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Abstract

We introduce NL∗, a learning algorithm for infer-
ring non-deterministic finite-state automata using
membership and equivalence queries. More specif-
ically, residual finite-state automata (RFSA) are
learned similarly as in Angluin’s popular L∗ algo-
rithm, which, however, learns deterministic finite-
state automata (DFA). Like in a DFA, the states
of an RFSA represent residual languages. Unlike
a DFA, an RFSA restricts to prime residual lan-
guages, which cannot be described as the union of
other residual languages. In doing so, RFSA can be
exponentially more succinct than DFA. They are,
therefore, the preferable choice for many learning
applications. The implementation of our algorithm
is applied to a collection of examples and confirms
the expected advantage of NL∗ over L∗.

1 Introduction

Learning automata has a wide field of applications ranging
over robotics and control systems, pattern recognition, com-
putational linguistics, computational biology, data compres-
sion, data mining, etc. (see [de la Higuera, 2005] for an ex-
cellent survey). Recently, learning techniques have also be-
come popular in the area of automatic verification. They have
been used [Leucker, 2007] for minimizing (partially) specified
systems and for model checking black-box systems, proved
helpful in compositional model checking and in regular model
checking. To put it bluntly, automata learning is en vogue.

The general goal of learning algorithms employed in ver-
ification is to identify a machine, usually of minimal size,
that conforms with an a priori fixed set of strings or a given
machine. Nearly all algorithms learn deterministic finite-
state automata (DFA) or deterministic finite-state machines
(Mealy-/Moore machines), as the class of DFA has preferable
properties in the setting of learning. For every regular lan-
guage, there is a unique minimal DFA accepting it, which can
be characterized thanks to Nerode’s right congruence. This
characterization is at the base of most learning algorithms.

In general, two types of learning algorithms for DFA can
be distinguished, so-called online and offline algorithms. Of-
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fline algorithms get a fixed set of positive and negative ex-
amples, comprising strings that should be accepted and, re-
spectively, strings that should be rejected by the automaton in
question. The learning algorithm now has to provide a (min-
imal) automaton that accepts the positive examples and re-
jects the negative ones. For deriving minimal automata, major
achievements are due to Biermann [Biermann and Feldman,
1972], Trakhtenbrot and Barzdin [Trakhtenbrot and Barzdin,
1973]. Efficient algorithms inferring a not necessarily mini-
mal DFA are given in [Lang, 1992] and [Oncina and Garcia,
1992] under the name RPNI.

Online algorithms have the possibility to ask further
queries, i.e., whether some string is in the language of the
automaton to learn or not. In this way, an online algorithm
can enlarge the set of examples as needed.

A popular setup for an online approach is that of Angluin’s
L∗ algorithm [Angluin, 1987]: A minimal DFA is learned
based on membership and equivalence queries. We have a
learner whose job is to come up with the automaton to learn,
a teacher who may answer if a given string is in the language
as well as an oracle answering if the automaton hypothesis
currently proposed by the learner is correct or not.

DFA have a serious drawback for applications in verifica-
tion. In general, a DFA might be exponentially bigger than
a non-deterministic finite-state automaton (NFA). For many
applications, it would be a huge improvement to work with an
exponentially more succinct NFA rather than the correspond-
ing DFA. As such, learning algorithms for NFA are needed.
However, the class of NFA lacks important properties that are
essential for current learning algorithms: There is no unique
minimal NFA for a given regular language and there is no
characterization of NFA in terms of right-congruence classes.

In a seminal paper, Denis et al. [Denis et al., 2002] intro-
duce the class of residual finite-state automata (RFSA). It is
a subclass of NFA that shares important properties with the
class of DFA: For every regular language, there is a unique
minimal canonical RFSA accepting it. The states of this au-
tomaton correspond to right-congruence classes, or, equiva-
lently, to residuals of the accepted language. At the same
time, the RFSA can be exponentially more succinct than the
corresponding DFA. As such, RFSA are the preferable class
for learning regular languages. In [Denis et al., 2004], Denis
et al. provided an offline algorithm, called DeLeTe2, which
works in the spirit of RPNI. Alternatives and extensions to
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this algorithms have then been presented, most recently in
[Garcı́a et al., 2008], which also gives a nice overview on
offline algorithms for learning NFA.

In this paper, we introduce NL∗ as an online learning al-
gorithm for RFSA, patterned after L∗. Using membership
and equivalence queries, our algorithm infers a (minimal)
canonical RFSA for the language in question, which is al-
ways smaller than or equal to the corresponding DFA. Note
that [Yokomori, 1994] presents an online learning algorithm
for NFA based on contradiction backtracking. According to
[Denis et al., 2004], the resulting NFA are actually RFSA.
They are, however, not canonical and can even be larger than
the corresponding minimal DFA, as their size crucially de-
pends on the size of counterexamples provided by the oracle.

We have implemented our algorithm and studied its effi-
ciency on a collection of regular languages described by reg-
ular expressions. It turns out that, for most examples, the re-
sulting RFSA is much smaller than the corresponding DFA.
While our current upper bounds for NL∗ on the number of
membership and equivalence queries are slightly worse than
those for L∗, our implementation shows that the resulting
RFSA are typically obtained after far fewer queries. Sum-
marizing, we provide a new learning algorithm for regular
languages. Together with a practically efficient oracle real-
ization based on anti-chains [De Wulf et al., 2006], we expect
it to enhance, e.g., associated verification tasks considerably.

Full proofs can be found in [Bollig et al., 2008].

2 Preliminaries

We fix a finite set Σ of letters, called alphabet. Finite se-
quences of letters are elements of Σ∗, called words. Subsets
of Σ∗ are termed languages. For w ∈ Σ∗, we denote by
Pref (w) (resp. Suff (w)) the set of its prefixes (resp. suffixes)
including w itself and the empty word ε. A non-deterministic
finite-state automaton (NFA) A = (Q, Q0, F, δ) has a finite
set of states Q, a set of initial states Q0 ⊆ Q, a set of final
states F ⊆ Q, and a transition function δ : Q × Σ → 2Q. A
is a deterministic finite-state automaton (DFA) if |Q0| = 1
and |δ(q, a)| = 1 for all q ∈ Q and a ∈ Σ. As usual,
δ is extended to δ̄ : Q × Σ∗ → 2Q by δ̄(q, ε) = {q}
and δ̄(q, aw) =

⋃
q′∈δ(q,a) δ̄(q′, w), and to sets Q′ ⊆ Q by

δ̂(Q′, w) =
⋃

q∈Q′ δ̄(q, w). We use δ to denote both δ̄ and δ̂.

For q ∈ Q, let Lq = {w ∈ Σ∗ | δ(q, w) ∩ F �= ∅}. The lan-
guage L(A) accepted by A is

⋃
q∈Q0

Lq. Two automata are

equivalent if they accept the same language. It is folklore that
the languages of finite-state automata are the regular ones.
We call a DFA minimal if there is no equivalent DFA with
strictly fewer states. In contrast to NFA, a DFA has always a
unique minimal representative, as shown by Myhill/Nerode.

Residual Finite-State Automata RFSA, introduced in the
seminal work [Denis et al., 2002], are a subclass of NFA in-
heriting some desirable features of DFA. Important for learn-
ing, every regular language is accepted by a canonical RFSA
with a minimal number of states. As this does not hold for ar-
bitrary NFA, it seems difficult to come up with learning algo-
rithms for the whole class of NFA. At the same time, like for
NFA, RFSA can be exponentially more succinct than DFA.

Technically, RFSA and DFA have the property that the
states of the automata correspond to so-called residual lan-
guages defined below. This is in general not true for NFA.

Definition 1 (Residual Language) For L ⊆ Σ∗ and u ∈
Σ∗, we denote by u−1L the set {v ∈ Σ∗ | uv ∈ L}. A
language L′ ⊆ Σ∗ is a residual language (or, simply, resid-
ual) of L if there is u ∈ Σ∗ with L′ = u−1L. We denote by
Res(L) the set of residual languages of L.

The Myhill-Nerode theorem states that the number of residu-
als of a language is finite iff this language is regular [Nerode,
1958]. Moreover, for a minimal DFA A, there is a natural bi-
jection between its states and the residual languages of L(A).

Definition 2 (Residual Finite-State Automaton) A residual
finite-state automaton (RFSA) is an NFA R = (Q, Q0, F, δ)
such that, for each q ∈ Q, Lq ∈ Res(L(R)).

In other words, each state accepts a residual language of
L(R), but not every residual language must be accepted by
a single state. Intuitively, the states of an RFSA form a class
of states of the corresponding minimal DFA. Yet, using non-
determinism, certain states of a minimal DFA are not needed
as they correspond to the union of languages of other states.
To this end, we distinguish prime and composed residuals:

Definition 3 (Prime and Composed Residuals) Let L ⊆
Σ∗. A residual L′ ∈ Res(L) is called composed if there are
L1, . . . , Ln ∈ Res(L) \ {L′} such that L′ = L1 ∪ . . . ∪ Ln.
Otherwise, it is called prime. The set of prime residuals of L
is denoted by Primes(L).

We can now define the canonical RFSA of a regular lan-
guage. The idea is that its set of states corresponds exactly to
its prime residuals. Moreover, the transition function should
be saturated in the sense that a transition to a state should
exist if it does not change the accepted language.

Definition 4 (Canonical RFSA) Let L ⊆ Σ∗ be a regular
language. The canonical RFSA of L, denoted by R(L), is the
NFA (Q, Q0, F, δ) where Q = Primes(L), Q0 = {L′ ∈ Q |
L′ ⊆ L}, F = {L′ ∈ Q | ε ∈ L′}, and δ(L1, a) = {L2 ∈
Q | L2 ⊆ a−1L1}.

Note that R(L) is indeed an RFSA and we actually have
L(R(L)) = L. We say that an RFSA R is canonical if it
is the canonical RFSA of L(R).

Angluin’s Learning Algorithm L∗ The algorithm from
[Angluin, 1987] learns or infers a minimal DFA for a given
regular language L. A so-called Learner , who initially
knows nothing about L, is trying to learn a DFA A such
that L(A) = L. To this end, it repeatedly asks queries to
a Teacher and an Oracle, who both know L. There are two
kinds of queries: A membership query consists of asking the
Teacher if a string w ∈ Σ∗ is in L, and an equivalence query
consists of asking the Oracle whether a hypothesized DFA H
is correct, i.e., whether L(H) = L. The Oracle answers yes
if H is correct, or, otherwise, supplies a counterexample w,
drawn from the symmetric difference of L and L(H).

The Learner maintains a prefix-closed set U ⊆ Σ∗ of
words that are candidates for identifying states, and a suffix-
closed set V ⊆ Σ∗ of words used to distinguish those
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states. Words of U are called access strings and words of
V experiments. U and V are both initialized to {ε} and
increased when needed. The Learner makes membership
queries for all words in (U ∪ UΣ)V , and organizes the re-
sults into a table T = (T, U, V ) where function T maps
each w ∈ (U ∪ UΣ)V to an element from {+,−}. Here,
+ means accepted and − not accepted. To u ∈ U ∪ UΣ,
we assign a function row(u) : V → {+,−} given by
row(u)(v) = T (uv). Any such function is called a row of T ,
and the set of all rows of a table is denoted by Rows(T ). We
let Rowsupp(T ) = {row(u) | u ∈ U} denote the set of rows
representing the “upper” part of the table. The rows from
Rows low(T ) = {row(u) | u ∈ UΣ} occur in its “lower”
part. Table T is closed if, for all u ∈ U and a ∈ Σ, there
is u′ ∈ U such that row(ua) = row (u′). It is consistent if,
for all u, u′ ∈ U and a ∈ Σ, row(u) = row(u′) implies
row(ua) = row(u′a).

If T is not closed, then we find u′ ∈ UΣ such that
row(u) �= row(u′) for all u ∈ U . We move u′ to U
and ask membership queries for every u′av where a ∈ Σ
and v ∈ V . Likewise, if T is not consistent, then we find
u, u′ ∈ U , a ∈ Σ, and v ∈ V such that row(u) = row (u′)
and row(ua)(v) �= row(u′a)(v). In that case, we add
av to V and ask membership queries for every u′′av with
u′′ ∈ U ∪UΣ. When T is closed and consistent, the Learner
constructs a hypothesized DFA H = (Q, Q0, δ, F ) where
Q = Rowsupp(T ) = {row(u) | u ∈ U}, Q0 = {row(ε)},
δ is defined by δ(row (u), a) = {row(ua)}, and F = {r ∈
Q | r(ε) = +}. Then, the Learner submits H to an equiva-
lence query (asking whether L(H) = L). If the answer is yes,
the learning procedure is completed. Otherwise, the returned
counterexample u is processed by adding every prefix of u
(including u) to U , extending UΣ accordingly, and perform-
ing membership queries to make the table closed and consis-
tent, whereupon a new hypothesized DFA is constructed, etc.

Remark 1 L∗ can be modified by changing the treatment of
counterexamples. Instead of adding the counterexample and
its prefixes to U , one can add the counterexample and all
its suffixes to V ensuring that the table is always consistent
[Maler and Pnueli, 1995].

3 Learning of Residual Finite-State Automata

We will now modify Angluin’s learning algorithm L∗, which
infers DFA, towards learning of NFA in terms of RFSA.

From Tables to RFSA To simplify our presentation, we
follow Angluin’s notions and notation. We use tables T =
(T, U, V ) with a prefix-closed set of words U , a suffix-closed
set V , and a mapping T : (U ∪ UΣ)V → {+,−}. We as-
sociate with a word u ∈ U ∪ UΣ a mapping row(u) : V →
{+,−}. Members of U are used to reach states and members
of V to distinguish states. We adopt notations introduced be-
fore such as Rows(T ), Rowsupp(T ), and Rows low(T ).

The main difference in the new approach is that not all
rows of the table will correspond to states of the hypothesized
automaton, but only certain prime rows. Essentially, we have
to define for rows what corresponds to ‘union’, ‘composed’,
‘prime’, and ‘subset’ previously introduced for languages.

Definition 5 (Join Operator) Let T = (T, U, V ) be a table.
The join (r1 
 r2) : V → {+,−} of rows r1, r2 ∈ Rows(T )
is defined, for v ∈ V , by (r1 
 r2)(v) = r1(v) 
 r2(v)
where − 
 − = − and + 
 + = + 
 − = − 
 + = +.

Note that the join operator is associative, commutative, and
idempotent, yet that the join of two rows is not necessarily a
row of table T .

Definition 6 (Composed, Prime Rows) Let T = (T, U, V )
be a table. A row r ∈ Rows(T ) is called composed if
there are rows r1, . . . , rn ∈ Rows(T ) \ {r} such that r =
r1 
 . . . 
 rn. Otherwise, r is called prime. The set of
prime rows in T is denoted by Primes(T ). Moreover, we let
Primesupp(T ) = Primes(T ) ∩Rowsupp(T ).

Definition 7 (Covering Relation) Let T = (T, U, V ) be a
table. A row r ∈ Rows(T ) is covered by row r′ ∈ Rows(T ),
denoted by r � r′, if, for all v ∈ V , r(v) = + implies
r′(v) = +. If, moreover, r′ �= r, then r is strictly covered by
r′, denoted by r � r′.

As for L∗, we now define concepts comparable to closed-
ness and consistency called RFSA-closedness and RFSA-
consistency. For DFA, closedness ensures that every row in
the lower part also occurs in the upper part. For RFSA, this
translates to the idea that each row of the lower part of the
table is composed of (prime) rows from the upper part.

Definition 8 (RFSA-Closedness) A table T = (T, U, V ) is
called RFSA-closed if, for each r ∈ Rows low(T ), r =⊔
{r′ ∈ Primesupp(T ) | r′ � r}.

Note that a table is RFSA-closed iff any prime row of the
lower part is a prime row of the upper part of the table.

The idea of consistency in the DFA case was as follows:
Assume that two words u and u′ of the table have the same
row. This suggests that both words lead to the same state
of the automaton to learn as they cannot be distinguished by
words v ∈ V . Hence, they induce the same residuals. Then,
however, ua and u′a have to induce equal residuals as well,
for any a ∈ Σ. In other words, if there is some a ∈ Σ and v ∈
V such that T (uav) �= T (u′av), then the residuals induced
by u and u′ cannot be the same and must be distinguishable
by the suffix av to be added to V .

For RFSA, if there are u and u′ with row (u) � row(u′),
then this suggests that the residual induced by u is a subset
of the residual induced by u′. If indeed so, then the same
relation must hold for the successors ua and u′a.

Definition 9 (RFSA-Consistency) A table T = (T, U, V )
is called RFSA-consistent if, for all u, u′ ∈ U and a ∈ Σ,
row(u′) � row (u) implies row(u′a) � row (ua).

One might expect that the previous simple definitions
smoothly lead to a straightforward extension of L∗ towards
learning RFSA. This is, however, not the case. We now list
some major difficulties that arise. First, an RFSA-closed and
RFSA-consistent table does generally not represent a canon-
ical RFSA, not even an RFSA. To put things right, we come
up with an algorithm that produces NFA as intermediate hy-
potheses and outputs a canonical RFSA only in the last step.
Second, termination of our algorithm crucially depends on the
treatment of counterexamples, which need to be added to the
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set of suffixes held in a table. A third subtle point is that the
number of states may decrease during a run of the algorithm.
Thus, the termination proof requires reasoning on a measure
that relates four indicators of a table such as the number of
distinct rows or the number of upper prime rows.

So let us first associate an NFA to an RFSA-closed and
RFSA-consistent table. As above-mentioned, we show that
this NFA corresponds to a canonical RFSA only after our
learning algorithm has terminated (Theorems 1 and 2).

For the rest of this subsection, we fix an RFSA-closed and
RFSA-consistent table T = (T, U, V ).

Definition 10 (NFA of a Table) We define RT to be the NFA
(Q, Q0, F, δ) with Q = Primesupp(T ), Q0 = {r ∈ Q | r �
row(ε)}, F = {r ∈ Q | r(ε) = +}, and δ(row(u), a) =
{r ∈ Q | r � row(ua)} for u ∈ U with row (u) ∈ Q, a ∈ Σ.

Note that Primesupp(T ) = Primes(T ), as T is RFSA-
closed. Also, δ is well-defined: Take u, u′ with row(u) =
row(u′). Then, row(u) � row(u′) and row(u′) � row(u).
Consistency implies row(ua) � row (u′a) and row (u′a) �
row(ua) so that both resulting rows are the same.

Let us establish some elementary properties of RT . The
proof of the first two lemmas is by simple inductions.

Lemma 1 Let RT = (Q, Q0, F, δ). For all u ∈ U and r ∈
δ(Q0, u), we have r � row (u).

Lemma 2 Let RT = (Q, Q0, F, δ). For each r ∈ Q and v ∈
V , we have (1) r(v) = − iff v �∈ Lr, and (2) row(ε)(v) = −
iff v �∈ L(RT ).

Lemma 2 may be summarized by saying that each state of
RT correctly classifies strings of V . This fact will enable us
to prove that the covering relation precisely reflects language
inclusion, as stated in the next lemma.

Lemma 3 Let RT = (Q, Q0, F, δ). For every r1, r2 ∈ Q,
r1 � r2 iff Lr1

⊆ Lr2
.

Proof: Let r1, r2 ∈ Q and assume u1, u2 ∈ U with
row(u1) = r1 and row (u2) = r2. “only if”: Suppose
r1 � r2 and w ∈ Lr1

. We distinguish two cases. Assume
first w = ε. Then, row(u1)(ε) = + and, due to r1 � r2,
row(u2)(ε) = +. Thus, r2 ∈ F so that ε ∈ Lr2

. Now let w =
aw′ with a ∈ Σ. We have δ(r1, aw′) ∩ F �= ∅. Thus, there is
r ∈ δ(r1, a) such that δ(r, w′) ∩ F �= ∅. From r1 � r2, we
obtain, by RFSA-consistency, row(u1a) � row(u2a). By
definition of δ, r � row(u1a), which implies r � row(u2a).
Thus, r ∈ δ(r2, a) and we have aw′ ∈ Lr2

. “if”: Assume
r1 �� r2. We show that Lr1

�⊆ Lr2
. By definition of �, there

exists v ∈ V with row(u1)(v) = + but row(u2)(v) = −. By
Lemma 2, v ∈ Lr1

and v �∈ Lr2
. Therefore, Lr1

�⊆ Lr2
. �

The automaton RT constructed from T is not necessarily
an RFSA [Bollig et al., 2008]. However, we show that RT is
a canonical RFSA if it is consistent with T , i.e., if it correctly
classifies all words from T .

Definition 11 RT is consistent with T if, for all words w ∈
(U ∪ UΣ)V , we have T (w) = + iff w ∈ L(RT ).

The next lemma is a stronger version of Lemma 1, if we
additionally have that RT is consistent with T .

Lemma 4 If RT = (Q, Q0, F, δ) is consistent with T , then,
for all u ∈ U with row(u) ∈ Q, we have row (u) ∈ δ(Q0, u).

Proof: Suppose row(u) �∈ δ(Q0, u). With Lemma 1, we
have ∀r ∈ δ(Q0, u).r � row(u). Then, Lemma 3 implies
∀r ∈ δ(Q0, u).Lr ⊆ L

row(u). As row(u) ∈ Q and row(u) �∈
δ(Q0, u), there is v ∈ V such that row(u)(v) = + and, for all
r ∈ δ(Q0, u), r(v) = −. This, with Lemma 2, implies ∀r ∈
δ(Q0, u).v /∈ Lr. But then, uv �∈ L(RT ), a contradiction to
the fact that RT is consistent with T . �

Theorem 1 Let T be RFSA-closed and RFSA-consistent and
let RT be consistent with T . Then, RT is a canonical RFSA.

Proof: Let T = (T, U, V ) and assume RT = (Q, q0, F, δ).
Set L = L(RT ). We first prove that RT is an RFSA. Let
u ∈ U with row (u) ∈ Q. Let us show L

row(u) = u−1L.

By Lemma 4, we have row(u) ∈ δ(Q0, u), which implies
L

row(u) ⊆ u−1L. By Lemma 1, ∀r ∈ δ(Q0, u).r � row(u).
Thus, with Lemma 3, ∀r ∈ δ(Q0, u).Lr ⊆ L

row(u). This

gives u−1L ⊆ L
row(u). With L

row(u) ⊆ u−1L, we have

L
row(u) = u−1L. As, by Lemma 3, the relation � over rows

corresponds to the subset relation over languages, L
row(u) is

prime and the transition function δ is saturated. �

The Algorithm We now describe NL∗, which takes a reg-
ular language L ⊆ Σ∗ as input. Its pseudo code is given in
Algorithm 1. After initializing the table T , the it is repeatedly
checked for RFSA-closedness and RFSA-consistency. If the
algorithm detects a prime row row(ua) that is not contained
in Primesupp(T ) (a violation of the RFSA-closedness con-
dition from Def. 8), then ua is added to U . This involves
additional membership queries. On the other hand, when-
ever the algorithm perceives an RFSA-consistency violation
(Def. 9), then a suffix av can be determined that makes two
existing rows distinct or incomparable. In this case, a column
is added to V invoking supplemental queries. This procedure
is repeated until T is RFSA-closed and RFSA-consistent. If
both properties are fulfilled, a conjecture RT can be derived
from T (cf. Def. 10), and either a counterexample u from
the symmetric difference of L and L(RT ) is provided and
Suff (u) added to V invoking NL∗, or the learning procedure
terminates successfully. Note that the algorithm ensures that
V is always suffix-closed and U prefix-closed.

Remark 2 The counterexamples are handled as described
in Remark 1, since treating them as in L∗ leads to a non-
terminating algorithm [Bollig et al., 2008]. Our treatment of
counterexamples ensures that each row can appear at most
once in the upper part of the table.

Proving termination of L∗ is quite straightforward. In our
setting, however, the termination proof is intricate as, after
an equivalence query or a violation of RFSA-consistency, the
number of states of the hypothesized automaton does not nec-
essarily increase [Bollig et al., 2008].

The following theorem constitutes our main contribution.

Theorem 2 Let n be the number of states of the minimal DFA
A∗ for a given regular language L ⊆ Σ∗. Let m be the
length of the biggest counterexample returned by the equiva-
lence test (or 1 if the equivalence test always succeeds). Then,

1007



Algorithm 1 NL∗ (Σ; regular language L ⊆ Σ∗)

initialize T := (T, U, V ) for U = V = {ε} by memb. queries
REPEAT

WHILE T is not (RFSA-closed and RFSA-consistent) DO
IF T is not RFSA-closed THEN

find u ∈ U and a ∈ Σ with
row (ua) ∈ Primes(T ) \ Primesupp(T )

extend T to (T ′, U ∪ {ua}, V ) by memb. queries
IF T is not RFSA-consistent THEN

find u, u′ ∈ U, a ∈ Σ, and v ∈ V with

T (uav) = −, T (u′av) = +, and row(u′) � row (u)
extend T to (T ′, U, V ∪ {av}) by memb. queries

from T construct hypothesized NFART / / cf. Def. 10
IF (L = L(RT )) THEN equivalence test succeeds
ELSE

get counterexample w ∈ (L \ L(RT )) ∪ (L(RT ) \ L)
extend T to (T ′, U, V ∪ Suff (w)) by memb. queries

UNTIL equivalence test succeeds
RETURN RT

NL∗ returns, after at most O(n2) equivalence queries and
O(m|Σ|n3) membership queries, the canonical RFSA R(L).

Proof: First of all, if the algorithm terminates, then it outputs
the canonical RFSA for L due to Theorem 1, because passing
the equivalence test implies that the constructed automaton
must be consistent with the table. To show that the algorithm
terminates after at most O(n2) equivalence queries, we cre-
ate a measure M that associates a tuple of positive natural
numbers to a table T . We let M(T ) = (lup, l, p, i), where
lup = |Rowsupp(T )|, l = |Rows(T )|, p = |Primes(T )|, and
i = |{(r, r′) | r, r′ ∈ Rows(T ) and r � r′}|. An analysis of
the evolution of M during an execution of NL∗ reveals that,
after each extension of the table, either (1) lup is increased
or (2) l is increased by k > 0 and, simultaneously, i is in-
creased by at most kl+k(k−1)/2 or (3) l stays the same and
i decreases or p increases. However, lup, l, and p cannot in-
crease beyond n. Hence, the algorithm must (a) always reach
an equivalence query and (b) terminate after at most O(n2)
equivalence queries. Concerning the number of membership
queries, we notice that their maximal number corresponds to
the size of the table which has at most n + n|Σ| (n rows in
the upper part + their successors) rows and O(mn2) columns
since at each extension at most m suffixes are added to V . �

The theoretical complexity of NL∗ wrt. equivalence (resp.
membership) queries is higher compared to L∗ where at most
n equivalence (resp. roughly |Σ|mn2 membership) queries
are needed. But we observe that, in practice, fewer equiva-
lence and membership queries are needed (cf. Section 4).

NL* by means of an Example Suppose Σ = {a, b} and let
Ln ⊆ Σ∗ be given by the regular expression Σ∗ a Σn. I.e.,
Ln contains the words having an a at the (n+1)-last position.
Then, Ln is accepted by a minimal DFA A∗

n with 2n+1 states.
However, it is easy to see that the canonical RFSA R(Ln) has
n + 2 states (see Fig. 1 for n = 2). In other words, R(Ln) is
exponentially more succinct than A∗

n.
Next, we show how R(L2) is inferred by NL∗:

T1 ε

∗ ε −

∗ b −

∗ a −

⇒

T2 ε aaa aa a

∗ ε − + − −

∗ b − + − −

∗ a − + + −

⇒

T3 ε aaa aa a

∗ ε − + − −

∗ a − + + −

∗ b − + − −

∗ ab − + − +
aa − + + +

⇒

T4 ε aaa aa a

∗ ε − + − −

∗ a − + + −

∗ ab − + − +

∗ b − + − −

aa − + + +
∗ abb + + − −

aba + + + −

⇒

T5 ε aaa aa a

∗ ε − + − −

∗ a − + + −

∗ ab − + − +
∗ abb + + − −

∗ b − + − −

aa − + + +
aba + + + −

∗ abbb − + − −

∗ abba − + + −

Rows with a preceding ∗ are prime. The table T1 is RFSA-
closed and RFSA-consistent but does not represent the target
language because aaa is not accepted. We add aaa and its
suffixes to V , perform membership queries, and obtain table
T2, which is not RFSA-closed. We add a to U and continue.
Resolving two more closedness violations, we obtain table
T5, which is RFSA-closed and RFSA-consistent. Its automa-
ton RT5

given in Fig. 1, is the canonical RFSA for L2. Notice
that table T5 is not closed in Angluin’s sense so that L∗ would
continue adding strings to the upper part of the table.

4 Experiments

To evaluate the performance of our learning algorithm NL∗,
we compare it with Angluin’s L∗ and its modification wrt. to
Remark 1, called L∗

col. As NL∗ is similar in spirit to L∗
col, a

comparison with this algorithm seems fairer. All algorithms
have been implemented in Java and tested on a wide range of
examples. Following [Denis et al., 2004], we randomly gen-
erate large sets of regular expressions over different sizes of
alphabets. A detailed description of this as well as a full de-
scription of the outcome can be found in [Bollig et al., 2008].
As in [Denis et al., 2004], we present a characteristic selec-
tion of the results for an alphabet of size two.
Results We generated a set of 3180 regular expressions, re-
sulting in minimal DFA of sizes between 1 and 200 states.
These DFA were given to the learning algorithms, i.e., mem-
bership and equivalence queries were answered according to
these automata. To evaluate the algorithms’ performance, we
measured, for each algorithm and input regular expression,
the number of states of the final automaton (RSFA or DFA)
and the number of membership (resp. equivalence) queries
that are needed to infer it. As Fig. 2 (top) shows, the automata
learned by NL∗ are considerably smaller than those that are
returned by L∗ and L∗

col, confirming the results of [Denis et
al., 2004]. More importantly, in practice, the actual sizes of
RFSA compared to DFA seem to follow an exponential gap.

In Fig. 2 (middle), the number of membership queries is
depicted. As in the first case, NL∗ behaves much better than
the other learning algorithms. While the difference between

− + −− − + +− − + −+ + + −−
a Σ Σ

Σ a

a
a

Σ

Σ
Σ

Figure 1: Canonical RFSA of L2
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Figure 2: Experimental results

the curves is rather small for automata with less than 40 states,
it increases significantly for larger automata. The same is
the case for the number of equivalence queries depicted in
Fig. 2 (bottom). This is in contrast with the theoretical result
we obtained in Theorem 2. The experiments we performed
point out the clear predominance of NL∗ over L∗ and L∗

col as
long as the user is not dependent on a deterministic model.

5 Future Work

There is room for further improvement by adapting the vari-
ous recent variants of L∗ (see [Leucker, 2007] for references).
In the future, we plan to show that using our NL∗ algorithm,
the limits of learning-based verification techniques can be
pushed ahead considerably, as most often non-deterministic
automata should be sufficient for verification tasks.
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