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Abstract

Extreme Components Analysis (XCA) is a statisti-
cal method based on a single eigenvalue decompo-
sition to recover the optimal combination of prin-
cipal and minor components in the data. Unfor-
tunately, minor components are notoriously sensi-
tive to overfitting when the number of data items
is small relative to the number of attributes. We
present a Bayesian extension of XCA by introduc-
ing a conjugate prior for the parameters of the XCA
model. This Bayesian-XCA is shown to outper-
form plain vanilla XCA as well as Bayesian-PCA
and XCA based on a frequentist correction to the
sample spectrum. Moreover, we show that minor
components are only picked when they represent
genuine constraints in the data, even for very small
sample sizes. An extension to mixtures of Bayesian
XCA models is also explored.

1 Introduction

Principal components analysis (PCA) is perhaps the most
widely used algorithm in the fields of statistics, machine
learning and data mining. It enjoys a number of desirable
properties such as optimal reconstruction of the original sig-
nal in the Ly norm and retaining the maximal variance di-
rections in the data. Despite this, there are many examples
where it is not the principal components (PCs) that convey
the important information, but rather the directions of small
variance, or minor components (MCs). One can think of mi-
nor components as properties that are conserved in the data,
i.e. constraints.

As a motivating example we consider the landmark mea-
surements on the edge of a mosquito wing', see Figure 1(a).
In our experiments we have sub-sampled a number of these
landmarks located on the edge of the wing and computed
the relative distances between these landmarks and some of
their nearest neighbors. We have used distances as features
because they remove translational and rotational degrees of
freedom (for more details see section 5.1.)

In Figure 1(b) we have plotted the deformation of the ge-
ometry of the landmark configuration as we change the co-

'Obtained from http://life.bio.sunysb.edu/morph/index.html
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(a) Mosquito Wing Landmarks (dots). Landmarks are placed
where the veins intersect with the wing’s outer boundary.

00527354

(b) Deformation of the geometry of the landmark configurations
along the first PC (left) and first MC (right). The middle two fig-
ures show the mean positions of the landmarks. The width of the
lines represent the weight associated with the features (i.e. dis-
tances) for the respective PC/MC. Plots in the left column show
the wing as we deform it by varying the coefficient associated
with first PC from positive (top) to negative (bottom) and simi-
larly for the MC on the right.

Figure 1: Mosquito Wing Landmarks

efficient for the principal component or the minor component
of the data. One can observe that the first PC corresponds to a
shift of the landmarks over the edge of the wing, but keeping
the wing shape mostly invariant, indicating that the location
where the veins of the wing intersect with the boundary is
highly variable across mosquitos. Looking at the minor com-
ponent of the data we see that it (when varied) would dras-
tically change the shape of the wing, in particular the part
where the wing is attached to the mosquito’s body. Since mi-
nor components express variability which is absent in the data
it implies that this type of shape change is highly unlikely in
the mosquito population. We argue that these “conservation
laws of biological evolution” are of more scientific interest



than the directions of high variability.

More generally, for an arbitrary dataset we would like to re-
liably determine which linear subspace constitutes an optimal
description of the data. A statistical technique called eXtreme
Components Analysis (XCA) was introduced in [Welling et
al., 2003] to determine the optimal combination of princi-
pal and minor components automatically from data. In a
statistical sense, it is very difficult to reliably estimate mi-
nor components from data if the number of data instances is
relatively small compared to the number of attributes. This
effect is illustrated in Figure 2 where we plot the sample
spectrum computed from a multivariate normal distribution
with unit variance in all directions. Even though this data
should clearly have no preference for either principal or minor
components, sample fluctuations always create artificial low
variance directions which correspond to under-sampled direc-
tions in space. Since an eigenvalue decomposition searches
for these directions it is highly prone to over-fitting to this
type of sampling noise.

Log Eigenvalue

Figure 2: The sample log-spectrum (solid) computed from 200
samples drawn from a 100-D normal distribution with unit variance
in all directions. The true log-spectrum is a straight line (dashed).

The contribution of this paper is to largely resolve this is-
sue by introducing a conjugate prior to the parameters of the
XCA model which in turn regularizes the eigenvalue decom-
position. The effect of this is that minor components will only
be incorporated in the model if they represent genuine con-
straints in the data and not merely under-sampled directions
of space.

In our empirical evaluation we show that Bayesian XCA
performs at least as good, and often better than 1) XCA based
on frequentist shrinkage estimates of the sample covariance,
2) Bayesian PCA and 3) plain vanilla XCA. These results still
hold true for an extension to mixtures of Bayesian XCA mod-
els that we discuss as well.

2 Extreme Components Analysis

XCA models a data cloud probabilistically by starting with
an isotropic Gaussian pdf and either stretching in certain di-
rections (the PCs) or contracting it in certain direction (the
MCs). Denote these directions with w; (organized as rows of
W).
=Wz 21 ~N[0,14], z22=Vz 2z ~N[0,v]p_g)]
(1
where z; and z represent independent subspaces and the
rows of V form an orthonormal basis in the orthogonal com-
plement of the space spanned by W. The distribution of XCA
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is normal with inverse covariance matrix given by

T
Vv +wWrTw. 2)

C;(ch =
We can decompose W7 using an SVD as follows,
W' =UL"'’R 3)

where U € Rpxd,2 € Raxq satisfying UTU = I; and
RTR = I,. L is diagonal matrix with elements {I;}. One
can show that the variance of data in the direction u; (¢th col-
umn of U) is given by /; and in the remaining directions by v.
Data is elongated in directions where [; > v and contracted
in directions where I; < v. When all the /;’s are larger than
v, XCA is equivalent to probabilistic PCA (PPCA) [Roweis,
1998; Tipping and Bishop, 1999b]. On the other hand, when
all the [;’s are smaller than v, XCA is equivalent to proba-
bilistic MCA (PMCA)[Williams and Agakov, 2002].

3 Bayesian XCA

Since XCA is more flexible than PCA and MCA, it will
always have equal or higher likelihood on the training set.
However, XCA can be sensitive to overfitting. The selection
of PCs and MCs depends on the estimation of the sample
spectrum, but both the variance as well as the bias of or-
dered eigenvalues of the sample covariance matrix increase
as the ratio of the number of data instances to the num-
ber of attributes decreases. In the extreme case where the
number of data instances is smaller than the number of at-
tributes, the smallest eigenvalues are 0 and XCA will always
pick these minor components. This results in a positive infi-
nite log-likelihood of training data but a negative infinite log-
likelihood of test data. Thus, regularization is necessary for
XCA when the size of the training dataset is small compared
to the number of attributes.

3.1 A Prior for XCA:

In this paper, we use a prior for the parameters of XCA to reg-
ularize the estimation of the eigenvalues. When the number
of data cases increases, the effect of the prior will automati-
cally diminish. We are aware of two approaches to Bayesian
formulations of PPCA [Bishop, 1999; Minka, 2000]. Unlike
[Bishop, 19991, the method of [Minka, 2000] can be extended
to XCA as we will describe below in more detail®.

The probability of the dataset D given the covariance ma-
trix C' and mean m is under the XCA model is,

Pxca(D|C,m) = (2m) NPR|CTH N2 exp(—%tr(c_ls))

“)

where S =Y (@, —m)(z, —m)T,C~1 = L(I-UUT) +

UL~'UT, N is the number of data points and D the dimen-
sionality of data.

We use a conjugate prior for (U, L, R, v, m) controlled by

two hyper-parameters «, 3, similar to those used in [Minka,

>We thank T. Minka for his prompt responses to our questions
about his method. The prior in this paper is similar to that in an
updated version of [Minka, 2000].



2000].

p(U, L Rv,m) o |07 exp(~ (0 ) )

o |L| /2y~ (P=d)a/2 exp(—a—ftr(L_l)) exp(— 5
v

The prior for m is constant in an area large enough for

the problem.This distribution factors into separate terms for
(U,L,R,v):

d
p(U, L,R,v, m) = p(U)p(U)p(R) Hp(li) (6)
i=1
p(v) ~ x*(a(D —d) = 2,a8(D — d)) =
exp(_aﬁ(QD—d)) OZB(D _ d) a(D—-d)/2—1
Na(D—-d)/2—-1) < 2v )
p(D)p(R)p(m) = constant
p(li) ~
9 B 1 af a/2-1 af
X “(a—2,a0) = NS (%) eXP(—Tli)

The priors for I; and v are Y2 distributed with mode 3
while for other irrelevant parameters they are uninformative.
The mean of [; and v are approximately equal for large «v. The
width of the peak is controlled by & — 2 and (D — d) — 2
respectively, and var(v) ~ 5~ var(l;). The fact that they
have the same mode is consistent with our prior knowledge
about the variance of both retained and discarded directions:
Since [; can be either larger or smaller than v, we don’t place
prior preference on this choice. The variance relationship be-
tween v and [; is also consistent with the fact that at the max-
imum likelihood solution, v is the mean of D — d discarded
eigenvalues.

3.2 The MAP Estimator:

The full Bayesian approach is computationally expensive. In
this paper, we use MAP estimation for the parameters, which
is very fast and will be shown to perform well with a proper
choice of hyper-parameters.

Multiplying the likelihood with the prior probability gives
the posterior probability

~
~

p(U, L,v,m|D,a)  |C1"/? exp(—%tr(c_l (S+apl)))
(7)

where n = N + a. It’s easy to show that the maximum of the
posterior distribution is given by,

X
Plugging in det(C~') = det(WWT)v~(P=9 and com-

paring the logarithm of the posterior distribution, equ 7 with
equ 9 in [Welling et al., 2003],

®)

ND N
£ = ——log(2m) + — log det(WWT) +

ND-d), 1. N, .
TZOQ(UTQ)) - Etr(OXICAS)

af(D — d)

)
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we can see that these two equations are equivalent if we re-
place N in [Welling ef al., 2003] by n, and S by (S+«a81)/n.
Thus, the MAP estimator for U, L and v is obtained following
the same derivation as in [Welling e al., 2003]:

~ N/\i—FOzﬂ .

i = ~Nia ieC )
A N Zieg/\i af

"' T Nta D-d +N+a (10)

where ); is the eigenvalue of the sample covariance matrix
S/N = (zn — m)(xn —m)" /N (11)

belonging to the set of C. The ith column of U is the eigen-
vector of § /N corresponding to )\;, and C and G are sets
of respectively retained and discarded directions. As shown
in [Welling er al., 2003], all the discarded eigenvalues are
contiguous in the ordered eigenspectrum of the sample co-
variance matrix, and GG is determined by comparing all the
D — d + 1 candidate sets and choosing the set with the max-
imal posterior probability or equivalently with the minimal
value of the following term:

K=Y logli+ (D —d)log(>_ ;)

ieC i€g

12)

The complete algorithm is summarized below:

Bayesian XCA MAP Solution
1.

Compute the sample mean 7 and covariance matrix

S/N using eqn 8, 11.

. Compute the eigenvalues of S /N and get their esti-
mates, [;, using eqn 9

. Find the optimal set G among D — d + 1 candidates,

{j<i<j+d-1 f;f”l with the minimal value of
Kineqn 12

. Compute the estimate © using eqn 10

In the experiments of this paper, we remove the mean and
normalize the variance of each attribute as a preprocessing
step. The non-biased estimate of the mean eigenvalues of
the covariance matrix is then always 1. Since the hyper-
parameter (3 acts as the best prior guess for the eigenvalues,
we set it to 1 in this paper. The parameter « is chosen through
cross validation. We can also apply this prior to PCA (MCA)
to derive a Bayesian PCA (MCA) model by simply impos-
ing a constraint /; > v (I; < v) on Bayesian XCA. The only
difference is that no comparisons between eigenvalue sets are
necessary because under the constraint Bayesian PCA (MCA)
can only choose PCs (MCs).

The estimators I; and @ satisfy some interesting proper-
ties. They are both a linear combination of the un-regularized
estimator and a constant with a weight proportional to the
number of data points N. When the dataset is large enough
(N > «a), the effect of sampling noise can be neglected and



the estimator I; ~ \;, ¥ ~ s > icg Ai» equivalent to the
ML solution of XCA. When the dataset becomes smaller or @
is larger, the constant term gets more weight. The eigenvalue
estimator then trades bias for variance. Moreover, in terms
of the ordered eigenvalues, as mentioned at the beginning of
this section, the un-regularized estimator has a strong bias,
which is possibly larger than the bias induced by the prior
especially when N < D. Therefore, with properly chosen
hyper-parameters, I;, & can reduce both the variance and bias
of the ordered eigenvalue estimators.

3.3 Other Eigenvalue Estimators

Besides the MAP estimators, there are also other kinds of es-
timators for the eigenvalues of the covariance matrix. One
is introduced by Lawley [Lawley, 1956] and cited in [Jack-
son, 2003]. It is able to correct the bias of ordered sample
eigenvalues for Gaussian distributions up to O(1/N). We
have implemented this method but did not include it in our
experimental results because it was quite unstable and even
produced negative variance estimates. Another estimator is a
shrinkage method with an automatic selection of the shrink-
age parameter [Schifer and Strimmer, 20051, It’s designed
for the case where the number of data instances is close to
or even smaller than the number of attributes. This estimator
was included in our experiments described below.

4 Mixtures of Bayesian XCA

Mixtures of factor analyzers [Ghahramani and Beal, 2000]
and mixtures of PPCAs [Tipping and Bishop, 1999a; Bishop
and Tipping, 1998] are potentially powerful density estima-
tors that combine a number of local dimensionally reduced
models into a single joint model. It is not unreasonable to
assume that these local models represent constraints, i.e. lo-
cal patches of data shaped like high dimensional pancakes.
Unfortunately, the issue of overfitting is exacerbated for local
mixtures because the effective number of data items available
to estimate each model component is much smaller. We pro-
pose that a mixture of Bayesian XCA models might resolve
this.

We therefore introduce priors for each mixture component
with shared hyper-parameters. The objective function we
want to maximize is the log-likelihood including the regu-
larizing prior given by

L(D,n,0) =log [H <Z PXCA($n|9zn)7Tzn> Hp(ek)l
n Zn k

13)
where § = {W, v, m}, z, is the cluster index of z,, and 7, =
P(z, = k).

The EM algorithm is used to train this model. It has a regu-
lar E-step and in the M-step, we execute the BXCA algorithm
for each mixture component. Iterating E- and M-steps until
convergence is guaranteed to converge to a local maximum of
the MAP regularized log-likelihood.

3The code is available at http://strimmerlab.org/software.html
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S Experiments
5.1 Log-likelihood:

In this section we will compare the test log-likelihood on var-
ious datasets for five different models: XCA, PCA, Bayesian
XCA, Bayesian PCA, and Shrinkage XCA.

Mosquito Wing Landmarks:

In section 1, we have shown that the first PC and MC of the
mosquito wing landmark data represent respectively the large
variability of the locations of veins and a constraint on the
shape of wings. In this experiment, we want to compare the
log-likelihood for different models on this dataset. A number
of landmarks on the boundary of the wing are sub-sampled,
and the distances of each landmark to its 4 nearest neighbors
along the edge are used as features. For the 8 landmarks, there
are a total of 13 distances as shown in the middle of two sub-
figures in Figure 1(b). This is the same number of degrees of
freedom after removing translation and rotation information
from the original coordinates.

Figure 3(a) shows the average log-likelihood of data points
in the training (solid) and test (dashed) sets for Bayesian
XCA, XCA and PCA with different numbers of retained di-
rections. We use 50 data points in the training set and 77
in the test set. The inset shows the number of MCs picked
by Bayesian XCA and XCA. The log-likelihood of Bayesian
XCA and XCA are everywhere above PCA. Bayesian XCA
and XCA always pick MCs when d < 11, suggesting that
it’s better to model the data with constraints. Overfitting is
not very serious in this experiment and the plots of Bayesian
XCA and XCA are close to each other. Figure 3(b) shows the
comparison of Bayesian XCA, Bayesian PCA and Shrinkage
XCA w.rt. the average log-likelihood of test data. Clearly
Bayesian XCA performs much better than the other two.

“Frey Faces” Image Data

We have repeated the experiment in [Welling ef al., 2003] on
the “Frey Faces” images*. This dataset contains 1965 images
of size 20 x 28. On each pixel, the values are normalized
across images to zero mean and unit variance. Figure 4(a),(b)
show plots of the average log-likelihood per data point for
the various methods. 1000 samples are used in the training
set and the remaining 965 in the test set. The corresponding
numbers of minor components picked by Bayesian XCA and
XCA are plotted in the inset.

XCA and PCA are compared on the same dataset in
[Welling et al., 2003] and it turns out that XCA overfits
quickly because of the small size of the training set (see Fig-
ure 4(a)). With the prior, Bayesian XCA doesn’t suffer from
this problem. In fact, it remains to perform robustly even
when we retain a large number of dimensions. In effect, it
will not pick minor components unless sufficiently supported
by the data. As a result it outperforms both XCA and PCA.
From Figure 4(b) we find that the performance of Bayesian
XCA is close to that of Bayesian PCA and Shrinkage XCA
underscoring the fact that overfitting is the real issue here.

Figure 5 show the log-likelihood and corresponding num-
bers of MCs on different sizes of training set. Unlike XCA,

*Obtained from http:/fwww.cs.toronto.edu/ roweis/data. html
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Figure 3: (a),(b) show the average log-likelihood per data point of
the Mosquito Wing Landmark data on the training set of 50 data
points (solid) and test set of 77 data points (dashed) as a function
of the number of retained directions. (a) compares Bayesian XCA
with XCA and PCA, and (b) compares Bayesian XCA with Bayesian
PCA and Shrinkage XCA. Hyper-parameter o = 0.02 is determined
through cross validation with d = 5. The inset shows the number of
minor components for different numbers of retained directions for
Bayesian XCA (o) and XCA (x).

Bayesian XCA always chooses principal components on this
dataset, and thus exhibits similar performance as Bayesian
PCA. While XCA and PCA over-fit severely as the number
of data points decreases the two Bayesian models show good
performance across the board on the test set.

In all experiments we determined the value for o using
cross validation using a single value of d (nr. of retained di-
mensions) and N (training size) and subsequently used this
hyper-parameter setting for all the other values of d and N.

The experiments suggest that the performance of Bayesian
XCA is not very sensitive to the choice of a.. To confirm that
we also estimated the optimal value of « for a range of d and
N values. We found that av was relatively stable and that the
test log-likelihood only marginally improved. Results are not
presented due to space limitation.

5.2 Mixture Models
We have also tested the performance of Bayesian XCA on a
dataset from the UCSD data-mining competition® which has

SObtained from http://mill.ucsd.edu/index.php ?page=Datasets
&subpage=Download in the standard classification task.
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Figure 4: (a),(b) show the average log-likelihood per data point of
the “Frey Faces” data on 1000 training data (solid) and 965 test data
(dashed) as a function of the number of retained components. (a)
compares Bayesian XCA with XCA and PCA, and (b) compares
Bayesian XCA with Bayesian PCA and Shrinkage XCA. Hyper-
parameter o 20 is determined through cross validation with
d = 300. The inset shows the number of minor components for
Bayesian XCA (0) and XCA (x).

19 attributes. These results are not included in this paper due
to the space limitations. However, Bayesian XCA also shows
its advantage to other methods on this dataset. Unlike the pre-
vious two experiments where either PCs or MCs were chosen
by Bayesian XCA, on this dataset it finds a more balanced
mix of the two.

We have compared the performance of a mixture
of Bayesian XCA models with mixtures of respectively
Bayesian PCA, XCA and PCA. We have tested these mod-
els on the UCSD dataset. We ran the proposed EM algorithm
on 1000 samples with another 1000 samples for validation
and a further 38000 samples as the test set. For each model,
there are 20 mixture components and the number of retained
directions is 10. The EM algorithm was terminated in two
ways: it either ran until convergence on training set, or was
stopped early by monitoring performance on the validation
set. Results averaged over 100 runs are shown in Table 1.

The best log-likelihood is obtained by Bayesian XCA with
early stopping, and the worst by XCA running until EM con-
verges. Generally, Bayesian models perform better than non-
Bayesian models, and early stopping is better than running
until convergence. However, the difference between these
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Figure 5: (a),(b) show the average log-likelihood per data point
of the “Frey Faces” data on the training data (solid) and test data
(dashed) as a function of the number of training data points. (a)
compares Bayesian XCA with XCA and PCA, and (b) compares
Bayesian XCA with Bayesian PCA and Shrinkage XCA. Hyper-
parameter o« = 20. The inset shows the number of minor com-
ponents for Bayesian XCA (0) and XCA (x).

two stopping criteria for Bayesian models is much less pro-
nounced than for non-Bayesian methods. This suggests that
Bayesian methods are able to reduce overfitting to a substan-
tial extent. In a mixture model, Bayesian XCA is still able to
combine PCs and MCs reliably and gives a better estimate of
the probability density than Bayesian PCA/MCA.

6 Conclusions

We have argued that oftentimes constraints (minor compo-
nents) better characterize the structure of data than the widely
adopted principal components. In particular, scientific dis-
covery seems to be mainly based on discovering conservation
laws which directly correspond to minor components.

The primary goal of this paper is to introduce a practical
method to reliably extract the optimal combination of prin-
cipal and minor components from data. An earlier method,
called “extreme components analysis” (XCA) [Welling et al.,
2003] provided a first step towards this goal but was highly
sensitive to sampling noise and as a result suffered from over-
fitting. The Bayesian extension of XCA we propose in this
paper largely resolves this problem. This was verified em-
pirically on various datasets. Moreover, Bayesian XCA pro-

1027

Table 1: Average log-likelihood of test set on UCSD dataset for
mixtures of MCA, XCA and PCA with and without the prior. The
EM algorithm stops when it is converged or when it is terminated
by monitoring performance on a validation set. The maximal and
minimal values are bold-faced.

vides a better density estimator than a number of alternative
methods such PCA, Bayesian PCA, and XCA based on fre-
quentist corrections to the spectrum. The proposed method
is also highly scalable since it is based on a simple singular
eigenvalue decomposition of the data matrix.

Code for Bayesian XCA will be released to the public soon.
We hope that this will facilitate its widespread use in the sci-
entific community.
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