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Abstract

Boltzmann Machines are a powerful class of undi-
rected graphical models. Originally proposed as ar-
tificial neural networks, they can be regarded as a
type of Markov Random Field in which the con-
nection weights between nodes are symmetric and
learned from data. They are also closely related
to recent models such as Markov logic networks
and Conditional Random Fields. A major challenge
for Boltzmann machines (as well as other graphi-
cal models) is speeding up learning for large-scale
problems. The heart of the problem lies in effi-
ciently and effectively approximating the partition
function. In this paper, we propose a new effi-
cient learning algorithm for Boltzmann machines
that allows them to be applied to problems with
large numbers of random variables. We introduce
a new large-margin variational approximation to
the partition function that allows Boltzmann ma-
chines to be trained using a support vector machine
(SVM) style learning algorithm. For discrimina-
tive learning tasks, these large margin Boltzmann
machines provide an alternative approach to struc-
tural SVMs. We show that these machines have
low sample complexity and derive a generaliza-
tion bound. Our results demonstrate that on multi-
label classification problems, large margin Boltz-
mann machines achieve orders of magnitude faster
performance than structural SVMs and also outper-
form structural SVMs on problems with large num-
bers of labels.

1 Introduction

Boltzmann machines [Hinton and Sejnowski, 1983] have
played an important role in the history of machine learning.
They were one of the first learning algorithms for undirected
graphical models.Originally inspired by biological neural net-
works and Ising models in statistical physics, they can be
viewed as a type of Markov random field (MRF) with weights
that are learned from data.

∗This work was supported by NGA grant no. HM1582-05-C-
0004 , NSF grant no. 0622252, and the Packard Foundation.

A Boltzmann machine is usually trained by maximum like-
lihood estimation. However, the likelihood function involves
the normalization or partition function Z (see Section 2),
whose exact computation for a general graph is a well-known
#P-complete problem. Much research has been devoted to
finding an efficient and accurate approximation to the par-
tition function using, for example, variational inference or
Markov chain Monte Carlo (MCMC) methods. Stochastic
MCMC algorithms such as Gibbs sampling effectively ap-
proximate the likelihood [Neal, 2003; Geman and Geman,
1984] but are typically slow to converge, especially when
the number of variables is large. Variational approxima-
tions turn the integration problem into an optimization prob-
lem and include methods such as mean field approximations,
belief propagation [Yedidia et al., 2005] and convex relax-
ation [Wainwright et al., 2005b]. Mean field methods find
lower bounds to the partition function, but the bounds are typ-
ically not very tight and the methods can get trapped in local
maxima. Loopy belief propagation has been shown to provide
a lower bound on the partition function for binary attractive
MRFs that is tighter than the mean field method [Sudderth et
al., 2007]. However, in general graphs, the bounds from be-
lief propagation-based approximation are not yet clear. Wain-
wright et al. have generalized belief propagation to con-
vex relaxation based methods. Their tree-reweighted mes-
sage passing algorithm upper bounds the partition function
tightly [Wainwright et al., 2005b] and is guaranteed to con-
verge under certain conditions, but its scalability to large-
scale problems remains to be demonstrated.

In this paper, we propose a new learning algorithm for
Boltzmann machines that allows fast learning on large num-
bers of random variables. The contributions of the paper are
as follows: (1) Our algorithm is based on a new variational
method that upper bounds the partition function of BMs using
a hinge functional approximation. The approximation avoids
the need to compute the partition function explicitly. (2) In
the case of a single output variable, the hinge loss function
of support vector machines (SVMs) is shown to be an up-
per bound on the negative log likelihood (NLL) loss function,
motivating an SVM-style learning algorithm for Boltzmann
machines. (3) When conditional likelihood Pr(Y|X) is used
for learning instead of data likelihood Pr(X), the resulting
large margin Boltzmann machine (LMBM) leads to a new and
potentially powerful alternative to existing structural sup-
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port vector machines (SSVMs) [Tsochantaridis et al., 2004;
Finley and Joachims, 2008; Joachims et al., to appear].
(4) We analyze the conditions under which LMBMs have
low sample complexity and provide a generalization bound.
(5) We present results on multi-label classification problems
demonstrating the effectiveness and efficiency of the pro-
posed learning algorithm in tackling large-scale problems.

2 Boltzmann Machines

Many important machine learning problems, e.g., language
parsing, sequence alignment, image/text segmentation, re-
quire modeling the dependencies between random variables.
Probabilistic graphical models are well-suited for this pur-
pose. Popular graphical models include Markov random
fields (MRFs)and related models such as conditional random
fields (CRF) [Lafferty et al., 2001] and Markov logic net-
works (MLN) [Richardson and Domingos, 2006]. The Boltz-
mann machine can be regarded as an early type of MRF that
was inspired by biological neural networks: each binary ran-
dom variable corresponds to a stochastic neuron-like unit that
fires according to some probability conditioned on its neigh-
bors. Neighborhoods correspond to cliques in the graphical
model. Thus, a more general definition is as follows:

Definition 2.1. A Boltzmann machine (BM) is a graph G =
(V,E) ,where V is a set of vertices, representing a set
of binary random variables on the domain {−1, 1}K, and
C = {Cj |Cj ⊆ V} is a collection of cliques in graph
G, each associated with a weight wj and a feature function
fj =

∏
i:Vi∈Cj

vi. This likelihood is defined in Equation 1:

Pr(V|w) =
1

Z(w)
e

P
j wjfj (1)

where Z(w) =
∑

V e
P

j wjfj is the partition function.

2.1 Relationship to Other Models

It is possible to show that some recently proposed models can
be transformed into a BM. MLNs [Richardson and Domin-
gos, 2006] provide a general framework for combining logic
with probability. Weights are attached to first-order logic for-
mulas and weighted formulas are used to construct MRFs.
The probability distribution over the variables of a grounded

MLN is usually expressed as 1
Z e

P
j wjnj , where nj is the

number of cliques that make the jth formula satisfied. This
distribution has a form similar to a BM (Equation 1) except
that fj = ∨i:Vi∈Cjvi where ∨ denotes the OR function and
vi can take on the values 0 or 1. The equivalence with the
BM equation is established by noting that (1) each formula
can be instantiated with many variables, resulting in poten-
tially many cliques which have the same weight, and (2) all
fj evaluate to zero or one. It is then easy to show the follow-
ing:

Remark 2.2. A grounded MLN with weights wj and realiza-
tions vi ∈ {0, 1} can be transformed into a BM with weights
w′j and realizations v′i ∈ {−1, 1}.

Proof. ∑
j

wj ∨i:Vi∈Cj vi

=
∑

j

wj(1 −
∏

i:Vi∈Cj

(1 − vi))

=
∑

j

wj(1 −
∏

i:Vi∈Cj

(1 − v′i + 1

2
))

=
∑

j

wj

⎛
⎝1 −

∑
k:Ck⊆Cj

(−1)|Ck|

2|Cj|
∏

i:Vi∈Ck

v′i

⎞
⎠

=
∑

j

⎛
⎝ ∑

k:Cj⊆Ck

(−1)|Cj|+1

2|Ck| wk

⎞
⎠ ∏

i:Vi∈Cj

v′i +
∑

j

wj

=
∑

j

w′j
∏

i:Vi∈Cj

v′i + const.

If V = {X,Y}, where X are treated as input variables and
Y as output variables, and Pr(Y|X) is modeled instead of
Pr(X,Y), the resulting conditional BM has a form identical
to a CRF.

3 Large Margin Boltzmann Machines

The starting point for our efficient learning algorithm for BMs
is the following lemma:

Lemma 3.1.

log(ex + e−x) ≤ min
ξ

(x + 2ξ + b)

subject to ξ ≥ 0

x ≥ γ − ξ

γ > 0

b = log(eγ + e−γ) − γ

Proof. As seen in Figure 1, when x > γ, the log-sum-exp
function log(ex + e−x) is upper bounded by the linear func-
tion x + b, where b is defined as above. On the other hand,
as x → −∞, the two functions could deviate at most by 2ξ,
where ξ is the distance between x and γ. Hence, the upper
bound is x + 2ξ + b. Combining both bounds yields the de-
sired result. The bound works for any γ.

Lemma 3.1 allows us to lower bound the log-likelihood
function as follows.

Theorem 3.2.

log Pr(V = v|w) ≥ −min
ξ

(
∑

i

2ξi + Kb + R(w))

subject to ξi ≥ 0∑
j:Vi∈Cj

wjfj ≥ γ − ξi

R(w) < K log 2 + 4‖w‖1

1157



oge
x
e
x

x

γ

x

xξ

ξ

ξ

ξ

Figure 1: Illustration of upper bounds on log(ex + e−x)

Proof. We upper bound the partition function as follows:∑
V

e
P

j wjfj

=
∑
V\V1

(
∑

V1={−v1,v1}
e

P
j:V1∈Cj

wjfj )e
P

j:V1 /∈Cj
wjfj

=
∑
V\V1

(e
P

j:V1∈Cj
wjfj + e

−P
j:V1∈Cj

wjfj )e
P

j:V1 /∈Cj
wjfj

≤
∑
V\V1

e
P

j:V1∈Cj
wjfj+2ξ1+b

e
P

j:V1 /∈Cj
wjfj

=
∑
V\V1

e
P

j wjfj+2ξ1+b

=
∑

V\{V1,V2}
(
∑
V2

e
P

j:V2∈Cj
wjfj+2ξ1+b

)e
P

j:V2 /∈Cj
wjfj

≤
∑

V\{V1,V2}
(
∑
V2

e
P

j:V2∈Cj
wjfj )(

∑
V2

e2ξ1+b)e
P

j:V2 /∈Cj
wjfj

≤
∑

V\{V1,V2}
e

P
j wjfj+2ξ2+b(

∑
V2

e2ξ1+b)

In order to proceed further, we need to bound
∑

V2
e2ξ1+b

since ξ1 depends on V2. Let [ · ] = max(0, ·) be the rectifica-
tion function.∑

V2={−v2,v2}
e2ξ1+b ≤

eb(e
2[γ−P

j:V1,V2∈Cj
wjfj−

P
j:V1∈Cj

wjfj ]+ +

e
2[γ−P

j:V1,V2∈Cj
wjfj−

P
j:V1∈Cj

wjfj+2
P

j:V1,V2∈Cj
wjfj ]+)

Since [ · ]+ is 1-Lipschitz, and |fj | ≤ 1∑
V2={−v2,v2}

e2ξ1+b ≤ e2ξ1+b2e
4g

P
j:V1,V2∈Cj

|wj |

We substitute the above result back, and continue the same
approximation over all the other Vi to get the desired bound.

Adding an L2 regularization term on w, with a given set
of samples of size N , we can train the BM by solving the
following optimization problem:

Optimization Problem 3.3.

min
w,ξ

1

N

∑
i,l

ξil + λ(η0R(w) +
1

2
‖w‖2

)

subject to
∑

j:Vi∈Cj

wjfjl ≥ γ − ξil

ξil ≥ 0

Here R(w) can be considered as an extra regularization
of w, and its weight η0 will be selected according to cross
validation. We will justify its importance to generalization
performance in Section 4. After training, we predict values
of the random variables V by solving:

Optimization Problem 3.4.

v̂ = arg min
v,ξ

∑
i

ξi

subject to
∑

j:Vi∈Cj

wjfj ≥ γ − ξi

ξi ≥ 0

In the case of conditional BMs where V = (X,Y), the ob-
jective functions above only involve hinge loss terms for vari-
ables Y and ignore the loss terms for variables X. The extra
penalty term R(w) only contains the weights of those cliques
that involve at least two Y vertices. In addition, the partition
function of the conditional likelihood does not marginalize
over X, and the domain of X can be relaxed to real values. In
the rest of this paper, we discuss the conditional BMs for clas-
sification tasks, although the algorithms apply to the original
BMs as well.

3.1 Relation to other large margin based
structural learning methods

Large margin based approaches have been explored exten-
sively in the past few years [Crammer and Singer, 2001;
Collins, 2002; Taskar et al., 2004; Tsochantaridis et al.,
2004]. The basic idea is that the objective function

∑
j wjfj

with true assignments of Y must be greater than ones with
other assignments by a margin γ. The Structural Support Vec-
tor Machine (SSVM) is one approach to this problem that can
be solved efficiently [Tsochantaridis et al., 2004; Joachims et
al., to appear] by considering only a polynomial number of
constraints to achieve optimality. For each added constraint,
one has to perform an inference (the ”separation oracle”).
When exact inference is not available, either performance
or correctness is not guaranteed [Finley and Joachims, 2008;
Kulesza and Pereira, 2007].

In contrast, the LMBM does not need any inference dur-
ing training and leads to a fast learning algorithm. Further-
more, we show that the LMBM has a generalization bound
with a sample complexity as low as the PAC-Bayes bound of
SSVMs.
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4 Empirical Risk Minimization and

Generalization Bound

The training of SSVMs minimizes the prediction errors em-
pirically, which is considered an advantage over maximum
likelihood estimation. Similarly, the objective function of the
LMBM also upper bounds the 0-1 error as shown in Theo-
rem 4.1 below. Therefore, the performance of the LMBM
can be justified by empirical risk minimization as well.

Theorem 4.1. Consider the decision function defined in
O.P 3.4, and let L(x,y,w) =

∑
i ξi(x,y,w). If ∀y �=

ŷ,x,y ∼ D, ∃T > 0, L(x,y,w) > T , then

Pr(ŷ �= y|w) ≤ 1

T
ED[L(x,y,w)] (2)

Proof.

Pr(ŷ �= y|w) = ED[1(ŷ �= y)]

≤ ED[H(L(x,y,w) − T )]

≤ 1

T
ED[L(x,y,w)]

The function 1(z) is the indicator function that is 1 when z is
true and 0 for false. H(z) is the Heaviside function that is 1
for z ≥ 0 and 0 otherwise. The last inequality comes from
the fact that H(v − T ) ≤ v

T .

In above theorem, the threshold T is a crucial factor when
the expected loss ED[L(x,y,w)] is greater than 0 due to the
existence of noise. The larger the T , the better the general-
ization performance. The threshold T for the LMBM is given
below:

Remark 4.2. Let Si = {j|∃k �= i, Yi, Yk ∈ Cj}, gj =
supx,y |fj(x,y)|, we have T = mini[γ − ∑

j∈Si
|wj | gj]+

Proof. Let fj = fj(x,y), f̂j = fj(x, ŷ). For any

yi �= ŷi, we have ξi = [γ − A0 − A1]+,ξ̂i = [γ −
A0 − A2]+ where A0 =

∑
j:Yi∈Cj∧fj=f̂j

wjfj , A1 =∑
j:Yi∈Cj∧fj �=f̂j

wjfj, A2 =
∑

j:Yi∈Cj∧fj �=f̂j
wj f̂j . Since

x is the same, and only y ∈ {−1, 1}K changed, it is easy to

verify fj = −f̂j , if fj �= f̂j . So ξ̂i = [γ − A0 + A1]+.
If A1 < 0, we have L > ξi > [γ − A0]+. Otherwise, L >

L̂ > ξ̂i > [γ − A0]+. So L > [γ − ∑
j:Yi∈Cj∧fj=f̂j

wjfj ]+.

To make the threshold independent of x,y, we further loosen
it to L > mini[γ − ∑

j∈Si
|wj | gj ]+.

If the weights of those cliques that involve at least two Y
variables are too large, the threshold is possibly very small,
and generalization performance will not be guaranteed. In
fact, the extra regularization term R(w) in O.P. 3.3 can keep
those weights small to ensure a large threshold. In the experi-
ments, we show that the LMBM with this extra regularization
consistently outperforms the one without it. Furthermore, al-
though R(w) contains a L1 term, for the algorithmic simplic-
ity, we replace it with a L2 term.

The convergence rate of a stochastic objective function
similar to LMBM’s has been studied by Shalev-Shwartz et

al. [Shalev-Shwartz et al., 2008], where only one output vari-
able is considered. With Lemma 4.3, Corollary 4 in [Shalev-
Shwartz et al., 2008] can be applied to the objective function
of LMBM.

Lemma 4.3. Let F = {x,y �→ L(x,y,w)}, Fi = {x,y �→∑
j:Vi∈Cj

wjfj(x,y)}, φ(z) = [γ − z]+. We have

E

[
sup
h∈F

(
Eh − ÊNh

)]
≤

∑
i

RN (φ ◦ Fi)

Proof.

E

[
sup
h∈F

(
Eh − ÊNh

)]

≤ E

[
sup
h∈F

1

N

∑
l

(h(x′l,y
′
l) − h(xl,yl))

]

≤ E

[∑
i

sup
h′

i∈φ◦Fi

1

N

∑
l

(h′i(x
′
l,y

′
l) − h′i(xl,yl))

]

=
∑

i

RN (φ ◦ Fi)

Here RN is the Rademacher complexity [Bartlett and
Mendelson, 2002] of sample size N . See [Bartlett and
Mendelson, 2002] for details on the notation.

We can now derive a generalization bound as in Theo-
rem 4.4 below by first defining:

L(w) = ED[L(x,y,w)]

ŵ = argmin
w

(
1

N

∑
l

L(xl,yl,w) + λ ‖w‖2
2

)

wo = argmin
w

L(w)

Theorem 4.4. Assuming
∑

j ‖fj‖2
2 < B2, d is the maximum

clique size, for any δ > 0, with probability 1 − δ over the

sample size N , if λ = c
B
√

d/δ

‖wo‖
√

N
, where c is a constant,we

have

Pr(ŷ �= y|ŵ) ≤ 1

T
L(ŵ)

≤ 1

T

⎛
⎝L(wo) + O

⎛
⎝

√
B2d ‖wo‖2

log (1/δ)

N

⎞
⎠

⎞
⎠

This generalization bound is better than the PAC-Bayes
bound for SSVMs by

√
log N . When the exact inference

is intractable, the generalization bound for SSVMs is further
worsened due to the extra degrees of freedom introduced by
relaxation [Kulesza and Pereira, 2007].

5 Dual Coordinate Descent Method for Large

Margin Boltzmann Machines

In this section, we propose a dual coordinate descent method
for large margin BMs that shares similarities with the dual

1159



coordinate method used for linear SVMs [Hsieh et al., 2008].
The method contains a fast update for each iteration, with
a relatively small number of iterations. Unlike nonlinear
SVMs, one does not need to re-compute the whole gradient
in each iteration, which saves a factor of O(N) time where N
is the number of samples.

Consider the optimization problem

min
w,ξ

1

2

∑
j

ηjw
2
j + U

∑
il

ξil

subject to
∑

j:Vi∈Cj

wjfjl ≥ γ − ξil

ξil ≥ 0

where U = 1/(λN) and η are the penalty constants set by
cross-validation. If the jth clique contains only one Y vari-
able, ηj = 1, otherwise ηj = η0. Let αil and βil be Lagrange
multipliers. Then, we have the Lagrangian:

L(w, ξ, α, β) =
1

2

∑
j

ηjw
2
j + U

∑
il

ξil −
∑
il

βilξil −
∑
il

αil(
∑

j:Vi∈Cj

wjfjl − γ + ξil)

We optimize L with respect to w and ξ:

∂L
∂wj

= ηjwj −
∑

l

∑
i:Vi∈Cj

αilfjl = 0

∂L
∂ξil

= U − αil − βil = 0

Substituting for w and ξ, we have the dual Lagrangian:

Lα =
1

2

∑
j,l,l′

∑
i:Vi∈Cj

∑
i′:Vi′∈Cj

αilαi′l′
fjlfjl′

η2
j

− γ
∑
il

αil

The dual coordinate descent algorithm picks αil one at a time
and optimizes the dual Lagrangian with respect to this vari-
able:

min
d

Lα(d) =
1

2

∑
j:Vi∈Cj

Qjlld
2 −∇ilLαd + const.

subject to 0 ≤ αil + d ≤ U

where Qjll =
fjlfjl

η2
j

, ∇ilLα =
∑

j:Vi∈Cj
wjfjl − γ. The

objective has the almost the same form as linear SVMs. The
Q matrix satisfies all properties required for convergence de-
scribed in [Hsieh et al., 2008].

6 Experimental Results

We applied LMBMs to the challenging problem of multi-
label classification. We choose four popular benchmark
datasets: Scene [Boutell et al., 2004], Yeast [Elisseeff and
Weston, 2002], and Mediamill10/Mediamill50 [Snoek et al.,
2006]. Mediamill10 selects the first 10 labels and data con-
taining at least one of them. Mediamill50 selects the first 50
labels. The basic characteristics of these datasets are listed in
Table 1.

Algorithm 1 The dual coordinate descent algorithm for large
margin Boltzmann machines

1: α ← 0,w ← 0
2: while α is not optimal do
3: for all αil do
4: αo ← αil

5: G =
∑

j:Vi∈Cj
wjfjl − γ

6: PG =

{
min(G, 0) αo = 0,
max(G, 0) αo = U,

G 0 < αo < U
7: if |PG| �= 0 then

8: αil ← min(max(αo − GP
j:Vi∈Cj

Qjll
, 0), U)

9: wj ← wj + (αil − αo)fjl, if Vi ∈ Cj

10: end if
11: end for
12: end while
13: return w

Table 1: Characteristics of the datasets used in the experi-
ments. The table shows the number of training and testing
examples, number of features, number of labels, and number
of weights for each dataset.

name train test features labels weights

scene 1211 1196 294 6 1788
yeast 1500 917 103 14 1547

mediamill10 2718 1087 120 10 1255

mediamill50 25737 10919 120 50 7500

LMBM and SSVM model the same distribution family, i.e.,
a completely connected graph with a maximal clique size of
two. The approximation algorithm for SSVM implements re-
laxed linear programming (LP) and is guaranteed to reach a
possibly sub-optimal solution in polynomial time [Finley and
Joachims, 2008]. In our experiments involving SSVM, we
adopt a popular LP relaxation that enforces a marginalization
constraint [Wainwright et al., 2005a] and solve it with the
software package lp solve. We optimize the margin-rescaling
objective with the Hamming loss. For LMBMs, we imple-
ment a mixed integer programming (MIP) algorithm for test-
ing and cross-validation. We observe that for the optimization
problem 3.4, MIP always outperforms LP, but interestingly,
for SSVMs, integer programming produces the same results
as LP on these datasets.

Five methods are compared in these experiments: LMBM
trained without the extra regularization η0 = 0, LMBMr
trained with the extra regularization η0 �= 0, SSVM the struc-
tural SVM, ILSVM the independent linear SVM that treats
Y mutually independent, and MLSVM which transforms the
multi-label classification problem into a multi-class classi-
fication problem by treating each label combination as one
class. According to [Tsoumakas and Katakis, 2007], in Yeast
and Scene, MLSVM outperforms many other methods, but it
is not scalable to large numbers of Y since the number of
classes increases exponentially.

In multi-label datasets, the labels are typically highly un-
balanced, with negative labels usually outnumbering positive
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labels. So the Hamming loss (H) is not an informative perfor-
mance metric. We adopt four additional popular performance
metrics: accuracy (A), precision (P), recall (R) and F1 score

(F) as defined in Eqn. 3 below, where Ŷ are the predicted
positive labels and Y are the true positive labels.

A =
|Y ∩ Ŷ|
|Y ∪ Ŷ| , P =

|Y ∩ Ŷ|
|Ŷ| , R =

|Y ∩ Ŷ|
|Y| , F =

2PR

P + R
(3)

For ILSVM, LMBM, LMBMr and SSVM, 5-fold cross-
validation was used to select the parameters individually.
For SSVM, C was selected from {0.01, 0.1, 1, 10, 100}.
For LMBMr, LMBM and ILSVM, U was selected from
{0.01, 0.1, 1, 10, 100}. For LMBMr, η0 was selected from
{5, 10, 100}.

The results of MLSVM come from [Tsoumakas and
Katakis, 2007]. The metric used in cross-validation is the
accuracy (A). We also recorded the training time for each ma-
chine trained with the selected optimal parameters. The CPU
time is measured on a 2.8Ghz Pentium4 desktop computer.

The final results are shown in Table 2 (↓ means smaller
numbers are better while ↑ means the opposite).

A key observation from Table 2 is that LMBMs are consis-
tently orders of magnitude faster than SSVMs and the other
algorithms, while producing results that are in the same range
as the other methods. The speed of SSVMs depends on the
speed of the lp solve and the number of times lp solve is
called. The actual number of variables in the relaxed LP is
quadratic of the number of labels in the problem. Typically,
lp solve solves a 10-variable problem in about 0.01s, and a
50-variable problem in about 2s. In our experiments, SSVMs
fails to produce results for Mediamill50 in 10 hours. For
smaller scale problems such as Scene and Yeast, MLSVM
can outperform LMBMr but MLSVM becomes exponentially
expensive as the number of labels increases, and the sam-
ple complexity increases exponentially as well. ILSVM per-
forms well on Mediamill10 and Mediamill50 since the la-
bels are relatively independent of each other, but the perfor-
mance drops when there are dependencies among labels as in
Scene. Both LMBM and SSVM perform well in datasets with
strong label-dependency, but not in datasets with weak label-
dependency. LMBMr demonstrates good performance on
both types of datasets, which might indicate that the threshold
T is the key factor governing generalization performance.

More importantly, LMBMr is able to model the depen-
dency structure among the variables that leads to improved
accuracy (A) of prediction compared with ILSVM. Fig-
ure 2 shows the different dependency patterns discovered by
LMBMr for the different datasets. Interestingly, the depen-
dency pattern changes significantly from small scale prob-
lems to large scale problems. For example, in Mediamill10,
the label 4 (outdoor) has a strong correlation (negative) with
the label 1 (people) and a weak correlation (positive) with
label 10 (crowd). But in Mediamill50, the correlation be-
tween people and outdoor disappears, while the weak corre-
lation between crowd and outdoor remains. Another interest-
ing characteristic of the Mediamill50 dataset is that unlike
the other three datasets, the most frequent labels (upper left
portion of the weights matrix) appear relatively independent

Table 2: Performance results on the four datasets.
Scene

Method time(s)↓ H↓ A↑ P↑ R↑ F↑
ILSVM 0.63 0.109 0.567 0.782 0.605 0.682

LMBM 0.25 0.108 0.681 0.721 0.686 0.703

LMBMr 0.24 0.107 0.682 0.722 0.687 0.704
SSVM 81.8 0.100 0.619 0.795 0.635 0.706

MLSVM N.A. 0.100 0.704 0.713 0.737 0.725

Yeast
Method time(s)↓ H↓ A↑ P↑ R↑ F↑
ILSVM 0.95 0.199 0.498 0.717 0.570 0.635

LMBM 0.47 0.368 0.329 0.414 0.561 0.476
LMBMr 0.36 0.199 0.504 0.709 0.584 0.640

SSVM 81.7 0.233 0.337 0.748 0.337 0.465

MLSVM N.A. 0.206 0.530 0.615 0.672 0.642

Mediamill10

Method time(s)↓ H↓ A↑ P↑ R↑ F↑
ILSVM 75.57 0.049 0.636 0.859 0.636 0.731

LMBM 36.36 0.082 0.603 0.605 0.603 0.604

LMBMr 45.2 0.052 0.731 0.752 0.731 0.741

SSVM 459.9 0.082 0.589 0.609 0.589 0.599

Mediamill50

Method time(s)↓ H↓ A↑ P↑ R↑ F↑
ILSVM 32.29 0.025 0.480 0.739 0.480 0.582

LMBM 49.53 0.225 0.044 0.048 0.286 0.082

LMBMr 33.00 0.025 0.480 0.741 0.480 0.583

SSVM > 10hrs

of each other, while the least frequent labels (lower right por-
tion of the weights matrix) tend to have stronger correlations
with the others.

7 Conclusions and Future work

We have proposed an efficient SVM-style learning algorithm
for Boltzmann machines based on a new large-margin varia-
tional approximation to the partition function. For multi-label
classification tasks, these large margin Boltzmann machines
provide an efficient alternative to recently proposed structural
SVMs. Experimental results on four benchmark multi-label
classification problems demonstrate that LMBMs are signifi-
cantly faster than existing approaches and can match or beat
the performance of other methods.

Several challenges and open questions remain. For ex-
ample, can a better approximation be achieved through the
use of hidden variables in large margin Boltzmann machines?
Although the learning algorithm for LMBMs is fast, the in-
ference is still slow and approximate. To address this prob-
lem, we have recently explored large margin directed Boltz-
mann machines (LMDBMs) that can again be trained us-
ing an SVM-style objective function [Miao and Rao, 2009].
More importantly, for LMDBMs, there exists a branch and
bound exact inference algorithm that is many orders of mag-
nitude faster than LP.
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Figure 2: The different dependency structures discovered by
LMBMr for different datasets. The colorbar of each figure
shows the scale of weights in terms of the gray level(absolute
value). The top row, left to right: Scene and Yeast; The bot-
tom row, left to right: Mediamill10 and Mediamill50.
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