On Combinations of Binary Qualitative Constraint Calculi

Stefan Wolfl and Matthias Westphal
Department of Computer Science, University of Freiburg
Georges-Kohler-Allee, 79110 Freiburg, Germany
{woelfl, westpham } @informatik.uni-freiburg.de

Abstract

Qualitative constraint calculi are representation for-
malisms that allow for efficient reasoning about
spatial and temporal information. Many of the cal-
culi discussed in the field of Qualitative Spatial
and Temporal Reasoning can be defined as com-
binations of other, simpler and more compact for-
malisms. On the other hand, existing calculi can
be combined to a new formalism in which one can
represent, and reason about, different aspects of a
domain at the same time. For example, Gerevini
and Renz presented a loose combination of the re-
gion connection calculus RCC-8 and the point al-
gebra: the resulting formalism integrates topologi-
cal and qualitative size relations between spatially
extended objects. In this paper we compare the
approach by Gerevini and Renz to a method that
generates a new qualitative calculus by exploiting
the semantic interdependencies between the com-
ponent calculi. We will compare these two methods
and analyze some formal relationships between a
combined calculus and its components. The paper
is completed by an empirical case study in which
the reasoning performance of the suggested meth-
ods is compared on random test instances.

1 Introduction

Qualitative constraint calculi are representation formalisms
that allow for efficient reasoning about continuous (spatial or
temporal) aspects of the world. The idea in Qualitative Spa-
tial and Temporal Reasoning (QSTR) is to develop algorith-
mic techniques to reason about qualitative spatial and tempo-
ral relations: such relations abstract from concrete metrical
data of entities (for example, time points, coordinate posi-
tions, distances) by subsuming similar configurations of enti-
ties into one qualitative representation.

Combinations of such calculi are of interest for several rea-
sons. First, one can define new formalisms in which one
can represent, and reason about, different aspects of a do-
main at the same time. Hence, combinations can be applied
to increase the expressiveness of the formal language used to
represent object configurations in the domain at hand. Sec-
ond, representing relations as combinations of other relations

967

sometimes allows for decomposing the relations between en-
tities of a given domain into simpler relations. Finally, from a
more practical point of view, combinations play an important
role when qualitative spatial or temporal information, pos-
sibly from different sources, needs to be integrated and pro-
cessed by exploiting semantic interdependencies between dif-
ferent relational schemata. For example, knowing the relative
sizes between objects will already restrict the topological re-
lations that are possible between these objects, and vice versa.

In fact, many calculi discussed in QSTR can be represented
as combinations of other, simpler and more compact for-
malisms. For example, the cardinal direction calculus [Frank,
1996; Ligozat, 1998] can be defined as a specific twofold
product of the point algebra [Vilain et al.,, 1989] and the
rectangle algebra [Balbiani et al., 1998] is a twofold prod-
uct of the interval algebra [Allen, 1983]. Contrary to such
orthogonal combinations, combinations are more challeng-
ing in case that the relations considered in the calculi show
semantic interdependencies. Typical examples of this kind
of combination include the region occlusion calculus [Ran-
dell and Witkowski, 2002] as well as the combination of
RCC-8 and the point algebra [Gerevini and Renz, 2002;
Renz and Nebel, 2007].

With regard to non-orthogonal combinations, there exist
two different possible combination strategies. Gerevini and
Renz [2002] proposed a method for integrating such for-
malisms in a loose way by considering constraint networks
in which edges can be labeled by pairs of relations, each of
which stemming from one of the component calculi (e.g.,
each edge is labeled by both a topological relation and a
qualitative size relation). For reasoning with such constraint
networks (following referred to as biconstraint networks),
Gerevini and Renz also presented an adaption of the usual
path consistency algorithm (see e.g. [Mackworth and Freuder,
1985]) called bipath consistency algorithm and showed that
this algorithm decides satisfiability for a rather large class of
biconstraint networks with topological and qualitative size re-
lations.

The second strategy is to build a new constraint language,
which in general leads to a more fight integration. While
in the bipath consistency method semantic interdependencies
are propagated in the reasoning process only, these interde-
pendencies are here exploited to define a new set of base rela-
tions and a new composition table, which often can be more

refined than the composition table that one obtains from some
Cartesian product construction.

In this paper we will investigate and compare both meth-
ods in more detail. We will show that tight combinations
are more expressive than loose combinations via the bicon-
straint approach. Then we will report on an empirical study
in which we compared both methods on randomly generated
test instances to which both methods can be applied. These
results indicate that the method of building a new calculus is
more advantageous than the biconstraint approach provided
that the compared reasoning processes can employ the same
optimization strategies (in particular, techniques for the pre-
computation of composition tables).

2 Formal Background

In what follows let D be a fixed non-empty set. A (binary)
relation system I" over D is any non-empty set of binary re-
lations on D. Given a relation system I', a constraint net-
work over T is defined by a triple N = (V, D, C), where
V is a finite set of variables, D is a non-empty set of val-
ues for the variables in V', and C'is a finite set of constraints,
i.e., pairs (s, R), where s = (z,y) is a pair of variables and
R is one of the relations in I'. If I is closed under intersec-
tion of relations and converse relations (i.e., R~ := {(y,x):
(z,y) € R} € T for R € T'), one can assume that N con-
tains for any pair of variables x, y at most one constraint with
scope s = (z,y).

An assignment for a constraint network (V,D,C) is a
function a: V' — D. It is said to be a solution if for each
constraint ((x,y), R) in C, (a(x),a(y)) € R. A constraint
network is said to be satisfiable if it has a solution.

Definition 1 ([Ligozat and Renz, 2004]). A partition scheme
on a domain D is a finite binary relation system on D, T,
that (a) forms a partition of D x D, (b) contains the identity
relation {(z,z):2x € D}, and (c) is closed under converses.
The elements of I" are usually referred to as the base relations
of the partition scheme.

Given a partition scheme I', one usually considers con-
straint networks that allow for disjunctions of base relations
(in order to represent imprecise information). Let I'* denote
the relation system consisting of all possible unions of rela-
tions from I' (in contrast to base relations, the elements of I'*
are sometimes referred to as general relations).

Contrary to finite constraint networks, constraint networks
in QSTR are defined on infinite domains. This entails that
typical reasoning techniques known from the CSP domain
(such as arc-consistency or path-consistency) are not directly
applicable. Hence, the idea in QSTR is to restate constraint
satisfaction problems on a symbolic level such that reason-
ing about specific variable assignments can be replaced by
manipulation of symbol sets representing unions of concrete
base relations.

Definition 2. A (binary) qualitative calculus is defined by
a 4-tuple C = <B7 7,0, id>, where B is a non-empty finite
set of symbols (elements of B are also referred to as base
relations), ~ : B — B is a unary function that assigns to each
base relation its converse, ¢ : Bx B — 2% is a binary function

968

that assigns to each pair of base relations their composition,
and a distinguished element id € B (the identity relation).
We furthermore require that for a,b,c € B, (a) (a™)~ = a,
(b)idoa = aoid = a,(¢c) (aob)” =b"0a”",(d)a~ € boc
iff c” €aob.

Given a qualitative calculus in this sense, we have in a nat-
ural way a Boolean algebra on the set 27 (its elements are
also referred to as general relations), and we obtain a non-
associative relation algebra if we extend the functions ~ and
¢ to functions ~ : 28 — 28 and ¢:28 x 28 — 2B respec-
tively, by: r~ :={b":b€rtandror’ := Uy, e, bV

Let I" be a partition scheme on D and let (b;);cs be a list
of symbols, exactly one symbol b for each concrete relation
bP € T'. The qualitative calculus associated to T, C[T], is
defined as follows: B := {b;:i € I}; id := b;, where bZD
is the concrete identity relation on D; b, := b;, where bJD is
the concrete converse relation of b”; and

bio by == {by € B:bP N (bP 0 bP) £ 0}

It is clear from the definition that in general the symbolic
composition ¢ is just an upper approximation of the set-
theoretical composition of concrete relations, that is, it holds:

bP ol | J{oF e T:b (b 0 b)) # 0}

If we can strengthen here the subset relation to equality, sym-
bolic composition ¢ is said to be strong (with respect to the
partition scheme I"), otherwise it is called weak.

Given a qualitative calculus C <B, V,<>,id> associ-
ated to a partition scheme I', we can represent relations as
sets of base relation symbols. In particular, constraints in
a qualitative constraint network can be written in the form
((x,y),{b1,...,by}) for relations b¥,...,bP € I'. More-
over, each constraint network N = (V| D, C) defines a con-
straint graph G = (V1) such that V is just the set of vari-
ables of N and [:V x V — 2B is the function that assigns
to each constraint scope (z,y) the symbol set {b1,...,b;},
where b U - - - U b is the constraint relation between x and
y. If there is no constraint with scope (z,y) in N, [assigns
to (z,y) the set B of all relation symbols (which denotes the
universal binary relation on D). A solution of a constraint
graph G = (V, 1), then, is a function «: V' — D such that for
all z,y € V, (o), a(y)) € b for some b € I(x,y).

A constraint graph (V1) is said to be path-consistent (or:
algebraically closed) if (a) no label is empty and (b) I(z,y) C
I(x, z) o I(z,y) for each triple of variables x,y, z in V. Note
that this notion is weaker than the notion of path consistency
known from the CSP domain, which requires that each two-
variable assignment that is consistent with the constraint net-
work is extendable to a consistent three-variable assignment.

A constraint graph (V,[) is said to be a refinement of a
constraint graph (V,1’) if l(z,y) C U'(z,y) for each pair
of variables from V. Each constraint graph can be refined
(in polynomial time) into a constraint graph which is path-
consistent or inconsistent (that is, it has empty labels). This
can be achieved if each of the labels I(x, y) (for variables x
and y) is successively refined by applying the operation

Wz, y) — Uz,y) N (U(z, 2) 0 Uz, y)),

(D

where z is any third variable occurring in the network. Im-
plementations of this method are usually based on one of the
variants of Mackworth’s path consistency algorithm [Mack-
worth and Freuder, 1985], which uses queues to store those
arcs or triangles in the network that need to be re-processed
due to previous refinements of the network.

Definition 3. Let C = (B, ~,¢,id) be a qualitative calculus
for a partition scheme T'. A subset S of 27 is said to be a
tractable subclass if the path consistency method applied to
constraint graphs in which only relations from S occur de-
cides satisfiability.

If the path consistency method decides satisfiability of
atomic constraint graphs (a constraint graph is afomic if
all its labels are singleton sets), then a constraint graph
over 2 is satisfiable if and only if it has a path-consistent
atomic refinement. By using backtracking methods, one
can systematically check each atomic refinement of a given
constraint graph for satisfiability (see, e.g., [Allen, 1983;
Ladkin and Reinefeld, 1997]). Moreover, using tractable sub-
classes speeds up the reasoning time: instead of splitting a
constraint during backtracking into base relations, it can be
split into relations belonging to a tractable subclass. This
leads to a considerable reduction of the branching factor of
the search tree [Nebel, 1996].

3 Combination Methods

In what follows, we will present two different methods for
combining two constraint formalisms. We start by presenting
a method that uses a kind of Cartesian product construction to
form a new constraint calculus from two component calculi.

3.1 Tight Combination

For relation systems I'; and I'; on the same domain D, we
define:

I'®ly:= {leRQ:Rl eI, Ry EFQ,leRQ#w}.

Lemma 1. IfT'; and 'y are partition schemes on D, then so
is Fl ® FQ.

I'y ®T'5 obviously provides a partition of D x D, it contains
the identity relation, and it is closed under converses (note
that (Ry N Ry)~' = Ry N Ry Y.

In what follows let I'; and I'5 be partition schemes defined
on D. Since I'y ® I'y is a partition scheme, it defines an
associated constraint calculus C[I'; ® I'z]. On the other hand,
we have constraint calculi C[I';] and C[I'z] associated to I';
and I'y, respectively. How are they related? For this, we first
need to fix the interdependencies between I'y and ' on the
symbolic level. We define a function Ir, , : Br, — 251
which maps a base relation b of Br, to the set of those base
relations of Br, that have a non-empty intersection with b, if
interpreted over D, i.e., b NP £ (forall v/ € Ir, 1, (b).
Note that b’ € [Fl,FQ (b) iff b € IFz,F1 (b/)

Definition 4. Given constraint calculi C; = (By, ™, 01, id;)
and C; = (B3, ”?,02,id3) and an interdependency function
Ii2:By — 282 the product constraint calculus C; @ Cy is

969

defined as follows:
B := {(bl,bg) S Bl X BQIbQ S ILQ(bl)}
(b1,02)™ == (by",b5%)

(blabQ)O(/17 /2) = {(,1/7bl2,) €B: b/ll € b1 oy b/l’
bngQOQ bl2}

id = (idy, ids)

The interpretation of a general relation r of C[I'1] ® C[I's]
is just 7 = Uy, by, b1 N 03 Note that there is also
a function that maps each base relation b of C[I'; ® I's] to
a “base relation” of C[I';] ® C[I'z], namely the pair of base
relations b := (b, bo) such that b € 'y, b € I'y, and bP =
bP Nb2 . Hence each set r of base relations of C[T'; @ I'y] can
be identified with a set 7 of base relations of C[I'1] ® C[['2] as
well.

Let C; and Cy be qualitative calculi with the same set of
base relations and the same converse mapping. C; is said to be

compositionally at least as fine as Cy if for all base relations
b,b,itholdsboy b/ Chogb'.

Theorem 1. Given the partition schemes 'y and 'y as be-
fore, C[T'y ® T's] defines a qualitative calculus that is compo-
sitionally at least as fine as C[I'1] @ C[I's] if the base relations
of C[I'1 ® T'9] are identified with pairs of base relations of
C[I'] ® C[I's].

We can also transfer tractability results from the compo-
nent calculi to the combined calculus. For this consider
subclasses S7 and Sy of C[I'1] and C[I'], respectively. Let
S1 ® S denote the set of general relations r of C[I'1] ® C[I'q]
such that there exist 7, € S; and ry € Sy withr? = r? ﬂrg.
Then each constraint graph G = (V) with labels from
S1 ® S5 can be decomposed into two constraint graphs with
the same set of variables, the first, G|g, , with labels from S;
and the second, G|g,, with labels from S5.

Theorem 2. Let C[T'1] and C[T's] be qualitative calculi asso-
ciated to 'y and Uy, respectively. If S1 and Ss are tractable
subclasses of C['1] and C[T'3], resp., such that each constraint
graph G with labels from S, ® S is satisfiable if both G|g,
and G|g, are satisfiable, then S1 @ Sy is a tractable subclass
of C[I'] ® C[I'y).

This theorem states that if a constraint network over
C[I'1] ® C[I'3] can be decomposed into two constraint net-
works, each with relations from a tractable subclass, and if
solutions of these networks can be glued together in a con-
sistent way (a counterexample is given in Figure 1), then this
network can also be decided by the path consistency method.

3.2 Loose Combination

Definition 5. Let I'y and I's be partition schemes. A bicon-
straint network over I'y and I's is a constraint network over
(I'r@T%)U{0}. Alternatively, if we allow more than one con-
straint for each constraint scope, biconstraint networks can be
defined as constraint networks over I'7 U T'5.

Biconstraint networks can be expressed on the symbolic
level by pairs of constraint networks on the same set of vari-
ables. To put this more formally, let C; = <317 Yo, id1>

and Cy = (Ba, 72,0, ids) be constraint calculi with interde-
pendency function I; 5 : By — 252, The function I; 5 can be
lifted to a function 17 5:2P" — 2B2 if we set I} o(r) =
Uper 11,2(b). Then, a biconstraint graph is a triple G =
(V,11,15) where V is a set of variables and the [; : VZ — 25
are labeling functions as in the case of ordinary constraint
networks. That is, a biconstraint graph labels each edge with
a pair of general relations (I1(z,v)), la(x,y)) € 281 x 2Bz,

To decide consistency of biconstraint networks, Gerevini
and Renz [2002] propose the O(n?)-time bipath consistency
algorithm, which is an adaption of the path consistency algo-
rithm. Bipath consistency enforces path consistency to both
parts of a biconstraint network in parallel and propagates in-
formation between the two part networks using the interde-
pendency function. Hence, all operations on relations are
performed separately in the two calculi except for the prop-
agation of interdependency constraints. The algorithm uses
a birevision function that plays a role analogous to the re-
vision function (1) used in the usual path consistency algo-
rithm. Moreover, similar to path consistency, tractable sub-
classes exist and we can use backtracking search for deciding
satisfiability if the used base relations are tractable.

Note, that we can assign to each loose combination a tight
one via the induced product constraint calculus. Thus, any
biconstraint network can be written as a constraint network
over the tight combination, but not vice versa (cf. next sec-
tion). Specifically, the revision function (1) applied to net-
works in the product calculus is at least as strong as the bire-
vision function. This also allows for translating tractability
results for the loose combination to the tight combination.

We conclude the section with the following definition: A
combination method of constraint calculi C; and Co with in-
terdependency map I 7 is said to be orthogonal if I 2(b) =
B foreach b € Bj.

4 Examples

Following we briefly sketch some combination representa-
tions of calculi that are well known in the literature. We start
with two examples of orthogonal combinations.

Example 1 (Cardinal directions calculus [Ligozat, 1998]).
Consider points in the Euclidean plane R? as the underlying
domain and define the base relations of the cardinal direction
calculus as pairs of point algebra relations (e.g., [Vilain ef al.,
1989)), i.e., one compares the x- and y-coordinates of two
points in the plane. Thus, the orthogonal product of the point
algebra with itself yields the cardinal directions calculus.

Example 2 (Rectangle algebra [Balbiani et al., 1998]). Con-
sider rectangles in the Euclidean plane, where each side of
the rectangles is parallel to the x- or to the y-axis. As base
relations consider pairs of base relations of Allen’s interval
algebra, which describe the Allen relation between the pro-
jection of two rectangles to the x- and the y-axis, respectively.
Thus, the rectangle algebra is the 2-fold orthogonal product
of Allen’s interval algebra.

Example 3 (Allen’s interval algebra [Allen, 1983]). Consider
the reals as time line and as domain the set of Allen intervals
(t,t') € R? with t < t’. We can define the base relations of

970

Figure 1: A decomposition of an INDU constraint network,
the left one with relations from Allen’s interval algebra, the
right one with relations from the point algebra expressing
qualitative size information. Both are satisfiable, but they do
not have a common solution.

the interval algebra as 4-tuples of base relations of the point
algebra if we compare the start and endpoint of two intervals,
respectively. This combination is not orthogonal. For exam-
ple, if the endpoint of an interval precedes the start point of
another interval, it also precedes the endpoint of the second
interval.

Example 4 (The interval duration network calculus (INDU)
[Pujari ez al., 1999]). Consider Allen intervals in the real time
line as in the previous example. We now compare Allen in-
tervals not only in terms of the usual Allen interval relations,
but also with respect to their size (length). Qualitative size in-
formation can be expressed by using point algebra relations.
Again there exist semantic interdependencies, e.g., if two in-
tervals are equal, then so is their size. Thus, the INDU calcu-
lus is a non-orthogonal combination of Allen’s interval alge-
bra and the point algebra. It should also be mentioned that the
path consistency method does not decide satisfiability even if
one just considers networks with base relations.

Example 5 (Closed disc algebra and cardinal directions cal-
culus [Ragni and Wolfl, 2008]). As domain consider the set
of closed discs in the Euclidean plane R?. We compare these
discs with respect to topological relations (RCC-8) and the
cardinal directions of the disc centers. In this formalism we
have semantic interdependencies between both sets of base
relations (e.g., if two closed discs are equal, so is their po-
sition). Note that the calculus resulting from composing the
partition schemes is compositionally finer than the product of
the considered component calculi. For example, it holds:

(EC,N) o (EC,N) = {(DC,N)}
C {DC, EC, PO, TPP, TPPI, EQ} x {N}

Example 6 (RCC-8 and qualitative size QS [Gerevini and
Renz, 2002]). Gerevini and Renz proposed to combine the
RCC-8 calculus with qualitative size information, i.e., point
algebra relations. For this, consider as domain measurable
sets of R”, e.g., spheres. As mentioned previously, the
authors represented spatial information as biconstraint net-
works. Obviously, this loose combination is not orthogonal.
For example, if two regions are equal, so is their size.

Example 7 (RCC-8 and qualitative size QS™). Instead of
representing RCC-8 with qualitative size information as bi-
constraint networks (i.e., loose combination), we form a new

tight combination by building a calculus using the interde-
pendencies presented in [Gerevini and Renz, 2002].

The difference in expressiveness between the (loose) bi-
constraint representation and the (tight) product method can
be demonstrated if we revisit the last two examples.

As a general rule, with loose combinations one can only
express relations that can be represented as pairs of complex
relations of the component calculi. Hence, if we loosely com-
bine two calculi with n; and n9 base relations, respectively,
we obtain a formalism which can express at most 2" - 272
different relations, possibly less when interdependencies are
taken into account. In the case of tight combinations, all
unions of pairs of base relations can be expressed, which re-
sults in up to 2"*+™2 different relations for orthogonal prod-
ucts.

For the combination of RCC-8 and QS, we obtain 549 dis-
tinct relations for the loose (Example 6), and 16384 relations
for the tight combination (Example 7). In the formalism of
Example 6, it is, for example, not possible to specify mixed
indefinite knowledge such as:

(a<bAaDCbh)V (a=bAaECDH).
Only an upper approximation
(a<bVa=>b)A(aNTPPbVaDCb)

can be formalized.

Clearly, the tight combination is always more expressive
than a loose one. However, for reasoning purposes this ad-
vantage can turn into a problem, since in general the search
space for checking satisfiability of constraint networks in-
creases considerably.

S Comparing Tight and Loose Combinations
Empirically

We compared the performance of reasoning with constraint

networks combining RCC-8 and qualitative size information.

To compare tight and loose combinations, we considered sat-
isfiability tests of randomly generated constraint networks.

5.1 Problem Instances

Our method of generating problem instances is adapted from
the one described in [Renz and Nebel, 2007]. To provide
a fair comparison, we generated only constraint networks
with constraint relations that have a Cartesian product form:
hence both procedures received a semantically equivalent in-
put. The instance generation method uses the parameters n
(number of nodes) and d (average degree), and can be de-
scribed as follows:

1. Generate a complete constraint graph with n nodes such
that each is edge is labeled with the universal relation.

Pick "Td edges at random with uniform distribution. For
each such edge pick non-empty relations R € C[I'1] and
S € C[I'y], each with a uniform distribution, and assign
to the edge the relation RN S. If RN S = (), we pick
these two relations randomly again.

We found that already for d = 2.25 instances with 100
nodes have a probability of around 50% for being consistent.
Hence, we used as average degree d = 2 to generate all of the
test instances independently of the actual network size.

2.

971

‘ Path ‘Consi‘stency‘ —Q
Bipath Consistency —<—

CPU time (seconds)

20 30 40 50 60 70

number of nodes

80 90 100

Figure 2: Required CPU time of path consistency and bipath
consistency, averaged over 250 instances per data point.

5.2 Implementation and Test Environment

The bipath consistency method was implemented in the
Generic Qualitative Reasoner (GQR)! [Gantner et al., 2008].
GQR already provides precomputation techniques for the
composition function of general relations [Ladkin and Reine-
feld, 19971, as used in the path consistency method. For the
bipath consistency algorithm, the corresponding constraint
propagation function requires the computation of the interde-
pendency function (in addition to the o-functions of RCC-8
and the point algebra). Also here we used precomputations
of all these functions.

The benchmarks were run on an Intel Xeon processor with
3 GHz and 3 GiB of memory.

5.3 Empirical Results

First, we compared the constraint propagation step, that is,
the run-time of path consistency and bipath consistency. The
results of this comparison (depicted in Figure 2) are based
on full precomputations of the composition function of gen-
eral relations. Our results indicate that the birevision function
performs worse than the revision function, presumably due to
the overhead that arises from the fact that all operations must
be performed on two networks. However, one should keep
in mind that precomputations of the composition function for
general relations are infeasible for large calculi, since the re-
sulting look-up tables grow exponentially in the number of
base relations. Hence different results can be expected for
combinations of large calculi, where the full precomputation
is not possible.

Second, we considered the entire reasoning process (see
Figure 3). If no tractable subclasses are used, then reason-
ing with the backtracking algorithm in conjunction with path
consistency turns out to be much faster than the backtracking
algorithm using bipath consistency. We conjecture that this
is due to the worse pruning achieved by bipath consistency
and the overhead of the biconstraint approach, i.e., the main-
tenance of two constraint networks. If the tractable subclass
Hg x 2{<=>} (cf. [Gerevini and Renz, 2002]) is exploited,

"http://sfbtr8.informatik.uni-freiburg.de/
R4LogoSpace/Resources/GQR

0.35 T T T T T T T K
Path Consistency ——

0.3+ Path Consistency (tractable) —<— 4
Bipath Consistency —x—

0.25 + Bipath Consistency (tractable) ——=— 7

CPU time (seconds)

number of nodes

Figure 3: Required CPU time for reasoning with backtracking
using path consistency and backtracking using bipath consis-
tency, averaged over 250 instances per data point.

the performance difference decreases considerably, but is still
observable. In general both approaches perform better when
information about tractable subclasses is used.

6 Conclusion

In this paper we considered different methods to combine
qualitative constraint calculi from a general point of view. We
formally defined methods for tight and loose combinations
of such formalisms, and showed some relationships between
these approaches.

For a particular combination (RCC-8 with qualitative size
relations), we performed empirical tests on how reasoning
based on the bipath consistency algorithm compares to rea-
soning using path consistency. From our empirical evalua-
tion, it can be concluded that for certain combinations a tight
integration approach is both feasible and even more efficient
than a loose one. However, this result depends crucially on
the size of the considered calculi and presumably also on
tractability results. Moreover, in this paper we neglected
heuristic search methods that could be used to improve the
reasoning performance. Finally, it remains an open problem
how other combinations such as the directed interval algebra
[Renz and Nebel, 2007] can be represented in this framework.

Acknowledgments

This work was partially supported by Deutsche Forschungs-
gemeinschaft (DFG) as part of the Transregional Collabora-
tive Research Center SFB/TR 8 Spatial Cognition (project R4-
[LogoSpace]).

References

[Allen, 1983] James F. Allen. Maintaining knowledge
about temporal intervals. Communications of the ACM,
26(11):832-843, 1983.

[Balbiani et al., 1998] Philippe Balbiani,
Condotta, and Luis Farifias del Cerro.
reasoning about bidemsional temporal relations.
1998, pages 124-130, 1998.

Jean-Francois
A model for
In KR

972

[Frank, 1996] Andrew U. Frank. Qualitative spatial reason-
ing: Cardinal directions as an example. International Jour-
nal of Geographical Information Science, 10(3):269-290,
1996.

[Gantner er al., 2008] Zeno Gantner, Matthias Westphal, and
Stefan Wolfl. GQR — A fast reasoner for binary qualitative
constraint calculi. In AAAI-08 Workshop on Spatial and
Temporal Reasoning, Chicago, USA. AAAI Press, 2008.

[Gerevini and Renz, 2002] Alfonso Gerevini and Jochen
Renz. Combining topological and size information for
spatial reasoning. Artificial Intelligence, 137(1-2):1-42,
2002.

[Ladkin and Reinefeld, 1997] Peter B. Ladkin and Alexan-
der Reinefeld. Fast algebraic methods for interval con-
straint problems. Annals of Mathematics and Artificial In-
telligence, 19(3-4):383-411, 1997.

[Ligozat and Renz, 2004] Gérard Ligozat and Jochen Renz.
What is a qualitative calculus? A general framework. In
PRICAI 2004, LNCS: 3157, pages 53—64. Springer, 2004.

[Ligozat, 1998] Gérard Ligozat. Reasoning about cardinal
directions. Journal of Visual Languages and Computing,
9(1):23-44, 1998.

[Mackworth and Freuder, 1985] Alan K. Mackworth and
Eugene C. Freuder. The complexity of some polynomial
network consistency algorithms for constraint satisfaction
problems. Artificial Intelligence, 25(1):65-74, 1985.

[Nebel, 1996] Bernhard Nebel. Solving hard qualitative tem-
poral reasoning problems: Evaluating the efficiency of us-
ing the ORD-Horn class. In ECAI 1996, pages 38—42,
1996.

[Pujari ef al., 1999] Arun K. Pujari, G. Vijaya Kumari, and
Abdul Sattar. Indu: An interval and duration network.
In Australian Joint Conference on Artificial Intelligence,
LNCS: 1747, pages 291-303. Springer, 1999.

[Ragni and Wolfl, 2008] Marco Ragni and Stefan Wolfl.
Reasoning about topological and positional information in
dynamic settings. In FLAIRS Conference, pages 606—611.
AAALI Press, 2008.

[Randell and Witkowski, 2002] David A. Randell and Mark
Witkowski. Building large composition tables via ax-
iomatic theories. In KR 2002, pages 26-36, 2002.

[Renz and Nebel, 2007] Jochen Renz and Bernhard Nebel.
Qualitative spatial reasoning using constraint calculi. In
M. Aiello, 1. Pratt-Hartmann, and J. van Benthem, editors,
Handbook of Spatial Logics, pages 161-215. Springer,
2007.

[Vilain et al., 1989] Marc Vilain, Henry Kautz, and Peter van
Beek. Constraint propagation algorithms for temporal rea-
soning: A revised report. In Daniel S. Weld and Jo-
han de Kleer, editors, Readings in Qualitative Reasoning
about Physical Systems, pages 373-381. Morgan Kauf-
mann, 1989.

