
Open Contractible Global Constraints

Michael J. Maher
NICTA∗ and University of NSW

Michael.Maher@nicta.com.au

Abstract
Open forms of global constraints allow the addi-
tion of new variables to an argument during the
execution of a constraint program. Such forms
are needed for difficult constraint programming
problems where problem construction and problem
solving are interleaved. However, in general, filter-
ing that is sound for a global constraint can be un-
sound when the constraint is open. This paper pro-
vides a simple characterization, called contractibil-
ity, of the constraints where filtering remains sound
when the constraint is open. With this characteriza-
tion we can easily determine whether a constraint is
contractible or not. In the latter case, we can use it
to derive the strongest contractible approximation
to the constraint. We demonstrate how specific al-
gorithms for some closed contractible constraints
are easily adapted to open constraints.

1 Introduction
The classic CSP model of constraint satisfaction [Dechter,
2003; Rossi et al., 2006] has a fixed static collection of vari-
ables over which a solution must be found. However, in many
problems it is natural for the presence of some variables to be
contingent on the value of other variables. This is true of
configuration problems and scheduling problems that involve
process-dependent activities [Barták, 2003]. More generally,
for difficult problems the intertwining of problem construc-
tion and problem solving provides a way to manage the com-
plexity of a problem, and thus new variables and constraints
may arise after solving has begun. Programming languages
supporting constraint programming generally have the flexi-
bility to add variables and constraints during the execution of
a model.

However, global constraints do not have this flexibility: all
variables must be available at the time the constraint is im-
posed, so variables cannot simply be added when they be-
come available. The collection of variables they constrain is

∗NICTA is funded by the Australian Government as represented
by the Department of Broadband, Communications and the Digi-
tal Economy and the Australian Research Council through the ICT
Centre of Excellence program.

closed, rather than open. This can leave the filtering effect of
the global constraint until too late in the execution, resulting
in a large search space.

Recent work has focused on supporting open versions of
global constraints. Barták [Barták, 2003] first formulated this
issue and described a generic implementation technique to
make open versions for the class of monotonic global con-
straints. But this technique is inefficient, and he also provided
a specific implementation of the open ALLDIFFERENT con-
straint by modifying Régin’s algorithm [Régin, 1994] for the
closed ALLDIFFERENT.

A notion of Open CSP was investigated in [Faltings and
Macho-Gonzalez, 2005]. In that work the set of variables is
closed but the domains are open, that is, extra values can be
added to variable domains.

Later work [van Hoeve and Régin, 2006] addressed the
problem when the variables that might be added to a con-
straint are specified in advance and a set variable describes
the set of variables that will participate in the constraint. In
this formulation, it becomes possible to filter the set vari-
able in addition to the individual variables. [van Hoeve and
Régin, 2006] also gives an implementation the global cardi-
nality constraint GCC and of multiple open GCC constraints
over disjoint variables. Another work [Maher, 2009] allows
only the number of variables to be constrained. However, in
this paper we address Barták’s model of open constraints.

A major difficulty in implementing open constraints is that
a propagator for a closed constraint may be unsound for the
corresponding open constraint. That is, the propagator may
make an inference that turns out to be unjustified once the se-
quence of variables is extended. In this paper we focus on
the issue of identifying constraints for which a closed propa-
gator is sound as an open propagator. It turns out that these
constraints have a simple characterization, which we call con-
tractibility, and which allows us to easily determine whether a
constraint is contractible or not. This characterization is also
convenient for finding the tightest contractible approximation
of an uncontractible constraint. We illustrate our results with
a wide variety of global constraints.

For contractible constraints we can, in theory, implement
an open constraint by interleaving the propagator for the
closed constraint and variable extension. But this does not
ensure that propagators for closed contractible constraints can
be cleanly and easily modified to implement open constraints.

578

We examine specific propagator algorithms for several closed
constraints and demonstrate that they are easily adapted to
implement the corresponding open constraint.

After some preliminaries in Section 2 we introduce con-
tractibility in Section 3. We show that it characterizes those
constraints for which closed propagators remain sound when
the constraint is open, and develop an algebra for construct-
ing contractible constraints. We characterize contractibility in
language-theoretic terms in Section 4, and use that character-
ization to identify contractible constraints and tight approx-
imations of uncontractible constraints. In Section 5 we de-
scribe modified algorithms for several open contractible con-
straints.

2 Background
The reader is assumed to have a basic knowledge of con-
straint programming, CSPs, global constraints, and filtering,
as might be found in [Dechter, 2003; Rossi et al., 2006;
Beldiceanu et al., 2005].

For the purposes of this paper, a global constraint is a re-
lation over a sequence of variables. Other arguments of a
constraint are considered parameters and are assumed to be
fixed before execution. While some global constraints (such
as ALLDIFFERENT and GCC) are more naturally represented
as relations over an unordered collection of variables, we will
find it convenient to ignore this abstraction: for some con-
straints (such as SEQUENCE) a sequence of variables is nec-
essary, and uniformity over all constraints will simplify our
treatment of the issues. A sequence of variables will be de-
noted by �X or [X1, . . . , Xn].

We make no a priori restriction on the variables that may
participate in the sequence except that, in common with most
work on global constraints, we assume that no variable ap-
pears more than once in a single constraint.

There are some specific global constraints that we de-
fine for completeness. These and other global con-
straints are discussed more completely in [Beldiceanu et
al., 2005] and the references therein. The constraint
ALLDIFFERENT([X1, . . . , Xn]) [Régin, 1994] states that the
variables X1, . . . , Xn take distinct values. The global car-
dinality constraint GCC(�v,�l, �u, [X1, . . . , Xn]) [Régin, 1996]
states that, for every i, the value vi occurs between li
and ui times in the list of variables. The constraint
REGULAR(A, [X1, . . . , Xn]) [Pesant, 2004] states that the
value of the list of variables, when considered as a word,
is accepted by the automaton A. Similarly, the constraint
CFG(G, [X1, . . . , Xn]) [Quimper and Walsh, 2006; Sell-
mann, 2006] states that the value of the list of variables, when
considered as a word, is generated by the context-free gram-
mar G.

The constraint SEQUENCE(l, u, k, [X1, . . . , Xn], �v)
[Beldiceanu and Contejean, 1994] states that any consec-
utive sequence of k variables Xj , . . . , Xj+k−1 contains
between l and u occurrences of values from �v. The con-
straint SLIDINGSUM(l, u, k, [X1, . . . , Xn]) [Beldiceanu
and Carlsson, 2001] states that the sum of any consecutive
sequence of k variables lies between l and u. The constraint
CONTIGUITY([X1, . . . , Xn]) [Maher, 2002] states that the

variables Xi take values from {0, 1} and the variables taking
the value 1 are consecutive. The lexicographical ordering
constraint [X1, . . . , Xn] ≤lex [Z1, . . . , Zn] [Frisch et al.,
2002] states that the sequence of X variables is lexicographi-
cally less than or equal to the sequence of Z variables, where
we assume some ordering on the underlying values. The
precedence constraint s ≺ �X t [Law and Lee, 2004] states
that if t appears in the sequence �X then s appears at a lower
index.

Each variable X has a static type which defines a set of
values T (X) which it may take. In addition, generally, each
variable has an associated set S ⊆ T (X) of values, called
its domain. We will view this simultaneously as: a function
D : V ars → 2V alues where D(X) = S, a unary relation
D(X) which is satisfied only when the value of X is some
s ∈ S, and the pointwise extension of D to sequences of
variables.

3 Contractible constraints
We want to extend a constraint C([X1, . . . , Xn]) with an ex-
tra variable Y to C([X1, . . . , Xn, Y]). We would like to do
filtering on the smaller constraint without knowing whether it
will be extended to Y , or further. When we can do this, we
have a kind of monotonicity property of C.

Definition 1 We say a constraint C([X1, . . . , Xn]) is con-
tractible if, there is a number m such that for all n ≥ m
we have

C([X1, . . . , Xn, Y]) → C([X1, . . . , Xn])

The least such m is called the contractibility threshold1.

Thus C is contractible iff every solution of
C([X1, . . . , Xn, Y]), when restricted to X1, . . . , Xn

where m ≤ n, is a solution of C([X1, . . . , Xn]). The
property is akin to the “optimal substructure” property that
is a pre-requisite for the use of dynamic programming in
optimization problems [Cormen et al., 2001] which requires
that optimal solutions of a problem also solve subproblems
optimally. Here it is only satisfiability, and not optimality,
that is involved.

It follows that any sound form of filtering (such as arc con-
sistency or bounds consistency) on a contractible constraint
C([X1, . . . , Xk]) is safe in the sense that any values deleted
from domains in that process could also be deleted while fil-
tering on C([X1, . . . , Xn]) for any n ≥ k.

Proposition 1 Let C be a contractible constraint. Suppose
a sound filtering algorithm for C([X1, . . . , Xn]) reduces the
domain D for �X to D′. Then

D(�X)∧C([X1, . . . , Xn, Y]) ↔ D′(�X)∧C([X1, . . . , Xn, Y])

Furthermore, if this property holds for all sound filterings
then C must be contractible.

1In most cases the contractibility threshold is 0, and we will not
consider constraints with a higher threshold in this paper.

579

Consequently, for contractible constraints, filtering does
not need to be undone if the list is lengthened. That is, algo-
rithms for filtering a closed contractible constraint are valid
also for the corresponding open constraint.

Conversely, any constraint that is not contractible might
need to undo the effects of filtering if the list is length-
ened. If σ is a solution of C([X1, . . . , Xn, Y]), but not
of C([X1, . . . , Xn]) then propagation on C([X1, . . . , Xn])
might eliminate σ. For example, a constraint

∑
i Xi = 5

would propagate X1 = 5 if the sequence �X contains just one
variable, thus eliminating solutions such as X1 = 2, X2 = 3.
When the second variable is added, all propagation that is a
consequence of the inference X1 = 5 must be undone.

The second part of this proposition shows that contractibil-
ity exactly characterizes the guarantee that closed filtering is
safe for open constraints. That is, it is exactly the contractible
constraints for which it is always sound to interleave closed
filtering and addition of new variables.

The notion of contractibility is a variation of Barták’s
monotonicity [Barták, 2003] where we do not explicitly dis-
cuss variable domains. Before proceeding, we make this
claim precise. We formulate Barták’s monotonicity as fol-
lows.

Definition 2 Let D be a domain. We say a constraint C is
monotonic wrt D if, for any pair of disjoint sequences of vari-
ables �X and �Y

{ �X | C(�X�Y) ∧ D(�X) ∧ D(�Y)} ⊆ { �X | C(�X) ∧ D(�X)}
Contractibility differs from monotonicity in that the defini-

tion is based entirely on the constraint, independent of the do-
mains of variables. Hence it is not tied to domain-based rea-
soning; it is equally compatible with the more general frame-
work of [Maher, 2003]. On the other hand, monotonicity
is more flexible in reasoning about constraints that are only
”partly contractible”. The close relationship between mono-
tonicity and contractibility is clear.

Proposition 2 If C is contractible then for any domain D, C
is monotonic wrt D. Conversely, if C is monotonic wrt every
domain D then C is contractible.

The SLIDEj meta-constraint [Bessière et al., 2008] can
be used to define several constraints on a sequence of
variables. We use a variant of SLIDEj that starts apply-
ing the constraint at the pth position, rather than the first.
SLIDEp

j (C, �X) holds iff C(Xij+p, . . . , Xij+p+k−1) holds for
i = 0, 1, . . . ,
n−p−k+1

j �. SLIDEj is equal to SLIDE1
j . SLIDE

is equal to SLIDE1.
Constraints defined directly with SLIDEp

j are contractible.

Proposition 3 Any constraint C defined by the SLIDEp
j meta-

constraint as C(�X) ↔ SLIDEp
j (C

′, �X) is contractible.
Since the SEQUENCE and SLIDINGSUM constraints can

each be defined as SLIDE(C ′, �X), for appropriate constraint
C ′, it follows that they are both contractible.

For constraints where the order of variables is unimpor-
tant we can define a meta-constraint analogous to SLIDE,

which we will call SPLASH. Like SLIDE, it takes a fixed
arity constraint C ′ and a sequence of variables �X as ar-
guments. Let C ′ have arity k, and �X have length n,
and let Sk(�X) = {[Xi1 , . . . , Xik

] | ij < ij+1 for j =
1, ..., k − 1}. Then we define SPLASH(C ′, �X) ↔
∧

�Y ∈Sk(�X) C ′(�Y). SPLASH(C ′, �X) applies C ′ to ev-

ery subsequence of �X of length k. For example, we
can define ALLDIFFERENT(�X) as SPLASH(�=, �X) and
INTERDISTANCE(�X) as SPLASH(C ′, �X) where C ′(Z1, Z2)
↔ |Z1 − Z2| ≥ p. Thus, by the following proposition,
ALLDIFFERENT and INTERDISTANCE are contractible.

Proposition 4 Any constraint C defined by the SPLASH

meta-constraint as C(�X) ↔ SPLASH(C ′, �X) is contractible.

A constraint C of fixed arity k, when applied to a sequence
of variables �X , is assumed to be applied only to the initial
segment X1, . . . , Xk, or not at all if �X is shorter than k. With
this definition, C is contractible.

Once we have some contractible constraints, there are
many ways to build other contractible constraints, as the fol-
lowing proposition demonstrates.

Proposition 5 Let C1(�X) and C2(�X) be contractible
constraints on the same sequence of variables. Let
C(X1, . . . , Xk) be a constraint of fixed arity. Then

• C is contractible

• C1 ∧ C2 is contractible

• C1 ∨ C2 is contractible

• ∃Xi C1 is contractible

• ∀Xi C1 is contractible

In general, the negation or implication of contractible con-
straints is not contractible.

The previous results give us an algebra for constructing
complex contractible constraints, and can be used to demon-
strate that some existing constraints are contractible. For ex-
ample, CONTIGUITY is implemented in [Maher, 2002] essen-
tially as ∃�L, �R SLIDE2

3(C ′, [L1, X1, R1, L2, . . . , Xn, Rn]),
where C ′ has arity 7. Similarly, (�X ≤lex

�Y) is
encoded in [Bessière et al., 2008] essentially as
∃ �B SLIDE3(C ′, [B1, X1, Y1, B2, . . . , Xn, Yn]) where
C ′ has arity 4. By the previous propositions, CONTIGUITY
and ≤lex are contractible. Similarly, we can define a
weak version of GCC where there are no lower bounds
GCC(�v,�0, �u, [X1, . . . , Xn]) as

∧
vi∈�v SPLASH(C ′i, �X),

where C ′i has arity ui + 1 and states that not all its arguments
are equal to vi. By the previous propositions, this weak form
of GCC is contractible.

However, it is notable that the REGULAR constraint is not
contractible, despite the implementation in terms of SLIDE
outlined in [Bessière et al., 2008].

Example 1 Let A be an automaton that accepts the lan-
guage a + b2. Then REGULAR(A, [X1]) → X1 = a but
REGULAR(A, [X1, Y]) → X1 = b. Thus REGULAR is not
contractible.

580

The discrepancy arises because REGULAR is not con-
structed from the operations in the above propositions. Es-
sentially, the implementation defines

REGULAR(A, [X1, . . . , Xn]) ↔
∃ �Q SLIDE2(Transition, [Q0, X1, Q1, . . . , Xn, Qn])

∧ Start(Q0) ∧ Final(Qn)

where the 3-ary constraint Transition expresses the state
transitions of A, Start defines the start state(s) and Final
defines the final state(s). It is the constraint on the final vari-
able Qn that leads to uncontractibility; the remainder is ex-
pressible within the algebra.

4 Characterizing Contractibility
We can characterize when global constraints, such as
REGULAR, are contractible by viewing the solutions of a
global constraint as a formal language.

By insisting that variables in a constraint form a sequence
we are able to view global constraints as defining a formal
language. Each constraint C(�X) defines the language LC =
{σ(X1 . . . Xn) | σ is a solution of C([X1, . . . , Xn])} which
is the set of solutions of C, considered as words. Let P (L) =
{w | ∃u wu ∈ L} denote the set of prefixes of a language
L, called the prefix-closure of L. We say L is prefix-closed if
P (L) = L.

We can now make a simple observation that provides a use-
ful characterization of contractible constraints. If A defines a
prefix-closed language then REGULAR(A, �X) is contractible.
This claim holds more generally.

Proposition 6 Let C(�X) be a constraint over a sequence of
variables. Then C is contractible iff LC is prefix-closed.

This result applies to constraints based on formal lan-
guages, such as REGULAR and CFG, but it also applies to
constraints that are formulated differently. Thus, for exam-
ple, the solutions of SEQUENCE and SLIDINGSUM are prefix-
closed. Conversely, we see that constraining the final variable
in a sequence, as in Final(Qn), is not contractible.

We can use this characterization both to determine whether
a constraint is contractible or not, and as the basis for ap-
proximations of uncontractible constraints. We explore these
possibilities in the following subsections.

4.1 Classifying Constraints
It is not within the scope of this paper to determine the con-
tractibility of every global constraint. Nevertheless, we can
outline and demonstrate some principles that make it easy, in
most cases, to classify a global constraint as contractible or
not.

In general, constraints based on counting with a lower
bound (or equality) are not contractible. We can see this
by noting that any non-trivial lower bound on the number
of things in a sequence (or satisfied by a sequence) may
be violated by a prefix of the sequence. This was already
touched upon in [Barták, 2003], where the SUM constraint∑n

i=1 Xi = N was shown to be non-monotonic, but the ar-
gument holds for a wide range of constraints.

For example, PEAK counts the number of peaks in a se-
quence, but a prefix of the sequence may have fewer peaks.
Similarly, STRETCH places lower bounds on the span of
stretches, so that 1122 might be a solution, while 112 is not.
By a similar argument, constraints identifying properties of
an extreme element in a sequence, such as HIGHESTPEAK,
are not contractible. On the other hand NOPEAK is con-
tractible since, to the extent that there is counting, there is
no lower bound – only an upper bound of 0.

We can generalize and formalize these observations. A
function f is a non-decreasing accumulation function if
it maps sequences of values to values such that, for ev-
ery sequence �X and value Y , f([X1, . . . , Xn, Y]) ≥
f([X1, . . . , Xn]). Among such functions are counting the
number of elements in a sequence with a fixed property, iden-
tifying the highest peaks, and summing (some) non-negative
elements of a sequence. Note that summing possibly nega-
tive elements of a sequence is not non-decreasing. The first
part of the following proposition is an almost direct conse-
quence of the definitions of contractible and non-decreasing
accumulation function.
Proposition 7 Let C be a global constraint.

• Suppose C can be expressed as f(�X) ≤ Z. Then C
is contractible iff f is a non-decreasing accumulation
function.

• Suppose C can be expressed as f(�X) ≥ Z. Then C is
contractible iff f is a non-increasing accumulation func-
tion.

• Suppose C can be expressed as f(�X) = Z. Then C is
contractible iff f is a constant function.

Thus the constraint
∑n

i=1 Xi = N is not contractible, even
when the Xi’s are constrained to be non-negative. Similarly,∑n

i=1 Xi ≥ N is not contractible while, under the restric-
tion on the Xi’s

∑n
i=1 Xi ≤ N is contractible. This result

can be used to establish that PEAK, and HIGHESTPEAK are
not contractible and that NOPEAK is contractible, but it also
applies to many other counting and summing constraints in
[Beldiceanu et al., 2005].

Notice that in constraints like SEQUENCE and
SLIDINGSUM the use of a lower bound in the description of
the constraint C ′ to which SLIDE is applied does not prevent
contractibility. Each lower bound applies only to a small
part of the sequence. However, the RELAXEDSLIDINGSUM
constraint, which weakens the SLIDINGSUM constraint by
putting bounds on the number of times the C ′ constraint
is satisfied, is not contractible, because counting is an
accumulation function that is not non-increasing and the
lower bound applies to the entire sequence.

Some constraints can be recognised as contractible, based
only on their informal semantics. For example, DIFFN and
DISJUNCTIVE enforce that objects represented by the vari-
ables are non-overlapping. Clearly, if �XY forms a non-
overlapping set, then so does �X alone. Thus contractibility
follows directly from Definition 1. Similarly, CUMULATIVE,
BINPACKING and DISJOINT are contractible.

For other constraints, their informal semantics lead easily
to counterexamples to contractibility. Constraints that involve

581

computing the mean/average, median, mode, standard devia-
tion, etc of the sequence are not contractible. This is easily
recognised since these statistics are not, in general, preserved
after eliminating part of the sample set, and hence are not
prefix-closed. Alternatively, we could recognise that these
functions are not non-increasing, nor non-decreasing and ap-
ply Proposition 7.

The idea of contractibility is not useful for all global con-
straints. For example, it appears irrelevant to cyclic con-
straints like the cyclic REGULAR, cyclic SEQUENCE and
cyclic STRETCH constraints. In these constraints the se-
quence of variables is representing a cycle or circular list and
there is no natural end at which to add variables. Thus it is
not surprising that these constraints are not contractible.

There is sometimes a fine line between contractible and
uncontractible constraints. For example, while ≤lex is con-
tractible, <lex is not. To see the latter, observe that 111 <lex

112, but the corresponding prefixes are not strictly smaller
– they are equal. If the precedence constraint s ≺ �X t also
required that t appear in �X then the constraint is no longer
contractible (because rst satisfies this constraint, but rs does
not). Finally, notice that the SEQUENCE constraint is con-
tractible, but it has the form SLIDE(C ′, �X) where C ′ is essen-
tially a fixed-arity AMONG constraint; however, the (variable-
arity) AMONG constraint is not contractible.

4.2 Approximating Constraints
One approach to implementing uncontractible constraints is
to employ a contractible approximation of the constraint as
an open constraint, and then replace it with the original
constraint once the sequence of variables is closed [Barták,
2003]. The approximation must include all solutions of the
original constraint, to ensure that no solutions of that con-
straint are lost during filtering of the approximation. Proposi-
tions 6 and 7 can be used to identify the tightest such approx-
imation.

By Proposition 6, the tightest approximation of a constraint
is its prefix-closure. This is a convenient characterization for
language-based constraints. It is not difficult to show that
the the prefix-closure of an automaton can be obtained by
considering all states on a path between the start state and
a final state in the automaton to be final states. Thus, for
a REGULAR constraint, the tightest approximation is also a
REGULAR constraint which can be obtained from the original
simply by slightly modifying which states are final. Context-
free grammars also have a straightforward construction of the
prefix-closure. For CFG constraints also, the tightest approx-
imation is also a CFG constraint.

As discussed in [Barták, 2003], a constraint
∑n

i=1 Xi = N
where the Xi’s must be non-negative is not monotonic but
is approximated by the constraint

∑n
i=1 Xi ≤ N . Us-

ing Proposition 7 we can recognise this as the tightest con-
tractible approximation. Similarly, for a counting constraint
such as PEAK(�X, N), which states that there are exactly N

peaks in �X , the tightest contractible approximation states that
N is an upper bound on the number of peaks. The tight-
est approximation of the GCC is the weak form of GCC
discussed in Section 3. In all these cases, since counting

is a non-decreasing accumulation function, the tightest con-
tractible approximation is to eliminate the lower bounds. In
HIGHESTPEAK(�X, Z), the height of the highest peak is a
non-decreasing accumulation function and so the tightest ap-
proximation states that Z is an upper bound on the height of
the highest peak.

On the other hand, for some constraints where the accumu-
lation function is neither non-increasing nor non-decreasing
there appear to be no non-trivial approximations. For exam-
ple, consider a constraint AVERAGE(�X, M) stating that M

is the mean/average of the values of �X . Given a fixed M ,
any sequence of values can be a prefix of a sequence with
mean M . Hence the tightest contractible approximation of
AVERAGE is the constraint that accepts any sequence, that is,
the constraint true. For such a constraint there is no propa-
gation until the constraint is closed.

In [Maher, 2009] these results are carried through to the
design of propagators for open GCC, REGULAR and CFG.

5 Propagator Algorithms
It is perhaps unsurprising that implementations of closed
contractible constraints often can easily be adapted to pro-
vide a direct implementation of the corresponding open con-
straint. As observed earlier, contractible constraints can use
filtering algorithms designed for closed constraints also for
the corresponding open constraint. Barták’s generic im-
plementation technique [Barták, 2003] exploits this fact for
monotonic constraints by replacing the closed implementa-
tion of C([X1, . . . , Xn]) with the closed implementation of
C([X1, . . . , Xn, Y]) when the sequence is extended. How-
ever, it is preferable to preserve the existing state of C and ex-
tend it slightly to account for the presence of the new variable,
if this is possible. Such an implementation, which provides
a direct implementation of the open constraint, avoids dupli-
cation of work. In this case, the main issue in implementing
an open version of a contractible constraint is handling the
extension of the sequence of variables; more precisely, the
important invariants of the implementation must be preserved
or recovered after a variable is added. In this section we de-
scribe the changes needed to make open several contractible
constraints.

Constraints defined using only SLIDE, SPLASH, conjunc-
tion and existential quantification, such as CONTIGUITY and
≤lex, can be implemented by the corresponding decompo-
sition. In that case, the implementation can handle the se-
quence extension simply by asserting a copy or copies of the
constraint C ′ appropriate to the extension.

The lexicographical ordering constraint �X ≤lex
�Y is im-

plemented in [Frisch et al., 2002] by keeping track of (a) the
lowest index i where Xi and Yi are not both ground and equal,
and (b) the lowest index i where Xi >lex Yi. For each prop-
erty, if there is no satisfying index an infinite value is used.
The extension of the sequences with new variables will not
affect the validity of these indices, since the new variable
is either inserted after a finite index or before an infinite in-
dex. The implementation of the precedence constraint s ≺ �X t
[Law and Lee, 2004] uses a similar method, and is similarly
easily adapted.

582

The flow-based implementation of the SEQUENCE con-
straint [Maher et al., 2008] keeps a feasible flow in a flow
graph to represent the current state of the constraint. Suppose
the width of a window is k. When a variable is added, the
flow graph must be updated by adding two nodes (represent-
ing the new window) and 5 arcs (including one representing
the new variable), redirecting k − 1 arcs (to arrive at the final
node instead of the previously-final node; these arcs repre-
sent the existing variables that appear in the new window),
and changing the capacity of one arc (the outflow from the
previously-final node). The feasible flow of the original graph
can be extended to these additions in constant time, using the
fact that a solution σ to SEQUENCE([X1, . . . , Xn]) can be
extended to a solution of SEQUENCE([X1, . . . , Xn, Y]) by
defining σ(Y) = σ(Xn−k+1).

The shortest path implementation of SEQUENCE, denoted
by CD in [Brand et al., 2007], uses a potential function (for
an incremental shortest path algorithm [Cotton and Maler,
2006]) on a weighted graph to represent the current state of
the constraint. When a variable is added, a node and four arcs
are added to the graph and it is necessary to provide the po-
tential of the new node. We can choose this potential to be
π(Xn) + π(Xn−k+1) − π(Xn−k), using the fact above.

6 Conclusions
We have characterized the constraints for which the exten-
sion of the sequence of variables does not affect the sound-
ness of propagation, both in logical and language-theoretic
terms. We also identified an algebra for constructing con-
tractible constraints. These results were used both to easily
classify constraints as contractible or not, and to identify the
tightest contractible approximation of constraints. We also
showed how open versions of SEQUENCE, and lexicographic
and precedence constraints can be implemented. It is note-
worthy that these algorithms are the first described for open
constraints over a sequence of variables, rather than a set of
variables as in ALLDIFFERENT and GCC.

References
[Barták, 2003] R. Barták. Dynamic global constraints in

backtracking based environments. Annals of Operations
Research, 118:101–119, 2003.

[Beldiceanu and Carlsson, 2001] N. Beldiceanu and
M. Carlsson. Revisiting the cardinality operator and
introducing cardinality-path constraint family. In Proc. of
the Int. Conf. on Logic Programming, pages 59–73, 2001.

[Beldiceanu and Contejean, 1994] N. Beldiceanu and
E. Contejean. Introducing global constraints in CHIP.
Mathematical and Computer Modelling, 12:97–123,
1994.

[Beldiceanu et al., 2005] N. Beldiceanu, M. Carlsson, and J-
X. Rampon. Global constraint catalog. T-2005-08, SICS
Technical Report, 2005.

[Bessière et al., 2008] C. Bessière, E. Hebrard, B. Hnich,
Z. Kiziltan, and T. Walsh. Slide: a useful special case
of the cardpath constraint. In ECAI, pages 475–479, 2008.

[Brand et al., 2007] S. Brand, N. Narodytska, C.-G. Quim-
per, P. Stuckey, and T. Walsh. Encodings of the sequence
constraint. In Proc. CP. Springer, LNCS 4741, 2007.

[Cormen et al., 2001] T.H. Cormen, C.E. Leiserson,
R. Rivest, and C. Stein. Introduction to Algorithms,
Second Edition. The MIT Press, 2001.

[Cotton and Maler, 2006] S. Cotton and O. Maler. Fast and
flexible difference constraint propagation for DPLL(T). In
Proc. SAT-2006, pages 170–183, 2006.

[Dechter, 2003] R. Dechter. Constraint Processing. Morgan
Kaufmann, 2003.

[Faltings and Macho-Gonzalez, 2005] B. Faltings and
S. Macho-Gonzalez. Open constraint programming.
Artificial Intelligence, 161(1-2):181–208, 2005.

[Frisch et al., 2002] A. Frisch, B. Hnich, Z. Kiziltan,
I. Miguel, and T. Walsh. Global constraints for lexico-
graphic orderings. In Proc. CP. Springer, LNCS 2470,
2002.

[Law and Lee, 2004] Y.C. Law and J.H.M. Lee. Global con-
straints for integer and set value precedence. In Proc. CP,
pages 362–376. Springer, LNCS 3258, 2004.

[Maher et al., 2008] M.J. Maher, N. Narodytska, C-G.
Quimper, and T. Walsh. Flow-based propagators for the se-
quence and related global constraints. In Proc. CP, pages
159–174. Springer, LNCS 5202, 2008.

[Maher, 2002] M.J. Maher. Analysis of a global contiguity
constraint. In Proc. Workshop on Rule Based Constraint
Reasoning and Programming, 2002. Held with CP2002.

[Maher, 2003] M.J. Maher. A synthesis of constraint satis-
faction and constraint solving. In F. Rossi, editor, Proc.
CP, pages 525–539. Springer, LNCS 2833, 2003.

[Maher, 2009] M.J. Maher. Open constraints in a boundable
world. In Proc. CPAIOR. Springer, LNCS 5547, 2009.

[Pesant, 2004] G. Pesant. A regular language membership
constraint for finite sequences of variables. In Proc. CP,
pages 482–295. Springer, LNCS 3258, 2004.

[Quimper and Walsh, 2006] C-G. Quimper and T. Walsh.
Global grammar constraints. In Proc. CP, pages 751–755.
Springer, LNCS 4204, 2006.

[Régin, 1994] J-C. Régin. A filtering algorithm for con-
straints of difference in CSPs. In Proc. AAAI, pages 362–
367. AAAI Press/The MIT Press, 1994.

[Régin, 1996] J-C. Régin. Generalized arc consistency for
global cardinality constraints. In Proc. AAAI, pages 209–
215. AAAI Press/The MIT Press, 1996.

[Rossi et al., 2006] F. Rossi, P. van Beek, and T. Walsh, edi-
tors. Handbook of Constraint Programming. 2006.

[Sellmann, 2006] M. Sellmann. The theory of grammar con-
straints. In Proc. CP, pages 530–544. LNCS 4204, 2006.

[van Hoeve and Régin, 2006] W.J. van Hoeve and J-C.
Régin. Open constraints in a closed world. In CPAIOR,
pages 244–257, 2006.

583

