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Abstract

Splitting a logic program allows us to reduce the
task of computing its stable models to similar tasks
for smaller programs. This idea is extended here
to the general theory of stable models that re-
places traditional logic programs by arbitrary first-
order sentences and distinguishes between inten-
sional and extensional predicates. We discuss two
kinds of splitting: a set of intensional predicates can
be split into subsets, and a formula can be split into
its conjunctive terms.

1 Introduction

This paper contributes to the theory of stable models, which
is the mathematical basis of answer set programming (ASP)
[Marek and Truszczyński, 1999; Niemelä, 1999; Lifschitz,
2008].

The splitting method [Lifschitz and Turner, 1994] can be
sometimes used to reduce the task of computing the stable
models of a logic program to similar tasks for smaller pro-
grams. Consider, for instance, the program

p← not q
q ← not p
r ← q.

(1)

Its stable models can be generated as follows. We concentrate
first on the program consisting of the first two rules of (1):

p← not q
q ← not p.

(2)

In one of its stable models, p is true and q is false; call that
model M1. In the other, p is false and q is true; call it M2.
Then we look at the third rule of (1) and determine how this
rule instructs us to “update” each of the models M1, M2 by
assigning a truth value to r. Since its body q is false in M1,
the head r becomes false in this model as well. Since q is true
in M2, r becomes true in M2. Thus the stable models of the
given program are {p} and {q, r}.

Splitting (1) into parts is possible because r does not oc-
cur in the rules that “define” p and q, so that p and q do not
“depend” on r. Accordingly, determining the truth value of r
can be postponed until the time when the truth values of p

and q have been determined. Program (2), on the other hand,
cannot be further split in the sense of [Lifschitz and Turner,
1994], because it defines p and q in terms of each other.

A more general version of splitting is described in [Oikari-
nen and Janhunen, 2008]. In the framework of that paper,
some atoms occurring in a logic program can be designated
as its “input” atoms, and that may affect the meaning of the
program. For instance, the only stable model of the one-rule
program

p← not q (no input atoms) (3)

is M1 (p is true, q is false). Intuitively, q is false in the stable
model of (3) because its definition is empty: q does not occur
in the head of any rule. But the program

p← not q (q is input) (4)

has both M1 and M2 as its stable models, according to Oikari-
nen and Janhunen. Intuitively, by saying that q is an input
atom we assert that its truth value can be chosen arbitrarily; it
is not supposed to be determined by the rules of the program.1

The version of the splitting theorem established in [Oikari-
nen and Janhunen, 2008] allows us to split (2) into two pro-
grams: (4) and

q ← not p (p is input). (5)

That theorem shows that the stable models of (2) can be char-
acterized as the common stable models of these two one-rule
programs. Since M1 is a stable model of each of the pro-
grams (4), (5), it is a stable model of (2) as well, and the same
can be said about M2. This example illustrates the power of
“symmetric splitting” described in [Oikarinen and Janhunen,
2008] in comparison with “top-bottom splitting” proposed in
[Lifschitz and Turner, 1994]. Symmetric splitting is extended
to disjunctive programs in [Janhunen et al., 2007].

The existing work on symmetric splitting does not cover,
however, logic programs with variables, and it is not appli-
cable to some types of rules that are frequently used in ASP,
such as choice rules and cardinality constraints [Simons et
al., 2002]. In this paper, we extend symmetric splitting to
the general theory of stable models in which traditional logic

1Saying that q is an input atom is similar to augmenting
the program with the LPARSE choice rule {q}. (For a descrip-
tion of the language of LPARSE, see http://www.tcs.hut.
fi/Software/smodels/lparse.ps.)
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programs are replaced by arbitrary first-order sentences. This
general approach to stable models is introduced in [Ferraris
et al., 2010]2 and reviewed in Section 2 below. It covers the
programming constructs mentioned above, and other useful
constructs, by treating them as abbreviations for first-order
formulas. For instance, the LPARSE program Π consisting of
three rules

{in(X)} :- vertex(X).
:- vertex(X;Y), in(X;Y),

not edge(X,Y), not edge(Y,X), X!=Y.
:- {in(X):vertex(X)} n.

corresponds to the formula

∀x(vertex(x)→ (in(x) ∨ ¬in(x))
∧∀xy¬(vertex(x) ∧ vertex(y) ∧ in(x) ∧ in(y)

∧¬edge(x, y) ∧ ¬edge(y, x) ∧ x �= y)
∧¬¬∃n+1x(in(x) ∧ vertex(x)),

(6)

where ∃nxF (x) is shorthand for

∃x1 · · ·xn

⎛
⎝ ∧

1≤i≤n

F (xi) ∧
∧

1≤i<j≤n

xi �= xj

⎞
⎠ .

(Program Π describes large cliques in a graph, as discussed
in Section 7.) Note that the first conjunctive term of (6) is
logically valid, so that dropping it would not affect the class
of models of (6). But the class of stable models of this for-
mula, as defined in the next section, would be affected; in this
sense, the first conjunctive term of (6) is essential. For the
same reason, we do not drop ¬¬ in front of ∃n+1x.

The distinction between extensional and intensional predi-
cates in [Ferraris et al., 2010] is similar to the distinction be-
tween input and non-input atoms in [Oikarinen and Janhunen,
2008]. As discussed below, stable models of a first-order sen-
tence F relative to a list p of intensional predicates are de-
fined as models of the sentence obtained from F by a certain
syntactic transformation, denoted by SMp. (This transforma-
tion, like circumscription, makes a formula stronger, so that
all stable models of F in the sense of that definition are indeed
models of F .) For instance, if F is

(¬q → p) ∧ (¬p→ q) ∧ (q → r) (7)

(which is program (1) written as a formula) then SMpqr[F ]
can be equivalently rewritten as

(¬q ↔ p) ∧ (q ↔ r).3

This formula has two models—the stable models of (1).
Our version of the splitting theorem asserts that under cer-

tain syntactic conditions

SMpq[F ∧G] is equivalent to SMp[F ] ∧ SMq[G].

2That article is the journal version of the IJCAI-07 paper [Fer-
raris et al., 2007]. In the conference paper, all predicates are implic-
itly assumed to be intensional.

3This is essentially the completion of (1) in the sense of [Clark,
1978]. In this example, the stable model semantics produces the
same result as the completion semantics.

The example of splitting program (1) above corresponds to

(¬q → p) ∧ (¬p→ q) as F,
q → r as G,
pq as p,
r as q.

To split program (2), we take

¬q → p as F,
¬p→ q as G,
p as p,
q as q.

The new splitting theorem is applicable also in many situa-
tions that are not covered by the version due to Oikarinen and
Janhunen, including, as we will see, some that are important
from the perspective of answer set programming and knowl-
edge representation.

The splitting theorem easily follows from a lemma that
may be of interest in its own right. The lemma asserts that
under certain syntactic conditions

SMpq[F ] is equivalent to SMp[F ] ∧ SMq[F ].

This “splitting lemma” is more general than the splitting theo-
rem in the sense that it is applicable, in principle, to formulas
of any syntactic form, not only to conjunctions. On the other
hand, it does not split the formula itself; it only splits the list
of intensional predicates.

We will see that the assumption about F , p and q in the
statement of the splitting lemma is related to the concept of a
loop, introduced in [Lin and Zhao, 2004] for traditional logic
programs and generalized to arbitrary first-order formulas in
[Lee and Meng, 2008].

This paper includes proofs of the splitting lemma and the
splitting theorem, and also a brief discussion of the applica-
tions of splitting that motivated this work.

2 Review: Operator SM

This review follows [Ferraris et al., 2010]. Notation: if p and
q are predicate constants of the same arity then p ≤ q stands
for the formula

∀x(p(x)→ q(x)),
where x is a tuple of distinct object variables. If p and q are
tuples p1, . . . , pn and q1, . . . , qn of predicate constants then
p ≤ q stands for the conjunction

(p1 ≤ q1) ∧ · · · ∧ (pn ≤ qn),

and p < q stands for (p ≤ q) ∧ ¬(q ≤ p). In second-
order logic, we apply the same notation to tuples of predicate
variables.

We will define the stable model operator with the inten-
sional predicates p, denoted by SMp. Some details of the def-
inition depend on which propositional connectives and quan-
tifiers are treated as primitives, and which of them are viewed
as abbreviations. We assume that

⊥ (falsity), ∧, ∨, →, ∀, ∃
are the primitives; ¬F stands for F → ⊥, � is ⊥ → ⊥, and
F ↔ G is (F → G) ∧ (G→ F ).
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Let p be a list of distinct predicate constants p1, . . . , pn

other than equality. For any first-order sentence F , by
SMp[F ] we denote the second-order sentence

F ∧ ¬∃u((u < p) ∧ F ∗(u)),

where u is a list of n distinct predicate variables u1, . . . , un,
and F ∗(u) is defined recursively:
• pi(t)∗ = ui(t) for any tuple t of terms;
• F ∗ = F for any atomic F that does not contain members

of p;
• (F ∧G)∗ = F ∗ ∧G∗;
• (F ∨G)∗ = F ∗ ∨G∗;
• (F → G)∗ = (F ∗ → G∗) ∧ (F → G);
• (∀xF )∗ = ∀xF ∗;
• (∃xF )∗ = ∃xF ∗.
A model of F is stable (relative to the set p of intensional

predicates) if it satisfies SMp[F ].
For instance, let F be the formula

∀x(p(x)→ (q(x) ∨ ¬q(x)), (8)

representing the choice rule
{q(X)} :- p(X).

If we take q to be the only intensional predicate then F ∗(u)
is

∀x((p(x)→ (u(x) ∨ (¬u(x) ∧ ¬q(x))))
∧ (p(x)→ (q(x) ∨ ¬q(x)))),

so that SMq[F ] is

∀x(p(x)→ (q(x) ∨ ¬q(x)))
∧¬∃u((u < q)
∧∀x((p(x)→ (u(x) ∨ (¬u(x) ∧ ¬q(x))))
∧ (p(x)→ (q(x) ∨ ¬q(x))))).

(9)

This sentence is equivalent to the first-order formula

∀x(q(x)→ p(x)),

which reflects the intuitive meaning of choice: q is an arbi-
trary subset of p.

3 Splitting Lemma

The statement of the splitting lemma refers to the predicate
dependency graph of a formula, defined in [Ferraris et al.,
2007] and [Ferraris et al., 2010].4 This definition, reproduced
below, generalizes the idea that if a logic program contains,
say, the rule

p(x)← q(x), not r(x) (10)
then p “positively depends” on q in this program.

Recall that an occurrence of a predicate constant, or any
other subexpression, in a formula is called positive if the
number of implications containing that occurrence in the an-
tecedent is even, and strictly positive if that number is 0. We

4We follow here the version given in the second paper, which
is simpler but can introduce some unnecessary dependencies when
applied to deeply nested implications.

say that an occurrence of a predicate constant in a formula
is negated if it belongs to a subformula of the form ¬F (that
is, F → ⊥), and nonnegated otherwise. For instance, in the
formula

q(x) ∧ ¬r(x)→ p(x), (11)

corresponding to rule (10), both p and r are positive, p is
strictly positive, and r is negated.

A rule of a first-order formula F is a strictly positive oc-
currence of an implication in F . For instance, the rules of (8)
are p(x) → (q(x) ∨ ¬q(x)) and ¬q(x); the only rule of (11)
is (11) itself.

For any first-order formula F , the predicate dependency
graph of F (relative to the list p of intensional predicates) is
the directed graph that

• has all intensional predicates as its vertices, and

• has an edge from p to q if, for some rule G→ H of F ,

– p has a strictly positive occurrence in H , and
– q has a positive nonnegated occurrence in G.

For instance, the predicate dependency graph of (11) relative
to pqr has one edge, from p to q. We will denote the predicate
dependency graph of F relative to p by DGp[F ].

Splitting Lemma, Version 1 Let F be a first-order sentence,
and let p, q be disjoint tuples of distinct predicate constants.
If each strongly connected component of DGpq[F ] is a subset
of p or a subset of q then

SMpq[F ] is equivalent to SMp[F ] ∧ SMq[F ].

Note that the condition on DGpq[F ] in the statement of the
lemma holds trivially if all strongly connected components of
this graph are singletons.

Example 1: F is ¬p ∧ r → q, p is p, q is q. In this case, the
graph DGpq[F ] has two vertices p, q, and no edges, so that its
strongly connected components are singletons. The splitting
lemma asserts that

SMpq[¬p ∧ r → q] (12)

is equivalent to the conjunction of

SMp[¬p ∧ r → q] (13)

and
SMq[¬p ∧ r → q]. (14)

Each of these three expressions can be rewritten as a proposi-
tional formula using the methods described in [Ferraris et al.,
2010]. Formula (12) becomes

(p↔ ⊥) ∧ (q ↔ ¬p ∧ r), (15)

(13) becomes
(¬p ∧ r → q) ∧ ¬p, (16)

and (14) turns into
q ↔ ¬p ∧ r. (17)

It is clear that (15) is indeed equivalent to the conjunction
of (16) and (17).
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Example 2: F is r → p ∨ q, p is p, q is q. The graph
DGpq[F ] is the same as in Example 1, and the splitting
lemma asserts that

SMpq[r → p ∨ q] (18)

is equivalent to the conjunction of

SMp[r → p ∨ q] (19)

and
SMq[r → p ∨ q]. (20)

The methods for simplifying SMp[F ] described in [Ferraris et
al., 2010] are not directly applicable to (18), but they allow us
to simplify (19) and (20). The version of program completion
presented in that paper turns the former into p↔ ¬q ∧ r and
the latter into q ↔ ¬p∧ r. Consequently (18) is equivalent to
the conjunction of these two formulas.

Example 2 shows that the splitting lemma allows us to ex-
pand the power of completion, as a method for describing
stable models, to some disjunctive programs. This is similar
to the generalization of completion to disjunctive programs
described in [Lee and Lifschitz, 2003]; the advantage of the
splitting lemma is that it is applicable to programs with vari-
ables. For instance, using the same argument as in Example 2
we can check that

SMpq[∀xy(r(x, y)→ p(x) ∨ q(y))]

is equivalent to the conjunction of

∀x(p(x)↔ ∃y(¬q(y) ∧ r(x, y)))

and
∀y(q(y)↔ ∃x(¬p(x) ∧ r(x, y))).

To illustrate the role of the condition on the predicate
dependency graph in the statement of the splitting lemma,
take F to be p ↔ q, with p as p and q as q. The graph
DGpq[F ] in this case has two edges, from p to q and from q
to p. The strongly connected component {p, q} of this graph
has a common element with p and a common element with
q, so that the splitting lemma is not applicable. Accordingly,
the formulas SMpq[p ↔ q] and SMp[p ↔ q] ∧ SMq[p ↔ q]
are not equivalent to each other. Indeed, the former can be
rewritten as ¬p ∧ ¬q, and each conjunctive term of the latter
is equivalent to p↔ q.

The splitting lemma as stated above can be equivalently
reformulated as follows:

Splitting Lemma, Version 2 Let F be a first-order sen-
tence, and let p be a tuple of distinct predicate constants.
If c1, . . . , cn are all the strongly connected components
of DGp[F ] then

SMp[F ] is equivalent to SMc1 [F ] ∧ · · · ∧ SMcn [F ].

A loop of a first-order formula F (relative to a list p of
intensional predicates) is a nonempty subset l of p such that
the subgraph of DGp[F ] induced by l is strongly connected.
It is clear that the strongly connected components of DGp[F ]
can be characterized as the maximal loops of F .

Splitting Lemma, Version 3 Let F be a first-order sen-
tence, and let p be a tuple of distinct predicate constants.
If l1, . . . , ln are all the loops of F relative to p then

SMp[F ] is equivalent to SMl1 [F ] ∧ · · · ∧ SMln [F ].

The last two versions of the splitting lemma are equivalent
to each other in view of the fact that the operator SMp is
monotone with respect to p: if p contains q then SMp[F ]
entails SMq[F ].

4 Proof of the Splitting Lemma

Lemmas 1 and 2 below can be easily proved by induc-
tion [Ferraris et al., 2010].

Lemma 1 Formula

(u ≤ p) ∧ F ∗(u)→ F

is logically valid.

About a formula F we say that it is negative on a tuple p of
predicate constants if members of p have no strictly positive
occurrences in F .

Lemma 2 If F is negative on p then

(u ≤ p)→ (F ∗(u)↔ F )

is logically valid.

The following lemma extends Lemma 3 from [Ferraris et
al., 2006] to first-order formulas.
Lemma 3 Let p1, p2 be disjoint lists of distinct predicate
constants, and let u1, u2 be disjoint lists of distinct predicate
variables of the same length as p1, p2 respectively.

(a) If every positive occurrence of every predicate constant
from p2 in F is negated then

((u1,u2) ≤ (p1,p2)) ∧ F ∗(u1,p2)→ F ∗(u1,u2)

is logically valid.

(b) If every nonpositive occurrence of every predicate con-
stant from p2 in F is negated then

((u1,u2) ≤ (p1,p2)) ∧ F ∗(u1,u2)→ F ∗(u1,p2)

is logically valid.

Proof. Both parts are proved simultaneously by induction
on F . Consider the case when F is G → H; the other cases
are straightforward. Then F ∗(u1,u2) is

(G∗(u1,u2)→ H∗(u1,u2)) ∧ (G→ H). (21)

(a) Every nonpositive occurrence of every predicate constant
from p2 in G is negated, and so is every positive occurrence
of every predicate constant from p2 in H . By the induction
hypothesis, it follows that the formulas

((u1,u2) ≤ (p1,p2)) ∧G∗(u1,u2)→ G∗(u1,p2) (22)

and

(u1,u2) ≤ (p1,p2) ∧H∗(u1,p2)→ H∗(u1,u2) (23)
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are logically valid. Assume (u1,u2) ≤ (p1,p2),

(G∗(u1,p2)→ H∗(u1,p2)) ∧ (G→ H) (24)

and G∗(u1,u2). By (22), we conclude G∗(u1,p2). Then, by
(24), we conclude H∗(u1,p2). Then, by (23), we conclude
H∗(u1,u2). (b) Similar.

The following assertion is a generalization of Lemma 5
from [Ferraris et al., 2006].

Lemma 4 Let p1, p2 be disjoint lists of distinct predicate
constants such that DGp1p2 [F ] has no edges from predicate
constants in p1 to predicate constants in p2, and let u1, u2 be
disjoint lists of distinct predicate variables of the same length
as p1, p2 respectively. Formula

((u1,u2) ≤ (p1,p2)) ∧ F ∗(u1,u2)→ F ∗(u1,p2)

is logically valid.

Proof. By induction on F . Consider the case when F
is G → H , so that F ∗(u1,u2) is (21); the other cases
are straightforward. Assume (u1,u2) ≤ (p1,p2) and
F ∗(u1,u2). Our goal is to prove

G∗(u1,p2)→ H∗(u1,p2).

Assume G∗(u1,p2). By Lemma 1, the formula

((u1,p2) ≤ (p1,p2)) ∧G∗(u1,p2)→ G (25)

is logically valid. Consequently, from the assumptions above
we can conclude G, and, by (21), H . Case 1: H is negative
on p1. It follows from Lemma 2 that the formula

((u1,p2) ≤ (p1,p2))→ (H∗(u1,p2)↔ H)

is logically valid, and we can conclude that H∗(u1,p2).
Case 2: H is not negative on p1, that is to say, H contains
a strictly positive occurrence of a predicate constant from p1.
Then every positive occurrence of every predicate constant
from p2 in G is negated, because otherwise there would exist
an edge from p1 to p2 in DGp1p2 [F ]. By Lemma 3(a), the
formula

((u1,u2) ≤ (p1,p2)) ∧G∗(u1,p2)→ G∗(u1,u2)

is logically valid. Consequently from the assumptions above
we can conclude that G∗(u1,u2). By (21), it follows that
H∗(u1,u2). Since every edge in DGp1p2 [H] belongs to
DGp1p2 [F ], by the induction hypothesis applied to H , the
formula

((u1,u2) ≤ (p1,p2)) ∧H∗(u1,u2)→ H∗(u1,p2)

is logically valid. We can thus conclude that H∗(u1,p2).

Lemma 5 For any formula F and any nonempty set Y of
intensional predicates, there exists a subset Z of Y such that

(a) Z is a loop of F , and

(b) the predicate dependency graph of F has no edges from
predicate constants in Z to predicate constants in Y \Z.

The proof is essentially the same as the proof of Lemma 4
in [Ferraris et al., 2006].

Proof of Version 3 of the Splitting Lemma. It is sufficient
to prove the logical validity of the formula

∃u((u < p) ∧ F ∗(u))
↔ ∃u1((u1 < l1) ∧ F ∗(ũ1))

∨ · · · ∨ ∃un((un < ln) ∧ F ∗(ũn)),

where each ui is the part of u that corresponds to the part li

of p, and ũi is the list of symbols obtained from p by replac-
ing every intensional predicate p that belongs to li with the
corresponding predicate variable u. Right to left: Clear. Left
to right: Assume ∃u((u < p)∧F ∗(u)) and take u such that
(u < p)∧F ∗(u). Consider several cases, each corresponding
to a nonempty subset Y of p. The assumption characterizing
each case is that u < p for each member p of p that belongs
to Y , and that u = p for each p that does not belong to Y .
By Lemma 5, there is a loop li of F that is contained in Y
such that the dependency graph has no edges from predicate
constants in li to predicate constants in Y \ li. Since li is con-
tained in Y , from the fact that u < p for each p in Y we can
conclude that

ui < li. (26)
Let u′ be the list of symbols obtained from p by replacing
every member p that belongs to Y with the corresponding
variable u. Under the assumption characterizing each case,
u = u′, so that F ∗(u) ↔ F ∗(u′). Consequently, we can
derive F ∗(u′). It follows from Lemma 4 that the formula

(u′ ≤ p) ∧ F ∗(u′)→ F ∗(ũi)

is logically valid, so that we further conclude that F ∗(ũi). In
view of (26), it follows that ∃ui((ui < li) ∧ F ∗(ũi)).

5 Application: Dropping Double Negations

The semantics of the answer set programming language
RASPL-1 is defined in [Lee et al., 2008] using a syntactic
translation that turns every RASPL-1 program into a first-
order sentence, called its FOL-representation. An answer set
of a RASPL-1 program Π is defined as an arbitrary Herbrand
stable model of the FOL-representation of Π.

To relate RASPL-1 to cardinality constraint programs in
the sense of [Syrjänen, 2004], the authors defined a class of
strongly regular RASPL-1 programs. The answer sets of any
program in this class are identical to its answer sets in the
sense of Syrjänen [Lee et al., 2008, Proposition 5]. This fact
is stated in the paper without proof, and the key part of the
proof involves checking that, under certain conditions, drop-
ping a double negation from a first-order sentence does not
affect its stable models. One such case is described in the
following proposition:

Theorem on Double Negations Let H be a sentence, F a
subformula of H , and H− the sentence obtained from H by
inserting ¬¬ in front of F . If F is contained in a subfor-
mula G of H that is negative on p then SMp[H−] is equiva-
lent to SMp[H].
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Proof. Let G− be the formula obtained from G by inserting
¬¬ in front of F . By Lemma 2, the formulas

u ≤ p→ (G∗(u)↔ G)
and

u ≤ p→ ((G−)∗(u)↔ G−)
are logically valid. Consequently

u ≤ p→ (G∗(u)↔ (G−)∗(u))
is logically valid also, and so is

u ≤ p→ (H∗(u)↔ (H−)∗(u)).
It follows that SMp[H−] is equivalent to SMp[H].

By itself, this theorem does not help us prove Proposition 5
from [Lee et al., 2008]: the condition

F is contained in a subformula G of H that is neg-
ative on p

turns out to be too restrictive. What we need to observe is that
this condition can be relaxed as follows:

for every strongly connected component c of
DGp[H], F is contained in a subformula G of H
that is negative on c.

The possibility of strengthening the theorem on double nega-
tions in this way is immediate from Version 2 of the splitting
lemma.

6 Splitting Theorem

Recall that a formula F is said to be negative on a tuple p of
predicate constants if members of p have no strictly positive
occurrences in F (Section 4). The importance of this class of
formulas for the theory of stable models is that they are anal-
ogous to constraints in traditional answer set programming:
SMp[F ∧ G] is equivalent to SMp[F ] ∧ G whenever G is
negative on p [Ferraris et al., 2010].

Splitting Theorem Let F , G be first-order sentences, and
let p, q be disjoint tuples of distinct predicate constants. If
• each strongly connected component of DGpq[F ∧ G] is

a subset of p or a subset of q,
• F is negative on q, and
• G is negative on p

then
SMpq[F ∧G] is equivalent to SMp[F ] ∧ SMq[G].

Proof. By the splitting lemma, SMpq[F ∧ G] is equivalent
to

SMp[F ∧G] ∧ SMq[F ∧G].
Since G is negative on p, the first conjunctive term can be
rewritten as

SMp[F ] ∧G. (27)
Similarly, the second conjunctive term can be rewritten as

SMq[G] ∧ F. (28)
It remains to observe that the second conjunctive term of each
of the formulas (27), (28) is entailed by the first conjunctive
term of the other.

7 Application: Abstract ASP Programs

The intuition behind the rules of the program Π from the in-
troduction is easy to explain. The first rule says that the extent
of the predicate in is an arbitrary set of vertices. The second
rule expresses the definition of a clique: a clique may not
contain a pair of distinct vertices that are not adjacent to each
other. The third rule expresses a restriction on the size of the
clique: it is not allowed to be ≤ n.

The claim that Π describes large cliques in a graph can be
made precise in two ways: by considering logic programs ob-
tained from Π by adding descriptions of specific graphs, and
in an abstract way, as a theorem about program Π itself. In
both formulations below, σ is the signature consisting of the
predicate constants vertex, edge, and in, and Γ is an arbitrary
finite directed graph.

Correctness of Π, Formulation 1. Extend σ by adding the
vertices of Γ as object constants. Let I be an interpretation of
the extended signature that interprets each object constant as
itself, interprets vertex as the set of vertices of Γ, and inter-
prets edge as the set of edges of Γ. Let X be the set of ground
atoms that contain vertex or edge and are satisfied by I . The
following conditions are equivalent:
• I is a stable model of the conjunction of (6) and the

atoms X , with the intensional predicates vertex, edge,
and in,
• the extent of in in I is a clique in Γ, and its cardinality is

> n.

Correctness of Π, Formulation 2. Let I be an interpre-
tation of σ that interprets vertex as the set of vertices of Γ,
and interprets edge as the set of edges of Γ. The following
conditions are equivalent:
• I is a stable model of (6) with the intensional predi-

cate in,
• the extent of in in I is a clique in Γ, and its cardinality is

> n.

The correctness of Π in the sense of Formulation 2 is im-
mediate from the fact that the result of applying the operator
SMin to (6) can be equivalently written as

∀x(in(x)→ vertex(x))
∧∀xy¬(vertex(x) ∧ vertex(y) ∧ in(x) ∧ in(y)

∧¬edge(x, y) ∧ ¬edge(y, x) ∧ x �= y)
∧∃n+1x(in(x) ∧ vertex(x)).

This fact is easy to verify using the methods of [Ferraris et
al., 2010]. Formulation 1 follows from Formulation 2 by
the splitting theorem, with (6) as F , the conjunction of the
atoms X as G, in as p, and vertex,edge as q.

The advantage of Formulation 1 is that it describes what
happens when we actually use Π to find a large clique in a
graph: we run an answer set solver on a program obtained
from Π by adding the definition of the graph as a set of facts.
The advantage of the “abstract” Formulation 2 is that it is
easier to state and to prove. The splitting theorem can be
used to establish a relationship between these two kinds of
correctness theorems.
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8 Application: Relationship between Two

Formulations of the Event Calculus

Theorem 1 from [Kim et al., 2009] shows that circumscriptive
event calculus [Shanahan, 1997] can be reformulated in terms
of the stable model semantics in the form

SMInitiates,Terminates,Releases[Σ] ∧ SMHappens[Δ] ∧ Ξ.

The splitting theorem stated above is used there to show that
this formula can be equivalently written using a single appli-
cation of the operator SM:

SMInitiates,Terminates,Releases,Happens[Σ ∧Δ ∧ Ξ].

A further transformation is shown in [Kim et al., 2009] to
turn the conjunction Σ ∧Δ ∧ Ξ into a logic program that can
be processed by existing answer set solvers.

9 Conclusion

The splitting lemma and the splitting theorem proved in this
note appear to be valuable mathematical tools. The former
helped us extend program completion to some disjunctive
programs, including programs with variables, and to compare
two approaches to the semantics of aggregates in ASP. The
latter can be used to relate “abstract” ASP programs to pro-
grams containing specific facts and to turn one of the formu-
lations of the event calculus into an executable ASP program.
We hope that future work will bring us new applications of
splitting to answer set programming and knowledge repre-
sentation.
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[Marek and Truszczyński, 1999] Victor Marek and
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