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Abstract

In this article we discuss two alternative proposals
for neighbourhood semantics (which we call strict
and loose neighbourhood semantics, N= and N⊆
respectively) that have been previously introduced
in the literature. Our main tools are suitable notions
of bisimulation. While an elegant notion of bisim-
ulation exists for N⊆, the required bisimulation for
N= is rather involved. We propose a simple exten-
sion of N= with a universal modality that we call
N=(E), which comes together with a natural notion
of bisimulation. We also investigate the complexity
of the satisfiability problem for N⊆ and N=(E).

1 Epistemic Logic and Neighbourhood

Semantics

Epistemic logic, the logic that studies notions like agents’s
beliefs and knowledge, is an important and long-standing area
of research in artificial intelligence [Fagin et al., 1995].

In epistemic logic, the formula [α]ϕ is used to represent
that agent α believes or knows that ϕ is the case. When the
agent α is understood by context, or when we are not inter-
ested on modelling the behaviour of different agents at the
same time, we will usually write [ ]ϕ instead of [α]ϕ. In the
rest of this article we will discuss the case for a single agent.
By adding the [ ] operator to classical propositional logic, we
can already express a number of interesting properties. For
example, the formula [ ](ϕ ∧ ψ) → ([ ]ϕ ∧ [ ]ψ) intuitively
says that if an agent believes or knows the conjunction of two
facts ϕ and ψ, then it also knows both ϕ and ψ.

Epistemic logic is usually considered a member of the large
family of modal logics [Blackburn et al., 2001], and as we
will discuss in this article, it shares with them many of their
properties (e.g., characterizations in terms of bisimulations,
good computational behavior, etc.). But, as it is well known
(see [Vardi, 1986]), semantics specified over standard Kripke
models in terms of possible worlds and accessibility rela-
tions [Blackburn et al., 2001] have some undesired epistemic
properties. The reason is that even the weakest logic definable
in terms of Kripke models (i.e., the modal logic K defined as
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the set of those modal formulas valid on the class of all Kripke
structures) may be already too strong for modeling knowl-
edge or belief. For example, Kripke semantics makes valid all
instances of the formula scheme ([ ]ϕ ∧ [ ](ϕ → ψ)) → [ ]ψ
and the inference rule |= ϕ then |= [ ]ϕ, while both are unin-
tuitive under an epistemic interpretation of [ ]. If we read [ ] as
knowledge, they would require an agent to know all tautolo-
gies, and to be able to effectively draw all consequences of
its knowledge. This is what is called the logical omniscience
problem, and it was already discussed in [Hintikka, 1975].

[Vardi, 1986] proposes to adopt a different semantics,
originally introduced in [Montague, 1968; 1970] and [Scott,
1968] in a different setup. This alternative semantics uses the
notion of neighbourhoods to define the meaning of the epis-
temic operator. The intuitive idea is that an agent’s knowledge
is characterized not by a set of possible worlds but rather by
an explicit set of propositions known by the agent. More pre-
cisely, we can define epistemic structures as follows.

Definition 1 (Epistemic Structure). An epistemic structure
is a tuple M = 〈W,N, ‖ · ‖M〉 where

• W �= ∅ is a set (of possible worlds).
• N is a function mapping elements from W to sets of

subsets of W (i.e., N(w) ⊆ ℘(W ), for each w in W ).
We will usually write Nw instead of N(w) and call Nw

the neighbourhoods of w.
• ‖ · ‖M is an assignment function from the set of propo-

sitional symbol to subsets of W (i.e., ‖p‖M ⊆ W , for
each propositional symbol p ∈ PROP).

�

Throughout the paper, let M be the model 〈W,N, ‖ · ‖M〉
and M′ be the model 〈W ′, N ′, ‖ · ‖M′〉.

Notice that, instead of the standard accessibility relation
between worlds in a Kripke model, an epistemic structure
specifies, for each world w ∈ W , a set of sets Nw. As we
can represent a proposition P by a set of possible worlds, the
intuition is that if P ∈ Nw then P is known in w.

Given a model M we can extend ‖ · ‖M to all formulas in
the language. The boolean cases are standard:

‖¬ϕ‖M = W\‖ϕ‖M, ‖ϕ ∧ ψ‖M = ‖ϕ‖M ∩ ‖ψ‖M.

The [ ] operator, on the other hand, has been defined in two
different ways in the literature, giving origin to two different
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operators that we will note [⊆] and [=]:
‖[=]ϕ‖M = {w | ∃X ∈ Nw such that X = ‖ϕ‖M},
‖[⊆]ϕ‖M = {w | ∃X ∈ Nw such that X ⊆ ‖ϕ‖M}.
The [=] operator is the most widely used, and it is the one

originally introduced in [Vardi, 1986]. We will call this se-
mantics the strict neighbourhood semantics N=, because for
[=]ϕ to be true at w, ‖ϕ‖M should be one of the neighbour-
hoods of w, i.e., ‖ϕ‖M ∈ Nw. The [⊆] operator on the other
hand, is slightly weaker. We only require ‖ϕ‖M to cover at
least one of the neighbourhoods of w and not to exactly co-
incide with it. We will call this weaker semantics the loose
neighbourhood semantics N⊆, and it has been mentioned by
van Benthem in a number of articles (e.g., [Aiello and van
Benthem, 2002]).

It is easy to see that the two semantics are indeed different:
Example 2. Consider the epistemic structure

1 p 2 pM:

M = 〈{1, 2}, {N1 = {{2}}, N2 = {}}, {‖p‖M = {1, 2}}〉.
Clearly 1 ∈ ‖[⊆]p‖M but 1 �∈ ‖[=]p‖M, as ‖p‖M �= {2}.

Actually, the following property can easily be proved.
Proposition 3. In any epistemic structure M, and for any
formula ϕ, ‖[=]ϕ‖M ⊆ ‖[⊆]ϕ‖M.

We will investigate the difference between these two oper-
ators by means of bisimulations. In the next section we will
show that while an elegant notion of bisimulation exists for
N⊆, the required bisimulation for N= is rather involved. We
will propose in Section 3 a simple extension of N= that we
call N=(E), which comes together with a natural notion of
bisimulation. Finally, we close the paper in Section 4 investi-
gating the complexity of the satisfiability problem of N⊆ and
N=(E), and show that they are both NP-complete.

2 Bisimulations for N⊆ and N=

It is easy to define an adequate notion of bisimulation for N⊆.
Definition 4 (N⊆-bisimulation). Let M and M′ be two
epistemic structures. An N⊆-bisimulation between M and
M′ is a non-empty relation Z ⊆ W ×W ′ such that if xZx′
then:
Prop: ∀p ∈ PROP, x ∈ ‖p‖M iff x′ ∈ ‖p‖M′

.
Zig: ∀T ∈ Nx ∃T ′ ∈ N ′

x′ s.t.: ∀w′ ∈ T ′ ∃w ∈ T s.t. wZw′.
Zag: ∀T ′ ∈ N ′

x′ ∃T ∈ Nx s.t.: ∀w ∈ T ∃w′ ∈ T ′ s.t. wZw′. �

We will use the notation 〈M, w〉 when w is an element of
the epistemic structure M. Then we can write 〈M, w〉 ↔⊆
〈M′, w′〉 if there is an N⊆-bisimulation between M and M′
linking w and w′. N⊆-bisimulations satisfy the expected
properties: they preserve formulas in N⊆, and exactly char-
acterize formula equivalence on finite models.
Definition 5 (Pointwise equivalence). Given 〈M, w〉 and
〈M′, w′〉 we say that they are pointwise equivalent for a se-
mantics S (notation: 〈M, w〉 ≡S 〈M′, w′〉) iff ∀ϕ ∈ S :
w ∈ ‖ϕ‖M iff w′ ∈ ‖ϕ‖M′

. �

Proposition 6. Given epistemic structures M and M′ then:
〈M, w〉 ↔⊆ 〈M′, w′〉 implies 〈M, w〉 ≡N⊆ 〈M′, w′〉. If
M and M′ are finite then the converse also holds.

The case for N= is more complex. Given that the semantic
condition for N= is very similar to N⊆ we could try to use
the following definition:
Definition 7 (Symmetric N=-bisimulation). Let M and
M′ be two epistemic structures. A symmetric N=-
bisimulation between M and M′ is a non-empty relation
Z ⊆W ×W ′ such that if xZx′ then:
Prop: ∀p ∈ PROP, x ∈ ‖p‖M iff x′ ∈ ‖p‖M′

.
Zig: ∀T ∈ Nx ∃T ′ ∈ N ′

x′ that verifies:
Zig 1: ∀w′ ∈ T ′ ∃w ∈ T s.t. wZw′, and
Zig 2: ∀w′ ∈ W ′ \ T ′ ∃w ∈ W \ T s.t. wZw′.

Zag: ∀T ′ ∈ N ′
x′ ∃T ∈ Nx that verifies:

Zag 1: ∀w ∈ T ∃w′ ∈ T ′ s.t. wZw′, and
Zag 2: ∀w ∈ W \ T ∃w′ ∈ W ′ \ T ′ s.t. wZw′. �

We will write 〈M, w〉 ↔s
= 〈M′, w〉 if there is a symmetric

N=-bisimulation between M and M′ linking w and w′.
Note that Definition 7 is an extension of the definition of

N⊆-bisimulation with the symmetric conditions Zig 2 and
Zag 2. Now, symmetric N=-bisimulations do preserve satis-
fiability of N= formulas (so do isomorphism, for that matter),
but we will argue that it is too strong, and that they do not
match the limited expressive power of N=.
Proposition 8. There exist finite epistemic structures which
are pointwise equivalent and not symmetric N=-bisimilar.

Proof. Let us consider the following two models:

w0 w1 pM: w′
0 w′

2
p q w′

1
pM′:

That is, M = 〈{w0, w1}, N, ‖ · ‖M〉, where ‖p‖M = {w1},
Nw0 = {{w1}}. And M′ = 〈{w′

0, w
′
1, w

′
2}, N ′, ‖ · ‖M′〉,

where ‖p‖M′
= {w′

1, w
′
2}, ‖q‖M′

= {w′
2}, and N ′

w′
0

=
{{w′

1}, {w′
1, w

′
2}}. w0 and w′

0 satisfy the same formulas in
N= but, even though M and M′ are finite, it is not possible
to define a symmetric N=-bisimulation that links them .

Actually M and M′ in Proposition 8 are even differenti-
ated, a notion we will introduce now, and that will be useful
to define the adecuate notion of bisimulation for N=.
Definition 9 (Differentiation). The class D of differentiated
epistemic structures is defined as

D = {M | ∀w ∈W ∀T ∈ Nw ∃ϕ s.t. ‖ϕ‖M = T}.
I.e., D is the class of epistemic structures where every

neighbourhood is the extension of a formula. We say that
T is differentiable in M if for some ϕ, ‖ϕ‖M = T , and that
ϕ is a characteristic formula of T . The differentiation of M
is the structure Md = 〈W,Nd, ‖ · ‖M〉

Nd
w = {T | T ∈ Nw and T differentiable in M}.

I.e., Nd is obtained by eliminating all sets inN which are not
differentiable. �

It should be clear that the operation of differentiation
does not affect satifiability of N= formulas as stated next
(see [Areces and Figueira, 2008] for details).

Proposition 10. ∀M, ∀ϕ ∈ N= : ‖ϕ‖M = ‖ϕ‖Md

.
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Given Proposition 10, we can define the notion of N=-
bisimulation only for differentiated epistemic structures.

Definition 11 (N=-bisimulation). Let M and M′ be two
differentiated epistemic structures. An N=-bisimulation be-
tween M and M′ is a non-empty relation Z ⊆W ×W ′ such
that if wZw′ then:
Prop: ∀p ∈ PROP, w ∈ ‖p‖M iff w′ ∈ ‖p‖M′

Zig: ∀T ∈ Nw ∃T ′ ∈ N ′
w′ that verifies:

Zig 1: ∀w′ ∈ T ′ ∃w ∈ T s.t. wZw′, and
Zig 2: ∀X ′ /∈ N ′

w′ differentiable in M′ s.t. T ′ � X ′ ⊆ W ′,
then there are w′ ∈ X ′ \ T ′, w ∈ W \ T s.t. wZw′

Zag: ∀T ′ en N ′
w′ ∃T ∈ Nw that verifies:

Zag 1: ∀w ∈ T ∃w′ ∈ T ′ s.t. wZw′ and
Zag 2: ∀X /∈ Nw differentiable in M s.t. T � X ⊆ W ,

then there are w ∈ X \ T, w′ ∈ W ′ \ T ′ s.t. wZw′
�

We write 〈M, w〉 ↔= 〈M′, w′〉 if there is an N=-
bisimulation between M and M′ linking w and w′. We first
check that N=-bisimulations preserve satisfiability.

Proposition 12. Given epistemic structures M and M′ then:
〈M, w〉 ↔= 〈M′, w′〉 implies 〈M, w〉 ≡N= 〈M′, w′〉.

Proof. The Boolean cases are easy. We only discuss the case
[=]ψ. Let Z be an N=-bisimulation linking w and w′.
[⇒] If w ∈ ‖[=]ψ‖M, then ‖ψ‖M ∈ Nw. By condition Zig
1, there must be a T ′ ∈ N ′

w′ such that ∀x′ ∈ T ′ ∃x ∈ ‖ψ‖M
such that xZx′. Let x′ ∈ T ′ ∈ N ′

w′ , as x ∈ ‖ψ‖M and xZx′,
by inductive hypothesis: x′ ∈ ‖ψ‖M′

. Hence T ′ ⊆ ‖ψ‖M′
.

To show that ‖ψ‖M′ ∈ N ′
w′ , notice first that every world

in ‖ψ‖M′ \ T ′ is not bisimilar to any other in W \ ‖ψ‖M
because if any of these worlds s′ was bisimilar to another
s ∈ W \ ‖ψ‖M, it would mean that s �∈ ‖ψ‖M but s′ ∈
‖ψ‖M′

, which by inductive hypothesis is absurd. Now, if
T ′ = ‖ψ‖M′

we are done, if T ′ � ‖ψ‖M′
, we know by

bisimulation condition Zig 2 (taking X ′ as ‖ψ‖M′
), that nec-

essarily T ′ ∪ (‖ψ‖M′ \ T ′) ∈ N ′
w′ , for T ′ ∈ N ′

w′ and all
elements in ‖ψ‖M′ \ T ′ are not bisimilar to any other from
W \ ‖ψ‖M. As T ′ ⊂ ‖ψ‖M′

, then T ′ ∪ (‖ψ‖M′ \ T ′) =
‖ψ‖M′

, this set is therefore differentiable (by the formula ψ),
so ‖ψ‖M′ ∈ N ′

w′ , i.e., w′ ∈ ‖[=]ψ‖M′
.

[⇐] The converse is analogous using Zag 1 and Zag 2.

Over finite models N= equivalence is precisely character-
ized by the notion of N=-bisimilarity as stated next.

Proposition 13. Let M and M′ be finite, differentiable
epistemic structures then: 〈M, w〉 ≡N= 〈M′, w′〉 implies
〈M, w〉 ↔= 〈M′, w′〉.

Proof. The required bisimulation Z is defined as wZw′ iff
〈M, w〉 ≡N= 〈M′, w′〉. By definition, (w,w′) ∈ Z and
hence Z is non-empty. Prop also holds by definition.

Zig. Assume that Zig does not hold, i.e., wZw′, T ∈ Nw

yet ∀T ′ ∈ N ′
w′ either Zig 1 or Zig 2 fail. Let N ′

w′ =
{T ′

1, . . . , T
′
t} ∪ {S′

1, . . . , S
′
l} where all the elements from the

first set fail Zig 1 and those from the second fail Zig 2. Let
T = {h1, . . . , hn} and W \ T = {h̄1, . . . , h̄m}.

Set ψ0 := ϕT where ϕT is a characteristic formula of T .
As w ∈ ‖[=]ψ0‖M, w′ ∈ ‖[=]ψ0‖M′

and ‖ψ0‖M′ ∈ N ′
w′ .

Let us repeat the following reasoning argument taking as an
invariant that at step r, ‖ψr‖M′ ∈ N ′

w′ . We show that in
every step, ‖ψr‖M′

� ‖ψr+1‖M′
. In a finite number of steps

q ≤ #W ′ we will obtain ψq s.t. w ∈ ‖[=]ψq‖M but w′ �∈
‖[=]ψq‖M′

, which contradicts the hypothesis. At step r:
If ‖ψr−1‖M′

= T ′
k. Then there is h′k ∈ T ′

k s.t. for every
hi ∈ T there is ψk

i where hi ∈ ‖ψk
i ‖M but h′k �∈ ‖ψk

i ‖M
′
.

Let ψr := ψr−1 ∧ (
∨n

j=1 ψ
k
j ). It can be easily showed that

w ∈ ‖[=]ψr‖M. If w′ �∈ ‖[=]ψr‖M′
, absurd. This is some-

thing that will happen if we have r = #W ′, as ‖[=]ψ‖M′

will necessarily be the empty set. If not, iterate taking into
account that ‖ψr‖M′

� ‖ψr−1‖M′
(because h′k no longer

satisfies ψr), and besides ‖ψr−1‖M = ‖ψr‖M = T .
If ‖ψr−1‖M′

= S′
k. Then, there exists X̄ ′ = S′

k ∪
{x̄′1, . . . , x̄′z} /∈ N ′

w′ such that S′
k ∩ {x̄′1, . . . , x̄′z} = ∅, dif-

ferentiable by its characteristic formula (let it be η), where
for every x̄′i ∈ X̄ ′ \ S′

k and h̄j ∈ W \ T there is a ψ̄k
i,j

where h̄j ∈ ‖ψ̄k
i,j‖M but x̄′i �∈ ‖ψ̄k

i,j‖M
′
. Let ψr := ψr−1 ∨

(η ∧ ∨z
i=1

∧m
j=1 ¬ψ̄k

i,j). As there is no element x ∈ W \ T
where M, x |= ∧m

j=0 ¬ψ̄k
i,j for any i, then there is no element

x ∈ W \ T where M, x |= ∨z
i=1

∧m
j=1 ¬ψ̄k

i,j . This means
that ‖ψr−1‖M = ‖ψr‖M = T . But every x′ ∈ ‖ψr−1‖M′

verifies M′, x′ |= ψr, and ‖η ∧ ∨z
i=1

∧m
j=1 ¬ψ̄k

i,j‖M
′
= X ′.

Then ‖ψr‖M′
= X ′. And as mentioned before, ‖ψr‖M′

/∈
N ′

w′ . At this point we can stop iterating since we know that
w ∈ ‖[=]ψr‖M but w′ �∈ ‖[=]ψr‖M′

. Which is absurd.
The Zag condition is proved similarly.

The finiteness condition of Prop. 13 cannot be dropped.

Lemma 14. Proposition 13 can fail in infinite models.

Proof. Let us consider the following two models:

w0

h p1 p2 p3 . . .
w1 p1

w2 p1 p2

w3 p1 p2 p3...

M:

w′
0

w′
1
p1

w′
2
p1 p2

w′
3
p1 p2 p3...

M′:

I.e., M = 〈W,N, ‖ · ‖M〉, where W = {wi | i ≥
0} ∪ {h}, Nw0 = {{wi | i > 0} ∪ {h}}, N ′

a = ∅ for
a �= w′

0, and ∀i > 0 : ‖pi‖M = {w1, . . . , wi, h}. And
M′ = 〈W ′, N ′, ‖ · ‖M′〉, where W ′ = {w′

i | i ≥ 0},
N ′

w′
0

= {{w′
i | i > 0}}, N ′

a = ∅ for a �= w′
0, and ∀i > 0 :

‖pi‖M′
= {w′

1, . . . , w
′
i}. 〈M, w0〉 �↔= 〈M′, w′

0〉 as h is
not bisimilar to any element in Nw′

0
(hence Zag is not satis-

fied). However, w0 and w′
0 satisfy exactly the same formulas

of N=: for any ϕ, let pk be the proposition with biggest k in
ϕ, then h cannot be distinguished from wk by ϕ.
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3 Extensions to N=

In Section 2 we said that the notion of symmetric N=-
bisimulations that we introduced in Def. 7, though natural,
was too strong for N=. On the other hand, the notion of N=-
bisimulations that we introduced in Def. 11 did seemed to
match the expressive power of N= but it was involved.

We can solve this dilemma by strengthening the expres-
sive power of N= to exactly match the behavior of symmet-
ric N=-bisimulations. Paying some consideration to Defi-
nition 7, we may notice that the problem boils down to the
logic’s (in)ability to distinguish the subset relation between
neighbourhoods. We can check then that he following binary
operator � would do the job:

‖ϕ�ψ‖M = {w | ∃X1, X2 ∈ Nw s.t. X1 �= X2,

X1 = ‖ϕ‖M, X2 = ‖ϕ ∨ ψ‖M}.
If we call N=(�) the logic that we obtain by extending

N= with this operator, we have a perfect match for symmetric
N=-bisimulations.
Proposition 15. Given two epistemic structures M and
M′ then 〈M, w〉 ↔s

= 〈M′, w′〉 implies 〈M, w〉 ≡N=(�)

〈M′, w′〉. Moreover, if M and M′ are finite, then the con-
verse also holds.

Proof. The proof is similar, but slighly more complex (and
lengthier), than the previous results and we refer to the tech-
nical report [Areces and Figueira, 2008] for the details.

The trouble now is that � seems rather artificial, and it is
difficult to find a suitable epistemic interpretation for it. We
have not sorted out the trouble with N=.

Luckily, we are now very close to a solution: we propose to
extend N= with the existential modality E instead of �. The
existential modality E is defined as

‖Eϕ‖M =
{
W if ‖ϕ‖M �= ∅
∅ otherwise

Let us call N=(E) the language N= extended with the E
operator. The first thing we note is that � can be expressed in
N=(E): ‖ϕ�ψ‖M = ‖[=]ϕ ∧ [=](ϕ ∨ ψ) ∧ E(ψ ∧ ¬ϕ)‖M.

Moreover, we can naturally adjust symmetric N=-
bisimulation to N=(E).
Definition 16 (symmetric total N=-bisimulation). Let M
and M′ be two epistemic structures. A total symmetric
N=-bisimulation between these models is a symmetric N=-
bisimulation Z ⊆ W ×W ′ such that the domain of Z coin-
cides with W and the range of Z coincides with W ′. �

That symmetric total N=-bisimulation preserve validity of
formulas in N=(E) is easily checked.
Proposition 17. Let M, M′ be two epistemic structures, Z
a total symmetric N=-bisimulation between them, w ∈ W ,
w′ ∈W ′ and wZw′. Then, 〈M, w〉 ≡N=(E) 〈M′, w′〉.
Proposition 18. Let M and M′ be two finite differentiable
epistemic structures, such that 〈M, w〉 ≡N=(E) 〈M′, w′〉.
Then there exists Z, a total symmetric N=-bisimulation be-
tween M and M′ such that wZw′.

Proof. Define xZx′ iff 〈M, x〉 ≡N=(E) 〈M′, x′〉. We must
prove that this is indeed a bisimulation. By definition,
(w,w′) ∈ Z hence Z is non-empty and Prop holds. We
must now check the other conditions of definition 16.

Zig. We will proceed with the same strategy as in the proof
of Proposition 13. Assume that Zig does not hold, and let
N ′

w′ = {T ′
1, . . . , T

′
t} ∪ {S′

1, . . . , S
′
l} where all T ′

i fail Zig 1
and all S′

i fail Zig 2. Let T = {h1, . . . , hn} and W \ T =
{h̄1, . . . , h̄m}.

Set ψ0 := ϕT the characteristic formula of T . As w ∈
‖[=]ψ0‖M, then w′ ∈ ‖[=]ψ0‖M′

and ‖ψ0‖M′ ∈ N ′
w′ .

Again we will take as an invariant that at step r, ‖ψr‖M′ ∈
N ′

w′ . We show that in every step, ‖ψr‖M′
� ‖ψr+1‖M′

.
In a finite number of steps q ≤ #W ′ we will obtain ψq s.t.
w ∈ ‖[=]ψq‖M but w′ �∈ ‖[=]ψq‖M′

, which contradicts the
hypothesis. At step r:

If ‖ψr−1‖M′
= T ′

k. Then there exists h′k ∈ T ′
k such that

for every hi ∈ T there is a ψk
i where hi ∈ ‖ψk

i ‖M but h′k �∈
‖ψk

i ‖M
′
. Let ψr = ψr−1 ∧ (

∨n
j=1 ψ

k
j ). We state that w ∈

‖[=]ψr‖M. If w′ �∈ ‖[=]ψr‖M′
, absurd. If not, iterate noting

that ‖ψr‖M′
� ‖ψr−1‖M′

(because h′k does not satisfies ψr

any longer) and therefore #‖ψr‖M′
< #‖ψr−1‖M′

, and
besides ‖ψr−1‖M = ‖ψr‖M = T .

If ‖ψr−1‖M′
= S′

k. Then there exists h̄′ ∈ W ′ \ S′
k such

that for every h̄i ∈ W \ T there is a ψ̄k
i where h̄i �∈ ‖ψ̄k

i ‖M
but h̄′ ∈ ‖ψ̄k

i ‖M
′
. Let ϕk =

∧m
i=0 ψ̄

k
i , ψr = ψr−1 ∨ ϕk. If

‖ψr‖M′
/∈ N ′

w′ , then w ∈ ‖[=]ψr‖M but w′ �∈ ‖[=]ψr‖M′
,

a contradiction. Otherwise, let η = E(ϕk ∧ ¬ψr−1), then
w′ ∈ ‖η‖M′

but w �∈ ‖η‖M. Again a contradiction.
Zag is proved similarly.
Finally, we should show that Z is total. Suppose that it

is not. Without loss of generality, suppose that there exists
v ∈ W that is not bisimilar to any other element of W ′.
Let W ′ = {w′

0, . . . , w
′
p}. By definition of bisimulation, this

means that v is not equivalent to any world in W ′. Then,
for every w′

i there is ψi s.t. v ∈ ‖ψi‖M but w′
i �∈ ‖ψi‖M′

.
Let ψ =

∧p
i=0 ψi. Then w ∈ ‖Eψ‖M but w′ �∈ ‖Eψ‖M′

,
contradicting that w and w′ are pointwise equivalent.

It is easy to see that N⊆ is not more expressive than N=(E),
as N⊆ cannot express properties of ‘unconnected’ states in
the model. We can use bisimulations to prove that also N=(E)
is not more expressive than N⊆ (we refer again to [Areces and
Figueira, 2008] for details).
Proposition 19. N=(E) and N⊆ are incomparable in terms
of expressive power.

4 Complexity Analysis

In this section we will discuss the complexity of N⊆ and
N=(E). It was already shown in [Vardi, 1989] that the com-
plexity of satisfiabily for N= is NP-complete. We will first
show that we can use that result to prove NP-completeness of
N⊆. We will then prove that even when we extend N= with
the E operator, the complexity remains in NP.

We start with some definitions (details in [Chellas, 1980]).
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Definition 20 (Schema M and Supplementation). The for-
mula schema M is [ ](ϕ∧ψ) → [ ]ϕ∧ [ ]ψ. It corresponds to
the following conditions over a class of epistemic structures.
If a model satisfies M for arbitrary ϕ and ψ then if X ⊆ Y
and X ∈ Nw then Y ∈ Nw.

Let M be an epistemic structure. The supplementation of
M, denoted M+, is the structure 〈W,N+, ‖ · ‖M〉 in which
N+

a is the superset closure of Na, for every a in W . That
is, for every a ∈ W and X ⊆ W , X ∈ N+

a if and only if
Y ⊆ X for some Y ∈ Na. �

In what follows, we will need to compare satisfiability of
formulas in N⊆ and N=. On the semantic side, we will write
|=⊆ for the satisfaction relation of N⊆, and |== for satisfac-
tion of N=. On the syntactic side we will always write [ ] for
the modal operator, and interpreted according to the indicated
semantics. The following result is fairly straightforward and
can be proved by induction on the complexity of the formula.
Proposition 21. For every formula ϕ and epistemic structure
M, ‖ϕ‖M⊆ = ‖ϕ‖M+

= .

Corollary 22. Let S be the class of supplemented models.
For every formula ϕ ∈ N⊆ and epistemic structure M ∈ S:
M |=⊆ ϕ if and only if M |== ϕ.

Proof. Every M ∈ S verifies M+ = M by idempotence of
supplementation. It only remains to apply Prop. 21.

Proposition 23. The satisfaction problem of N⊆ is in NP.

Proof. In [Vardi, 1989] we can find the NP algorithm for the
satisfaction problem of N= restricted to the class S (the class
of supplemented models, denoted as ε{3} in the literature).

To check whether ϕ is satisfiable in N⊆, we can feed ϕ
as input of the NP Turing machine that solves the satisfac-
tion problem for N= over the class of supplemented models.
If it answers yes, then there must be a supplemented model
M+ such that M+, w |== ϕ. We can then instantiate Propo-
sition 21 with M+ and, as M++ = M+, conclude that
M+, w |=⊆ ϕ. Then, ϕ is satisfiable in N⊆. If it answers no,
let us suppose ad absurdum that ∃M such that w ∈ ‖ϕ‖M⊆ .
By Proposition 21 this implies that w ∈ ‖ϕ‖M+

= . But as the
algorithm has answered no, there cannot be a supplemented
model M+ that satisfies ϕ under N=. Absurd. Then, ϕ is
unsatisfiable under N⊆.

Next we show an NP algorithm for satisfiability of formu-
las in N=(E). But first some necessary definitions.
Definition 24 (Valuation and Universal Valuation). A val-
uation for ϕ ∈ N=(E) is any function ν : sub(ϕ) ∪ {⊥} →
{0, 1} such that, and: i) ν(ψ) = 1 iff ν(∼ψ) = 0; ii)
if ν(Eψ) = 0 then ν(ψ) = 0; iii) ν(⊥) = 0; and iv)
ν(ψ1 ∨ ψ2) = 1 iff ν(ψ1) = 1 or ν(ψ2) = 1. Here, sub(ϕ)
stands for the set of subformulas of ϕ closed under ∼, where
we define ∼(ψ) = ξ if ψ = ¬ξ, and ∼(ψ) = ¬ψ otherwise.

A universal valuation for ϕ is any function μ that fixes the
values of all universal subformulas. Letting univ(ϕ) = {Eψ |
Eψ ∈ sub(ϕ)}, then μ : univ(ϕ) → {0, 1}. We say that a
valuation ν for ϕ is compatible with a universal valuation μ
iff they agree in the value of all elements of univ(ϕ). �

We first describe the procedure intuitively and then give a
precise algorithm. Given a formulaϕ, the algorithm describes
the valuations present in the model that satisfies it. The proce-
dure will first fix a universal valuation μ for the truth value for
each Eψ subformula. All other valuations must be compati-
ble with μ. We first guess a valuation ν such that ν(ϕ) = 1.
If ν([=]ψ1) = 1 and ν([=]ψ2) = 0 for some pair of sub-
formulas, this means that ‖ψ1‖ is a neighbourhood but ‖ψ1‖
is not. Then there must be an element where the truth value
of ψ1 and of ψ2 differs. We require then a valuation ν′ such
that ν(ψ1) = 1 and ν(ψ2) = 0 (or viceversa). Recursively,
the algorithm searches for new valuations satisfying similar
demands. We can restrict it to always look for valuations not
yet tried, to ensure termination.

In the code below, calls to witness(ψ1, ψ2, R) find a val-
uation that distinguishes ψ1 from ψ2. The valuations (that
can be seen as elements from the model) are always main-
tained in the R variable. The first call to witness (line 2 of
sat) just asks for for the existence of a valuation that makes
ϕ true. We will also need witnesses for all formulas ψ such
that μ(Eψ) = 1 as the second part of sat describes.

Algorithm: sat(ϕ)
1: guess a universal valuation μ for ϕ
2: R ← witnessϕ

μ(ϕ,⊥, ∅)
3: for all Eψ ∈ sub(ϕ) s.t. μ(Eψ) = 1 do
4: if there is no ν ∈ R where ν(ψ) = 1 then
5: R ← witnessϕ

μ(ψ,⊥, R)
6: end if
7: end for
8: return R

Algorithm: witnessϕ
μ(ψ1, ψ2, R)

1: guess a valuation ν for ϕ compatible with μ s.t.: ν(ψ1) = 1 and
ν(ψ2) = 0, or ν(ψ1) = 0 and ν(ψ2) = 1

2: if there is not such a valuation then
3: print UNSAT and exit
4: end if
5: R ← R ∪ {ν}
6: for all [=]η1, [=]η2 ∈ sub(ϕ) s.t. ν([=]η1) = 1 and

ν([=]η2) = 0 do
7: if there is no ν′ ∈ R such that ν′(η1) = 1 and ν′(η2) = 0,

or ν′(η1) = 0 and ν′(η2) = 1 then
8: R ← witnessϕ

μ(η1, η2, R)
9: end if

10: end for
11: return R

Complexity. The algorithm makes as many recursive calls
as elements are in R when it ends. Each element in ν ∈ R is
the witness for ψ1, ψ2 such that ν(ψ1) = 0 and ν(ψ2) = 1
or viceversa. We should also note that there are not more
than two witnesses for a certain pair ψ1, ψ2, thanks to the
condition of line 4 in sat and 7 in witness. We will then
have at most O(|ϕ|2) elements in R, so the number of calls
to the witness algorithm is polynomial. Checking that an
assignment is a valuation, and that it is compatible with μ is
polynomial. Then the body of witness takes only NP time.

Proposition 25. If sat(ϕ) succeeds then ϕ is satisfiable.
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Proof. We build a model based on the elements from R re-
turned by the algorithm. Let M be the model where W = R,
and ‖p‖M = {ν ∈ R | p ∈ sub(ϕ) ∧ ν(p) = 1}. We de-
fine Nν as the smallest set such that, if ν([=]ψ) = 1, then
{ν′ | ν′(ψ) = 1} ∈ Nν . Our claim is that τ ∈ ‖ϕ‖M, for
some τ ∈ W such that τ(ϕ) = 1. Note that there should
exist such τ because of the first call to witness with ϕ as a
parameter (line 2 of sat). Furthermore, we will prove that for
every ψ ∈ sub(ϕ) and ν ∈ W : ν ∈ ‖ψ‖M iff ν(ψ) = 1. We
proceed by induction on the length of the formula. It is easy
to check the base case of propositional variables.
The modal case. Suppose now that ν ∈ ‖[=]ψ‖M, with
[=]ψ ∈ sub(ϕ). Then ‖ψ‖M ∈ Nν . By IH, ‖ψ‖M = {ν′ |
ν′(ψ) = 1}, so {ν′ | ν′(ψ) = 1} ∈ Nν .

By construction of Nν , any element of it is a set of the
form {ν′ | ν′(η) = 1}, caused by the existence of a formula
[=]η ∈ sub(ϕ) such that ν([=]η) = 1. We then have that
‖ψ‖M = {ν′ | ν′(ψ) = 1} = {ν′ | ν′(η) = 1} ∈ Nν .
Suppose ad absurdum that ν([=]ψ) = 0. As ν([=]η) = 1 and
ν([=]ψ) = 0, when the algorithm was on the step where ν
was added it must have either 1. added a new element ν′ such
that ν′(η) = 1 and ν′(ψ) = 0 (or viceversa), or 2. checked
the existence of such an element in R. Either way there is an
element ν′ ∈ R such that it is in one but not in the other of
the two sets: {ν′ | ν′(η) = 1}, {ν′ | ν′(ψ) = 1}. But then
they cannot be equal. Absurd. Hence, ν([=]ψ) = 1.

The converse is simpler. Let us suppose ν([=]ψ) = 1,
then {ν′ | ν′(ψ) = 1} ∈ Nν by construction. Applying IH,
‖ψ‖M ∈ Nν and thus ν ∈ ‖[=]ψ‖M.
The universal modality. If ν ∈ ‖Eψ‖M with Eψ ∈ sub(ϕ),
then there is an element ν′ such that ν′ ∈ ‖ψ‖M. Applying
IH this happens iff ν′(ψ) = 1. By definition, ν and ν′ are
compatible with the μ returned by the algorithm.

Suppose ad absurdum that ν(Eψ) = 0. As ν and μ are
compatible, and μ is fixed for all the calls to the witness al-
gorithm, then we have that 0 = ν(Eψ) = μ(Eψ) = ν′(Eψ).
By definition of valuation we have that if ν′(Eψ) = 0 then
ν′(ψ) = 0, which is absurd. Hence ν(Eψ) = 1.

For the converse implication suppose ν(Eψ) = 1. Then
μ(Eψ) = 1 and the procedure will have added an element ν′
such that ν′(ψ) = 1 (lines 3, 4 of sat). By IH, ν′ ∈ ‖ψ‖M,
and hence ν ∈ ‖Eψ‖M = W .

Proposition 26. If ϕ is satisfiable then sat(ϕ) succeeds.

Proof. Let M be such that w ∈ ‖ϕ‖M. For Eψ ∈ sub(ϕ),
define μ(Eψ) = 1 iff w ∈ ‖Eψ‖M, and for each v ∈ W and
ψ ∈ sub(ϕ), let νv be such that νv(ψ) = 1 iff v ∈ ‖ψ‖M. It
is easy to see that νv is a valuation, and that it is compatible
with μ. Let S = {νv | v ∈ W}. The idea is that each time
the algorithm needs to guess a valuation, it picks one from S.

Suppose however that at a certain point, witness(ψ1, ψ2)
cannot find a suitable valuation among S. If the witness
function was called from a valuation νv ∈ S, then –by def-
inition of the algorithm– the call must have been made be-
cause νv([=]ψ1) = 1 and νv([=]ψ2) = 0 (or viceversa).
And then –by construction of νv– it must be the case that
v ∈ ‖[=]ψ1‖M and v �∈ ‖[=]ψ2‖M (or viceversa). This
means that ‖ψ1‖M ∈ Nv and ‖ψ2‖M �∈ Nv (or viceversa),

in other words ‖ψ1‖M �= ‖ψ2‖M. Let v′ ∈ (‖ψ1‖M ∪
‖ψ2‖M) \ (‖ψ1‖M ∩ ‖ψ2‖M). Then νv′ ∈ S should have
worked as a guessing for the algorithm. Absurd.

Corollary 27. The satisfiability problem for N=(E) is NP-
complete.

5 Conclusions

Neighbourhood semantics is widely used in epistemic logic,
but sometimes it is not clear exactly which semantics is in-
volved. As we discussed in this paper, two alternative pro-
posals can be found in the literature.

We showed that N=, the semantics originally introduced
in [Vardi, 1986] does not seem to have a nice characteriza-
tion in terms of bisimulation, and we proposed N=(E) as a
natural extension. The E operator can be used to model infor-
mation which is globally true in an epistemic structure, hence
the extension seems to be well motivated for the application.
Moreover, a simple notion of bisimulation exists for N=(E)
and its satisfiability problem remains NP-complete. We also
showed that satisfiability for N⊆ is NP-complete mostly as a
corollary of results from [Vardi, 1986].
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