}
where K = sp \ sr.

For example, consider a multiset variable S where
DS = [{{1, 1}}, {{1, 1, 1, 2, 2, 3}}] (i.e., Docc(1,S) = [2, 3],
Docc(2,S) = [0, 2], Docc(3,S) = [0, 1]), DVS

= [1, 3], and cp

is updated from 6 to 3 (i.e., DCS
= [2, 3]). Since S can now

have at most three elements of at most two different kinds,
and there are already two 1s in the required set, only one more
element (1, 2, or 3) may exist in S. Based on the inference
rule, K = sp \ sr = {{1, 1, 1, 2, 2, 3}}\{{1, 1}} = {{1, 2, 2, 3}}
and occ(i, K) ≤ β − |sr| = 3 − 2 = 1 for i = 1, 2, 3. Thus,
one of the 2s is removed, resulting Docc(2,S) = [0, 1] and

DS = [{{1, 1}}, {{1, 1, 1, 2, 3}}].

(2) Inferences between occ(i, S) and VS

The variety VS must always remain inside the limits given by
the multiset bounds. This is generalized from the inferences
between occ(i, S) and CS [Azevedo and Barahona, 2000].

(S changed bounds)
α = ‖sr‖, β = ‖sp‖

{} �→ {VS ≥ α, VS ≤ β}

The occurrence of each element occ(i, S) will be updated
only when VS is bound and equals either ‖sr‖ or ‖sp‖. When
the variety VS is fixed and equals ‖sr‖, any elements i that
are not in sr (i.e, occr(i, S) = 0) have to be removed (i.e.,
occ(i, S) = 0 for those i). On the other hand, if VS = ‖sp‖,
then each element in sp (i.e, occp(i, S) > 0) must occur at
least once in S (i.e., occ(i, S) > 0 for those i).

(VS is bound)
VS = ‖sr‖, occr(i, S)) = 0
{} �→ {occ(i, S) = 0}

VS = ‖sp‖, occp(i, S)) > 0
{} �→ {occ(i, S) > 0}

For example, consider a multiset variable S where DS =
[{{1, 1}}, {{1, 1, 2, 2, 3}}] (i.e., Docc(1,S) = [2, 2], Docc(2,S) =
[0, 2], Docc(3,S) = [0, 1]), DCS

= [2, 5], and VS is bound to

1. Since VS = ‖sr‖ (i.e., 1 = ‖{{1, 1}}‖) and the elements
2 and 3 are not yet in sr, they will not exist in S, resulting
occ(2, S) = occ(3, S) = 0.

Consider the same multiset variable S but VS is now bound
to 3. Since VS = ‖sp‖ (i.e., 3 = ‖{{1, 1, 2, 2, 3}}‖) and the

554



elements 2 and 3 are not yet in sr, at least one occurrence
of 2 and 3 has to be added to their lower bound, resulting
occr(2, S) = occr(3, S) = 1. Here, occr(1, S) remains un-
changed because the element 1 is already in its lower bound.

(3) Inferences between CS and VS

The variety must always be smaller than or equal to the cardi-
nality at both limits because cardinality counts same elements
but variety does not.

(CS changed upper bound)
β = cp

{} �→ {VS ≤ β}

(VS changed lower bound)
α = vr

{} �→ {CS ≥ α}

(4) Inferences among occ(i, S), CS , and VS

When any two of occurrences occ(i, S), cardinality CS , and
variety VS change their bounds, the remaining one has to be
updated as well. This kind of inferences lead to stronger con-
straint propagation than those between the pairwise ones (i.e.,
between occ(i, S) and CS , between occ(i, S) and VS , and be-
tween CS and VS).

When the occurrences occ(i, S) and the variety VS change
their bounds, the cardinality CS will be adjusted accordingly
to fulfill the requirements on VS based on the elements exist-
ing in sp \ sr.

(S or VS changed bounds)
α = vr, β = vp

{} �→ {CS ≥ |sr|+ (α− ‖sr‖), CS ≤ |sr|+ a}
where a = max(|b| : b ⊆ (sp \ sr) ∧ ‖b 	 sr‖ = β).

For example, consider a multiset variable S which up-
dates its bounds to DS = [{{1, 1}}, {{1, 1, 1, 2, 2, 3}}] (i.e.,
Docc(1,S) = [2, 3], Docc(2,S) = [0, 2], Docc(3,S) = [0, 1]),
DCS

= [2, 6], and DVS
= [2, 3]. Since S must contain at least

two different kinds of elements, besides element 1, either ele-
ment 2 or 3 has to be included in S. This lead to an increase in
cr although the exact addition has not yet taken place. Based
on the inference rule, CS ≥ |sr|+(α−‖sr‖) = 2+2−1 = 3.
Thus, DCS

is updated to [3, 6].
To find a, the subset sp \ sr, which fulfills the condition

‖b � sr‖ = β, is first extracted. The possible elements are
then ordered. Thus, the complexity is bounded by the sort-
ing procedure O(n log n), where n is the number of distinct
elements in S.

Similarly, when the occurrences occ(i, S) and the cardinal-
ity CS change their bounds, the variety VS will be adjusted
accordingly to fulfill the requirements on CS based on the
elements existing in sp \ sr.

(S or CS changed bounds)
α = cr, β = cp

{} �→ {VS ≥ a, VS ≤ ‖sr‖+ c}
where a = min(‖sr 	 b‖ : b ⊆ (sp \ sr) ∧ |b 	 sr| = α), and
c = max(‖d‖ : d ⊆ (sp \ sr) ∧ ‖d 	 sr‖ > ‖sr‖ ∧ |d 	 sr| = β).

For example, consider a multiset variable S which up-
dates its bounds to DS = [{{1, 1}}, {{1, 1, 1, 2, 2, 3}}] (i.e.,
occ(1, S) = [2, 3], occ(2, S) = [0, 2], occ(3, S) = [0, 1]),
DVS

= [1, 3], and cr is updated from 2 to 4 (i.e., DCS
=

[4, 6]). Here, S must contain at least four elements. With the
current vr, S can only have at most three 1s and one more
element is needed to reach cr. Other elements, which lead to

a minimal change in vr, are selected from their upper bounds.
Based on the inference rule, b refers to a subset of (sp \ sr)
where D(sp\sr) = [∅, {{1, 2, 2, 3}}] and the cardinality of b�sr

equals cr (i.e., 4). Thus, vr equals the minimum variety of the
union of sr and a possible b (i.e., ‖{{1, 1}} ∪ {{1, 2}}‖ = 2).
VS is updated to [2, 3].

a and c can be obtained using the same way as finding a
in the previous inference rule, but with different conditions.
Thus, the complexity for this inference rule as a whole is also
bounded by the sorting procedure O(n log n), where n is the
number of distinct elements in S.

When the cardinality CS is fixed and equals either |sr| or
|sp|, S can be set to the corresponding bound (i.e., all oc-
currences occ(i, S) can be fixed) and VS can also be bound
accordingly.

(CS is bound)
CS = |sr|

{} �→ {S = sr, VS = ‖sr‖}
CS = |sp|

{} �→ {S = sp, VS = ‖sp‖}

When both the cardinality CS and the variety VS are bound
to the same value α, S degenerates to a set. Thus, the occur-
rence of each element occ(i, S) will be at most one.

(CS and VS are bound and equal)
CS = VS = α, occp(i, S) > 1

{} �→ {occ(i, S) ≤ 1}

(5) Failure

A failure can be detected when any one of the conditions
is true: (1) the lower bound sr is not included in the upper
bound sp; or (2) the domain of the cardinality variable DCS

becomes empty; or (3) the domain of the variety variable DVS

becomes empty.

(S, CS , or VS changed bounds)
not(sr ⊆ sp)

{} �→ fail

DCS
= ∅

{} �→ fail

DVS
= ∅

{} �→ fail

The inference rules described in this subsection are in-
complete in the sense that they only enforce bounds consis-
tency on the component variables. They do not enforce the
strongest possible consistency, as it is intractable in general.

Theorem 1. Enforcing GAC on a multiset variable consisting
of occurrence, cardinality, and variety variables is NP-hard.

Proof. Enforcing GAC on any general constraints on integer
variables is NP-hard [Bessiere et al., 2007]. An integer vari-
able is a special case of a multiset variable, which degenerates
to an integer variable when both cardinality and variety equal
1. Hence the result.

In fact, our primary aim is not for completeness, but for in-
ference rules that are efficiently implementable. Nonetheless,
the inference rules as a whole maintain more than multiset
bounds consistency.

Theorem 2. The inference rules (1) between occ(i, S) and
CS , (2) between occ(i, S) and VS , (3) between CS and VS ,
(4) among occ(i, S), CS , and VS , and (5) for failure collec-
tively enforce a consistency level strictly stronger than multi-
set bounds consistency.

555



Proof. Due to space limitations, we skip the proof that our
inference rules are at least as strong as multiset bounds con-
sistency. For strictness, the two examples under “(4) Infer-
ences among occ(i, S), CS , and VS” show that given a do-
main which is already multiset bounds consistent, the infer-
ence rules can further tighten the bounds of CS or VS . Hence
the result.

3.4 Multiset Constraints

The previous subsection describes the inferences within one
multiset variable. In this subsection, we focus on propagation
that occurs across different multiset variables. We give some
constraint propagation rules that enforce bounds consistency
on some common multiset constraints. Performing inferences
on the cardinality and variety variables are known as cardi-
nality reasoning and variety reasoning respectively. For each
multiset constraint, we use an example to show how they are
useful in increasing constraint propagation. In the rules, the
changes in the constraint store involving the cardinality vari-
ables are adopted from Azevedo and Barahona [2000], but
those involving the variety variables are more generalized.

Equality Constraint (X = Y )

If X and Y are told to be equal, then their cardinalities and
varieties are also equal respectively.

{X = Y } �→ {occ(i, X) = occ(i, Y ), CX = CY , VX = VY }

For example, consider the equality constraint X = Y ,
where n = 3, Docc(1,X) = [0, 2], Docc(2,X) = [0, 2],
Docc(3,X) = [0, 2], DCX

= [4, 4], DVX
= [2, 2], Docc(1,Y ) =

[0, 2], Docc(2,Y ) = [0, 2], Docc(3,Y ) = [0, 2], DCY
= [4, 4],

and DVY
= [3, 3]. Without the variety variables VX and

VY (and thus without variety reasoning), there are no prun-
ings available. However, with variety reasoning, the problem
fails immediately because when X = Y (i.e., occ(i, X) =
occ(i, Y ) for all elements i), VX = VY is obviously violated.

Subset Constraint (X ⊆ Y )

If Y contains X , then CY is greater than or equal to CX , and
VY is also greater than or equal to VX .

{X ⊆ Y } �→ {occ(i, X) ≤ occ(i, Y ), CX ≤ CY , VX ≤ VY }

Consider the subset constraint X ⊆ Y , where DX =
[∅, {{1, 1, 2, 2, 3, 3, 3}}] with cardinality 5 and variety 3 (i.e.,
Docc(1,X) = [0, 2], Docc(2,X) = [0, 2], Docc(3,X) =
[0, 3]), DCX

= [5, 5], DVX
= [3, 3], and DY =

[∅, {{1, 1, 2, 2, 3, 3, 3}}] with cardinality 5 and variety 2 (i.e.,
Docc(1,Y ) = [0, 2], Docc(2,Y ) = [0, 2], Docc(3,Y ) = [0, 3]),
DCY

= [5, 5], DVY
= [2, 2]. With variety reasoning, the

problem fails immediately because VX can never be smaller
than or equal to VY (i.e., 3 �≤ 2). Again, without variety
reasoning, there are no available prunings.

Union Constraint (X ∪ Y = Z)
Union takes the maximum number of occurrences of each
element. When Z is the union of X and Y , occ(i, Z) =
max(occ(i, X), occ(i, Y )) for all elements i. CZ (resp. VZ )
is smaller than or equal to CX +CY (resp. VX +VY ). On the

other hand, the lower bound of CZ (resp. VZ ) can be obtained
from the maximum of the following two cases: (1) Suppose
SZ contains SX (i.e., SX ⊆ SZ), SZ will have at least CX

elements (resp. VX distinct elements). We can safely add the
elements which appear in SY but not in SX (i.e., yr \ xp)
to SZ because SZ is the multiset union and it takes all el-
ements in both SX and SY . Thus, CZ ≥ CX + |yr \ xp|
(resp. VZ ≥ VX + ‖yr \ xp‖). (2) Similarly, we can add

the elements in (xr \ yp) to SZ if SZ contains SY . Thus,
CZ ≥ CY + |xr \ yp| (resp. VZ ≥ VY + ‖xr \ yp‖).

{X ∪ Y = Z}
�→ {occ(i, Z) = max(occ(i, X), occ(i, Y )),

occ(i, X) ≤ occ(i, Z), occ(i, Y ) ≤ occ(i, Z),
CZ ≤ CX + CY , VZ ≤ VX + VY ,
CZ ≥ max(CX + |yr \ xp|, CY + |xr \ yp|),
VZ ≥ max(VX + ‖yr \ xp‖, VY + ‖xr \ yp‖)}

Consider the union constraint X ∪ Y = Z , where DX =
[∅, {{1, 1, 2, 2, 3, 3}}] (i.e., Docc(1,X) = [0, 2], Docc(2,X) =
[0, 2], Docc(3,X) = [0, 2]), DCX

= [1, 2], DVX
= [1, 1],

DY = [∅, {{1, 1, 2, 2, 3, 3}}], (i.e., Docc(1,Y ) = [0, 2],
Docc(2,Y ) = [0, 2], Docc(3,Y ) = [0, 2]), DCY

= [1, 2],
DVY

= [1, 1], and DZ = [{{1, 2, 3}}, {{1, 1, 2, 2, 3, 3}}], (i.e.,
Docc(1,Z) = [1, 2], Docc(2,Z) = [1, 2], Docc(3,Z) = [1, 2]),
DCZ

= [3, 6], DVZ
= [3, 3]. With variety reasoning, the

problem fails immediately because VZ can never be smaller
than or equal to the sum of VX and VY . Without reasoning
on the three variety variables, the problem will not fail even
when 3 �≤ 1 + 1.

Union-Plus Constraint (X � Y = Z)

When Z is the union-plus of X and Y , CZ equals CX + CY

because union-plus sums up all the elements in both X and
Y . For all elements i, occ(i, Z) = occ(i, X) + occ(i, Y ).
However, VZ is smaller than or equal to VX + VY because
X and Y can contain the same kind of elements (i.e., ‖X‖+
‖Y ‖ �= ‖X � Y ‖). For the lower bound of VZ , it can be
obtained in the same way as in the union constraint.

{X 	 Y = Z}
�→ {occ(i, Z) = occ(i, X) + occ(i, Y ),

occ(i, X) ≤ occ(i, Z), occ(i, Y ) ≤ occ(i, Z),
CZ = CX + CY , VZ ≤ VX + VY ,
VZ ≥ max(VX + ‖yr \ xp‖, VY + ‖xr \ yp‖)}

Consider a union-plus constraint X � Y = Z , where
DX = [∅, {{1, 1, 2, 2, 3, 3}}] (i.e., Docc(1,X) = [0, 2],
Docc(2,X) = [0, 2], Docc(3,X) = [0, 2]), DCX

= [1, 2],
DVX

= [1, 1], DY = [∅, {{1, 1, 2, 2, 3, 3}}] (i.e., Docc(1,Y ) =
[0, 2], Docc(2,Y ) = [0, 2], Docc(3,Y ) = [0, 2]), DCY

= [1, 2],
DVY

= [1, 1], and DZ = [{{1, 2, 3}}, {{1, 1, 2, 2, 3, 3}}] (i.e.,
Docc(1,Z) = [1, 2], Docc(2,Z) = [1, 2], Docc(3,Z) = [1, 2]),
DCZ

= [3, 6], DVZ
= [3, 3]. Variety reasoning fails the prob-

lem immediately because VZ can never be smaller than or
equal to the sum of VX and VY . Without reasoning on the
three variety variables, the problem will not fail even when
3 �≤ 1 + 1.

556



Intersection Constraint (X ∩ Y = Z)
If Z is the intersection of X and Y , then CZ is smaller than
or equal to both CX and CY , and VZ is also smaller than
or equal to both VX and VY . This is because intersection
takes the minimum number of occurrence of each element be-
tween X and Y (i.e., occ(i, Z) = min(occ(i, X), occ(i, Y ))
for all elements i). The upper bound of CZ (resp. VZ ) can
be obtained from the minimum of the following two cases.
(1) For the elements existing only in xr but not in yp (i.e.,

xr \ yp), they must not be part of the intersection. We can
safely subtract these elements from CX (resp. subtract these
kinds of elements from VX ), resulting CZ ≥ CX − |xr \ yp|
(resp. VZ ≥ VX − ‖xr \ yp‖). (2) Similarly, we can sub-
tract the elements that exist in yr but not in xp (i.e., yr \ xp)
from CY (resp. subtract these kinds of elements from VY ),
resulting CZ ≥ CY − |yr \ xp| (resp. VZ ≥ VY −‖yr \xp‖).

{X ∩ Y = Z}
�→ {occ(i, Z) = min(occ(i, X), occ(i, Y )),

occ(i, Z) ≤ occ(i, X), occ(i, Z) ≤ occ(i, Y ),
CZ ≤ min(CX , CY ), VZ ≤ min(VX , VY ),
CZ ≥ min(CX − |xr \ yp|, CY − |yr \ xp|),
VZ ≥ min(VX − ‖xr \ yp‖, VY − ‖yr \ xp‖)}

Consider an intersection constraint X ∩ Y = Z ,
where DX = [∅, {{1, 1, 2, 2, 3, 3, 3}}] (i.e., Docc(1,X) =
[0, 2], Docc(2,X) = [0, 2], Docc(3,X) = [0, 3]), DCX

=
[1, 3], DVZ

= [1, 1], DY = [∅, {{1, 1, 2, 2, 3, 3, 3}}] (i.e.,
Docc(1,X) = [0, 2], Docc(2,X) = [0, 2], Docc(3,X) = [0, 3]),
DCY

= [1, 3], DVY
= [1, 1], and DZ = [∅, {{1, 2, 3, 3, 3}}]

(i.e., Docc(1,X) = [0, 1], Docc(2,X) = [0, 1], Docc(3,X) =
[0, 3]), DCZ

= [2, 4], DVZ
= [2, 2]. With variety reason-

ing, the problem fails immediately because VZ can never be
smaller than or equal to both VX and VY . The problem will
not fail without variety reasoning even when 2 �≤ 1.

4 Experimental Results

To verify the feasibility and efficiency of our proposal, we
implement our multiset variable representation, the inference
rules, and the multiset constraints in ILOG Solver 6.0 [ILOG,
2003]. We use the extended Steiner system and the tem-
plate design problem as the benchmark problems. While the
standard Steiner system is only set-based, the extended ver-
sion is an important and practical multiset problem in the
area of information retrieval [Johnson and Mendelsohn, 1972;
Bennett and Mendelsohn, 1980; Park and Blake, 2008]. Solv-
ing the extended Steiner system can provide solutions to the
problem of a multiset batch code.

The extended Steiner system ES(t, k, v) is a collection
of b blocks. Each block is a k-element multiset drawn
from a v-element set whose elements can be drawn mul-
tiple times. For every two blocks in the collection, the
cardinality of their intersection must be smaller than t.
For example, one possible solution for ES(2, 3, 3) in 3
blocks is {{{1, 1, 2}}, {{2, 2, 3}}, {{3, 3, 1}}}. The intersec-
tion of {{1, 1, 2}} and {{2, 2, 3}} is {{2}}; the intersection of
{{1, 1, 2}} and {{3, 3, 1}} is {{1}}; the intersection of {{2, 2, 3}}
and {{3, 3, 1}} is {{3}}. All of them have size smaller than
t = 2. In our experiments, we adapt the extended Steiner

SB SB+CR SB+CR+VR
(t,k,v) b fails runtime fails runtime fails runtime

(2, 3, 4) 2 307 0.01 83 0 20 0
3 2266 0.04 518 0.02 135 0
4 9530 0.2 2232 0.1 737 0.04

(2, 3, 5) 2 800 0.01 222 0.01 12 0.02
3 13812 0.23 3079 0.11 156 0.01
4 166064 3.56 33679 1.58 3539 0.21
5 1185644 31.37 244547 14.41 39930 3
6 4744639 152.77 1095106 78.97 244430 22.67

(2, 4, 4) 2 867 0.01 204 0 70 0
3 6246 0.1 1330 0.04 581 0.03
4 20425 0.42 4980 0.21 2757 0.18

(2, 4, 5) 2 2800 0.04 638 0.03 202 0
3 64458 1.12 12636 0.46 4603 0.21
4 627704 14.13 124611 5.91 57329 3.66
5 2800951 79.37 637199 38.06 356785 29.27

Table 2: Maximization results of the extended Steiner sys-
tems. The variety of each multiset is at least 2.

SB SB+CR SB+CR+VR
(t,k,v) b fails runtime fails runtime fails runtime

(2, 3, 6) 2 1751 0.02 480 0.01 8 0
3 14895 0.28 2992 0.12 13 0.01
4 57449 1.33 9548 0.49 17 0

(2, 4, 6) 2 6072 0.09 1219 0.04 204 0.02
3 184841 3.55 33165 1.34 11709 0.59
4 848172 20.62 132400 7.04 56762 3.89

(3, 4, 4) 2 446 0.02 160 0.02 26 0
3 2549 0.04 793 0.02 135 0.01
4 9615 0.18 2646 0.11 634 0.04

(3, 4, 5) 2 1475 0.02 537 0.01 67 0.01
3 35582 0.58 10913 0.4 1831 0.07
4 591668 12.07 160724 7.65 29938 1.66
5 6565175 160.67 1630805 96.76 312397 22.7
6 48187790 1370.32 11387223 812 2108410 194.99
7 - - - - 9813128 1125.01

(3, 4, 6) 2 4122 0.05 1537 0.05 24 0.01
3 80815 1.4 27386 1.17 63 0.01
4 3994239 87.12 1187476 66.63 4134 0.25
5 - - 48272955 3358.97 370386 26.52
6 - - - - 17854829 1562.45

Table 3: Maximization results of the extended Steiner sys-
tems. The variety of each multiset is at least 3.

system to an optimization problem which maximizes the sum
of the varieties of the multisets in a solution. To further in-
crease problem difficulty, we also constrain each multiset to
have at least certain varieties.

The experiments are run on a Sun Blade 2500 (2 × 1.6GHz
US-IIIi) workstation with 2GB memory. We report the num-
ber of fails (i.e., the number of backtracks occurred in solving
a model) and CPU time in seconds to find and prove the opti-
mal solution for each instance. Comparisons are made among
set bounds consistency (SB), set bounds consistency with car-
dinality reasoning (SB+CR), and set bounds consistency with
cardinality and variety reasoning (SB+CR+VR) proposed in
this paper. We use the naive approach mentioned in Section
3.2 to model the cardinality variables in SB, and the vari-
ety variables in both SB and SB+CR. The meta-constraints
are enforced by the built-in propagation algorithms in ILOG
Solver instead of the inference rules. In the tables, the best
number of fails and CPU time among the results for each in-
stance are highlighted in bold. A cell labeled with “-” denotes
a timeout after one hour.

Tables 2 and 3 show the experimental results of the max-
imization and the variety of each multiset is at least 2 and
3 respectively. Among the three propagation approaches,

557



SB+CR+VR always achieves the fewest number of fails.
There are more than 90% reduction in number of fails when
compared to SB alone, and more than 50% reduction when
compared to SB+CR. This confirms that variety (and cardi-
nality) reasoning is highly effective in reducing search space.
The extra prunings are so significant that they compensate
the overhead of extra computational effort spent for vari-
ety (and cardinality) reasoning. For runtime, SB+CR+VR
is also always the fastest, although the proportion of reduc-
tion is less than that for the number of fails. The reduction of
SB+CR+VR over SB+CR in Table 2 is moderate, but that in
Table 3 is significant. There are even instances in which both
SB and SB+CR cannot finish execution within the time limit,
but SB+CR+VR can. This also shows that the usefulness of
variety reasoning sometimes depends on the tightness of the
variety constraints in a problem.

For the template design problem, each multiset variable
represents a template and its domain values are the possible
combinations of designs which allow repetitions. Like the
extended Steiner system, we further impose a restriction to
constrain the varieties of each multiset. Due to space limi-
tations, we do not show the tables, but from the experimen-
tal results, SB+CR+VR always achieves the fewest number
of fails. There are at least 20% reduction in the number of
fails when compared to SB and SB+CR. When the problem
instance has no solutions, enforcing SB+CR+VR can even
reduce the search space by up to 70%. The savings in run-
time, however, is not as significant as those in the extended
Steiner system. The performance difference of SB+CR+VR
between the satisfiable and unsatisfiable instances is an inter-
esting phenomenon which we are still investigating.

Note that our current implementation of the multiset vari-
able representation and the rules is only prototypical. There
are still rooms for improvement. For example, it is known that
adjusting the triggering order of the rules (depending on the
computational cost of the rules) can affect the performance
[Azevedo and Barahona, 2000]. We expect that our imple-
mentation can be optimized in the future.

5 Related Work

Conjunto [Gervet, 1997] is the first constraint solver devel-
oped in which a set variable is represented by set intervals.
Other set constraint solvers include Oz [Müller and Müller,
1997], Mozart [Müller, 2001], and ROBDD [Lagoon and
Stuckey, 2004; Hawkins et al., 2005]. Azevedo and Bara-
hona [2000] further proposed cardinality reasoning on set
constraints and developed another set constraint solver, Car-
dinal, to handle the set cardinality more actively and improve
the performance in solving CSPs with set variables.

Kiziltan and Walsh [2002; 2003] suggested three multi-
set representations: bounds, occurrence, and fixed cardinal-
ity representations. They proved that occurrence represen-
tation is more expressive than bounds representation when
maintaining domain consistency, and is as expressive as when
maintaining bounds consistency. Fixed cardinality represen-
tation is incomparable to the other two. All three of them are
compact but cannot represent all forms of disjunctions.

6 Conclusion

We have introduced cardinality and variety variables to mul-
tiset variables based on the occurrence representation. While
the introduction of cardinality variable is a straightforward
generalization to the set variable counterpart, the idea of va-
riety variable is a new concept. We have exploited the variety
property to introduce new inference rules to increase pruning
opportunities, and improved the propagation of some com-
mon multiset constraints through variety reasoning.

There can be plenty of scope for future research for mul-
tiset CSPs. An example is to perform variety reasoning on
other multiset global constraints like the disjoint and parti-
tion constraints. Other multiset-specific properties can also
be incorporated into multiset variable representations to even
further enhance constraint propagation.

References

[Azevedo and Barahona, 2000] F. Azevedo and P. Barahona.
Modelling digital circuits problems with set constraints. In
Proc. of CL’00, pages 414–428, 2000.

[Bennett and Mendelsohn, 1980] F.E. Bennett and
E. Mendelsohn. Extended (2, 4)-designs. J. Comb.
Theory, Ser. A, 29(1):74–86, 1980.

[Bessiere et al., 2007] C. Bessiere, E. Hebrard, B. Hnich,
and T. Walsh. The complexity of reasoning with global
constraints. Constraints, 12(2):239–259, 2007.

[Gervet, 1997] C. Gervet. Interval propagation to reason
about sets: Definition and implementation of a practical
language. Constraints, 1(3):191–244, 1997.

[Hawkins et al., 2005] P. Hawkins, V. Lagoon, and P.J.
Stuckey. Solving set constraint satisfaction problems using
ROBDDs. JAIR, 24:109–156, 2005.

[ILOG, 2003] ILOG. ILOG Solver 6.0 Reference Manual,
2003.

[Johnson and Mendelsohn, 1972] D.M. Johnson and N.S.
Mendelsohn. Extended triple systems. Aequat. Math.,
8(3):291–298, 1972.

[Kiziltan and Walsh, 2002] Z. Kiziltan and T. Walsh. Con-
straint programming with multisets. In Proc. of Sym-
Con’02, 2002.

[Lagoon and Stuckey, 2004] V. Lagoon and P.J. Stuckey. Set
domain propagation using ROBDDs. In Proc. of CP’04,
pages 347–361, 2004.

[Müller and Müller, 1997] T. Müller and M. Müller. Finite
set constraints in Oz. In 13. Workshop Logische Program-
mierung, pages 104–115, 1997.

[Müller, 2001] T. Müller. Constraint Propagation in Mozart.
Doctoral dissertation, Universität des Saarlandes, Ger-
many, 2001.

[Park and Blake, 2008] E.Y. Park and I. Blake. Construction
of extended steiner systems for information retrieval. Rev.
Mat. Complut., 21(1):179–190, 2008.

[Walsh, 2003] T. Walsh. Consistency and propagation with
multiset constraints: A formal viewpoint. In Proc. of
CP’03, pages 724–738, 2003.

558


