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Abstract

Clustering, classification, and regression, are three
major research topics in machine learning. So far,
much work has been conducted in solving multiple
instance classification and multiple instance regres-
sion problems, where supervised training patterns
are given as bags and each bag consists of some
instances. But the research on unsupervised multi-
ple instance clustering is still limited . This paper
formulates a novel Maximum Margin Multiple In-
stance Clustering (M3IC) problem for the multiple
instance clustering task. To avoid solving a non-
convex optimization problem directly, M3IC is fur-
ther relaxed, which enables an efficient optimiza-
tion solution with a combination of Constrained
Concave-Convex Procedure (CCCP) and the Cut-
ting Plane method. Furthermore, this paper an-
alyzes some important properties of the proposed
method and the relationship between the proposed
method and some other related ones. An extensive
set of empirical results demonstrate the advantages
of the proposed method against existing research
for both effectiveness and efficiency.

1 Introduction

Multiple instance learning (MIL) can be viewed as a variation
of the learning methods for problems with incomplete knowl-
edge on the examples (or instances). In the MIL setting, pat-
terns are given as bags, and each bag consists of some in-
stances. In a binary multiple instance classification problem,
the labels are assigned to bags, rather than instances. A typ-
ical assumption for this kind of problem is that a bag should
be labeled as positive if at least one of its instances is posi-
tive; and negative if all of its instances are negative. Then,
using MIL methods, we can devise a classifier based on the
labeled bags and predict the labels for the unlabeled ones. So
far, MIL has been widely used in areas such as text mining
[Andrews et al., 2003], drug design [Dietterich et al., 1998],
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Localized Content Based Image Retrieval (LCBIR) [Rahmani
and Goldman, 2006], etc.

As another branch of machine learning, clustering [Jain
and Dubes, 1988] is one of the most fundamental research
topics in both data mining and machine learning. It aims to di-
vide data into groups of similar objects, i.e., clusters. From a
machine learning perspective, what clustering does is to learn
the hidden patterns of the dataset in an unsupervised way, and
these patterns are usually referred to as data concepts. From
a practical perspective, clustering plays an outstanding role
in data mining applications such as information retrieval, text
mining, Web analysis, marketing, computational biology, and
many others [Han and Kamber, 2001].

However, so far, almost all of the clustering methods are
designed to solve traditional single instance learning prob-
lems, while in many cases clustering can be better formulated
as MIL problems. For example, in image clustering, there
is natural ambiguity that as to what portion of each image
contains the common concept, where the concept can be a
tiger, an elephant, etc, while most portion of the image may
be irrelevant. In this case, we can treat each image as a bag,
where each instance in this bag corresponds to a region in this
image. Then, this application requires the solution of Multi-
ple Instance Clustering (MIC) to help users to partition these
bags. Besides Image Clustering, MIC methods can also be
applied to many other applications such as drug molecules
clustering [Zhang and Zhou, in press] and text clustering, etc.

Recently, very limited research addresses the task of MIC.
In [Zhang and Zhou, in press], the authors regard bags as
atomic data items and use some distance metric to measure
the distances between bags. Then they adapt the k-medoids
algorithm to cluster bags. Their method is efficient in some
applications. But, as claimed by [Rahmani and Goldman,
2006], defining distances between bags in an unsupervised
way may not reflect their actual content differences. For ex-
ample, two pictures may share identical background and only
differ in that one contains a tiger and the other contains a
fox. By using the minimal Hausdorff distance to measure dis-
tances between bags [Wang and Zucker, 2000], the distance
between these two pictures will be very low even though their
actual contents (or concepts) may differ. And the calcula-
tion of the distances between bags is quite time consuming,
since it always needs to calculate all the distances between
instances in different bags.
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In this paper, we solve the MIC problem in a different
way. We first formulate a novel Maximum Margin Multi-
ple Instance Clustering (M3IC) problem based on Maximum
Margin Clustering (MMC) [Xu et al., 2005]. The new for-
mulation aims at finding desired hyperplanes that maximize
the margin differences on at least one instance per bag in a
unsupervised way. But the formulation of M3IC is a non-
convex optimization problem, and we can not solve it di-
rectly. Therefore, we relax the original M3IC problem and
propose a method – M3IC-MBM, which is a combination
of Constrained Concave-Convex Procedure (CCCP) and Cut-
ting Plane methods, to solve the relaxed optimization task.

The rest of the paper is organized as follows: Section 2,
introduces the MIC problem. Section 3 formulates the novel
M3IC problem and propose an efficient method to solve it.
Section 4 presents the experimental results. Section 5 con-
cludes and points some future research directions.

2 Problem Statement

Suppose we are given a set of n bags, {Bi, i =
1, 2, · · · , n}. The instances in the bag Bi are denoted as
{Bi1,Bi2, ...,Bini} , where ni is the total number of in-
stances in this bag. The goal is to partition this given dataset
into k clusters, such that the concepts in different clusters can
be “distinct” from each other. We use a 1 × n vector f to
denote the cluster assignment array, with fi being the cluster
assignment for bag Bi.

3 The Proposed Method

3.1 Formulation

First of all, we formulate the M3IC problem. For each class
p ∈ {1, · · · , k}, we define a weight vector wp. Instead of
labeling all the samples by running an SVM implicitly over
all possible labels as that in MMC [Xu et al., 2005], in M3IC,
we try to find a labeling on bags that results in several large
margin classifiers that maximize margins on bags, and it is
natural to define the Bag Margin (BM) for a bag Bi as:

max
j∈Bi

(wT
u∗

ij
Bij − wT

v∗
ij
Bij) (1)

where, u∗ij = arg maxp(wT
p Bij), and v∗ij =

arg maxp\u∗
ij

(wT
p Bij)1. It is obvious that BM is deter-

mined by the most “discriminative ” instance. With this
definition, M3IC can then be formulated as:

min
w1,w2,...,wk,ξi≥0

1
2

k∑
p=1

‖wp‖2 +
C

n

n∑
i=1

ξi (2)

s.t. i = 1, . . . , n,

max
j∈Bi

(wT
u∗

ij
Bij − wT

v∗
ij
Bij) ≥ 1 − ξi

∀p, q ∈ {1, 2, · · · , k}

−l ≤
n∑

i=1

∑
j∈Bi

IijwT
p Bij −

n∑
i=1

∑
j∈Bi

IijwT
q Bij ≤ l

1Throughout this paper, “\” means ruling out. So, this definition
can also be written as: v∗

ij = arg maxp �=u∗
ij

(wT
p Bij)

Here, Iij∗ equals 1 if j∗ = arg maxj∈Bi(w
T
u∗

ij
Bij −

wT
v∗

ij
Bij), and otherwise 0. l is a parameter that controls

the cluster balance to avoid the trivially ”optimal” solutions
[Xu et al., 2005]. It is clear that, in this formulation, these
two constraints are imposed only on the instances that deter-
mine the bag margins of their corresponding bags. Once these
“witness” instances have been identified, the other instances
become irrelevant. If we can obtain results from problem (2),
the cluster assignment of a specific bag Bi can be determined
by fi = arg maxp

∑
j∈Bi

IijwT
p Bij .

3.2 M3IC-MBM

However, the optimization problem (2) is difficult to solve.
For the first constraint, i.e., maxj∈Bi

(wT
u∗

ij
Bij−wT

v∗
ij
Bij) ≥

1 − ξi, the convexity of wT
v∗

ij
Bij is unknown, which makes

the form of the constraint too complicated. For the second
constraint, the indication function Iij also makes this con-
straint non-convex. In this section, we first relax these two
constraints, and then propose an efficient method – M3IC-
MBM to solve the resulting optimization problem.

Relaxation

To relax the first constraint, we consider introducing the no-
tion of Modified Bag Margin (MBM). For a bag Bi, MBM is
defined as:

max
j∈Bi

(max
u

wT
u Bij − meanv\u∗

ij
(wT

v Bij)) (3)

Here, the “mean” function calculates the average value of
the input function with respect to the subscript variable. Re-
placing BM with MBM, the first constraint in problem (2)
turns to: maxj∈Bi

(maxu wT
u Bij − meanv\u∗

ij
(wT

v Bij)) ≥
1 − ξi. This is equivalent to k

k−1 maxj∈Bi
(maxu wT

u Bij −
meanv(wT

v Bij)) ≥ 1 − ξi.
For the second constraint in problem (2), we relax the in-

dication function Iij , and rewrite this constraint as follows:

∀p, q ∈ {1, 2, · · · , k} (4)

−l ≤
n∑

i=1

∑
j∈Bi

1
ni

wT
p Bij −

n∑
i=1

∑
j∈Bi

1
ni

wT
q Bij ≤ l

Without loss of generality, we introduce two concatenated
vectors as:

w̃ =[wT
1 ,wT

2 , · · · ,wT
p , · · · ,wT

k ]T (5)

Bij(p) =[0,0, · · · ,BT
ij , · · · ,0]T

Here, 0 is a 1×d zero vector, where d is the dimension of Bij .
In Bij(p), only the (p−1)d to pd-th elements are nonzero and
equals Bij . Then, we have w̃T Bij(p) = wT

p Bij .
With the relaxation of the two constraints in Eq. (3), Eq.

(4), and the introduction of the two concatenated vectors in
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Eq.(5), problem (2) can be transformed to:

min
ew,ξi≥0

1
2
‖w̃‖2 +

C

n

∑
i

ξi (6)

s.t. i = 1, . . . , n,

k

k − 1
max
j∈Bi

(max
u

w̃T Bij(u) − meanv(w̃T Bij(v)))

≥ 1 − ξi

∀p, q ∈ {1, 2, · · · , k}

− l ≤
n∑

i=1

∑
j∈Bi

1
ni

w̃T (Bij(p) − Bij(q)) ≤ l

In the following sections, we will propose a method, M3IC
with Modified Bag Margin (M3IC-MBM), to solve this re-
laxed problem (6).

CCCP Decomposition

Although the objective function and the second constraint in
problem (6) are smooth and convex, the first constraint is
not. Fortunately, the constrained concave-convex procedure
(CCCP) is just designed to solve the optimization problems
with a concave convex objective function with concave con-
vex constraints [Smola et al., 2005]. Next, we will show how
to use CCCP to solve the problem (6).

To simplify the notation, let f(w̃, i) be
k

k−1 maxj∈Bi g(w̃, i, j) and g(w̃, i, j) be maxu w̃T Bij(u) −
meanv(w̃T Bij(v)). Then, the first constraint in problem
(6) becomes: f(w̃, i) ≥ 1 − ξi. It is obvious that this
constraint is, although not convex, the difference of two
convex functions.

Hence, we can solve problem (6) with CCCP. Given an ini-
tial point w̃(0), CCCP iteratively computes w̃(t+1) from w̃(t)

2 by replacing f(w̃, i) with its first order Taylor expansions at
w̃(t), and solving the resulting quadratic programming prob-
lem, until convergence.

Therefore, in order to use CCCP, we should first calculate
the gradient and the first-order Taylor expansion of f(w̃, i) at
w̃(t). But f(w̃, i) is a non-smooth functions w.r.t. w̃. So, we
replace its gradient with its subgradient as follows:

∂f(w̃, i)
∂w̃

|
ew=ew(t) (7)

=
∂f(w̃, i)

∂g(w̃, i, j)
× ∂g(w̃, i, j)

∂w̃
|

ew=ew(t)

=
∑
j∈Bi

(
z
(t)
ij × k

k − 1
(

k∑
r=1

γ
(t)
ijrBij(r) − 1/k

k∑
p=1

Bij(p))

)

Here,

z
(t)
ij =

{
1, if j = arg max

j∈Bi

g(w̃(t), i, j)

0, otherwise
(8)

2We use the superscript t to denote that the result is obtained
from the t-th CCCP iteration. For example, ew(t) is the optimized
weight vector from the t-th CCCP iteration step.

and

γ
(t)
ijr =

⎧⎨⎩ 1, if r = arg max
r∈{1,2,··· ,k}

(w̃(t))T Bij(r)

0, otherwise
(9)

Then, we can decompose f(w̃, i) at w̃(t) as:

f(w̃, i)

=f(w̃(t), i) + (w̃ − w̃(t))T ∂f(w̃, i)
∂w̃

|
ew=ew(t)

=w̃T ∂f(w̃, i)
∂w̃

|
ew=ew(t) +

k

k − 1
max
j∈Bi

(
max

u

(
(w̃(t))T Bij(u)

)
− meanv

(
(w̃(t))T Bij(v)

))
− (w̃(t))T×∑
j∈Bi

(
z
(t)
ij × k

k − 1
(

k∑
r=1

γ
(t)
ijrBij(r) − 1/k

k∑
p=1

Bij(p))

)

=w̃T ∂f(w̃, i)
∂w̃

|
ew=ew(t) (10)

Thus, for the t-th CCCP iteration, by replacing f(w̃, i)
with Eq. (10) in problem (6), we obtain the following op-
timization problem:

min
ew,ξi≥0

1
2
‖w̃‖2 +

C

n

∑
i

ξi (11)

s.t. i = 1, . . . , n,

w̃T ∂f(w̃, i)
∂w̃

|
ew=ew(t) ≥ 1 − ξi

∀p, q ∈ {1, 2, · · · , k}

− l ≤
n∑

i=1

∑
j∈Bi

1
ni

w̃T (Bij(p) − Bij(q)) ≤ l

Cutting Plane

It is true that, for each CCCP iteration step, we can solve
problem (11) directly as a quadratic programming problem.
But instead of directly solving this optimization problem, we
employ the Cutting Plane method, which has shown its ef-
fectiveness and efficiency in solving similar tasks recently
[Joachims, 2006]. In problem (11), we have n slack vari-
ables ξi. To solve it efficiently, we first derive the 1-slack
form of problem (11) as in [Joachims, 2006]. More specifi-
cally, we introduce a signle slack variable ξ ≥ 0 and rewrite
the problem (11) as:

min
ew,ξ≥0

1
2
‖w̃‖2 + Cξ (12)

s.t. i = 1, . . . , n,∀c ∈ {0, 1}n

1
n
w̃T

n∑
i=1

ci
∂f(w̃, i)

∂w̃
|

ew=ew(t) ≥ 1
n

n∑
i=1

ci − ξ

∀p, q ∈ {1, 2, · · · , k}

− l ≤
n∑

i=1

∑
j∈Bi

1
ni

w̃T (Bij(p) − Bij(q)) ≤ l
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Algorithm: M3IC-MBM
Input:
1. bags {B1, ....,Bn}
2. parameters: regularization constant C, CCCP solu-
tion precision ε1, cutting plane solution precision ε2,
cluster number k, cluster size balance l
Output:
The cluster assignment f
CCCP Iterations:
1. Construct B̃ = {Bij(r)}
2. Initialize w̃0,t=0,ΔJ = 10−3, J−1 = 10−3

3. while ΔJ/J t−1 > ε1 do
4. Derive problem (17). Set the constraint set Ω =
φ,∀1 ≤ i ≤ n, ci=0, s = −1

Cutting Plane Iterations:

5. while Hts is true do
6. s = s + 1
7. Get (w̃(ts), ξ(ts)) by solving (17) under Ω
8. Compute the most violated bags, i.e., cts

i , by

cts
i =

⎧⎨⎩ 1, if (w̃(ts))T ∂f(w̃, i)
∂w̃

|
ew=ew(t) ≤ 1

0, otherwise

and update the constraint set Ω by Ω = Ω
⋃

cts .
9. end while
10. t = t + 1
11. w̃(t) = w̃(t−1)s

12. ΔJ = J t−1 − J t

13.end while
14.Cluster Assignment:
For bag Bi, fi = arg maxp(w̃(t))T Bij∗(p),
where j∗ = arg maxj∈Bi

(maxu(w̃(t))T Bij(u) −
meanv((w̃(t))T Bij(v)))

Table 1: Algorithm: M3IC-MBM

It can be proved that the solution to problem (12) is identical
to problem (11) with ξ = 1

n

∑n
i=1 ξi (similar to [Joachims,

2006]).
Now the problem becomes how to solve problem (12) effi-

ciently, which is convex and has exponential number of con-
straints because of the large number of feasible c. To solve
this problem, we employ an adaption of the cutting plane al-
gorithm [Kelley, 1960], which is intended to find a small sub-
set of constraints Ω from the whole set of constrains {0, 1}n

in problem (12) that guarantees a sufficiently accurate so-
lution. Using this algorithm, we can construct a nested se-
quence of tighter relaxations. Specifically, in this algorithm,
the first constraint is replaced by:

i = 1, . . . , n,∀c ∈ Ω

1
n
w̃T

n∑
i=1

ci
∂f(w̃, i)

∂w̃
|

ew=ew(t) ≥ 1
n

n∑
i=1

ci − ξ (13)

Similar to [Joachims, 2006], we can generally find a poly-
nomially sized subset of constraints Ω , with which the solu-

tion of the relaxed problem satisfies all the constraints from
problem (12) up to a precision ε2, i.e., ∀c ∈ {0, 1}n:

1
n
w̃T

n∑
i=1

ci
∂f(w̃, i)

∂w̃
|

ew=ew(t) ≥ 1
n

n∑
i=1

ci − (ξ + ε2) (14)

This means, the remaining exponential number of constraints
will not be violated up to the precision ε2. Therefore, we
don’t need to explicitly add them to Ω.

The algorithm iteratively constructs Ω in Eq.(13). The al-
gorithm starts with an empty set of constraints Ω. Specifi-
cally, it starts with the following problem:

min
ew

1
2
‖w̃‖2 (15)

s.t. i = 1, . . . , n,∀p, q ∈ {1, 2, · · · , k}

− l ≤
n∑

i=1

∑
j∈Bi

1
ni

w̃T (Bij(p) − Bij(q)) ≤ l

After getting the solution w̃(t0)3 of the above problem, the
most violated constraint can be computed as:

ct0
i =

⎧⎨⎩ 1, if (w̃(t0))T ∂f(w̃, i)
∂w̃

|
ew=ew(t) ≤ 1

0, otherwise
(16)

Then, this constraint will be added to Ω and the optimization
problem turns to:

min
ew,ξ≥0

1
2
‖w̃‖2 + Cξ (17)

s.t. i = 1, . . . , n,∀c ∈ Ω,

1
n
w̃T

n∑
i=1

ci
∂f(w̃, i)

∂w̃
|

ew=ew(t) ≥ 1
n

n∑
i=1

ci − ξ

∀p, q ∈ {1, 2, · · · , k}

− l ≤
n∑

i=1

∑
j∈Bi

1
ni

w̃T (Bij(p) − Bij(q)) ≤ l

Please note that, for the current cutting plane step, in Ω, there
is only one n-dimensional vector, which is obtained from
Eq.(16). From this updated optimization problem, we can
get the solution w̃(t1). Then, the most violated constraint ct1

i
can be computed similarly as in Eq.(16). The only difference
is that the weight vector w̃(t0) is replaced by w̃(t1). This
procedure is repeated until all the constraints satisfy the re-
quirement in Eq.(14). In this way, a successive strengthening
approximation series of the problem (12) can be constructed
by the expanding number of cutting planes that cut off the
current optimal solution from the feasible set [Kelley, 1960].

The Whole Method

Our method is characterized by an outer iteration, i.e.,
CCCP iteration and an inner iteration, i.e., Cutting
Plane iteration. We use Hts to denote the con-
straint 1

n (w̃(ts))T
∑n

i=1 cts
i

∂f(ew,i)
∂ ew |

ew=ew(t) ≥ 1
n

∑n
i=1 cts

i −
(ξ(ts) + ε2) and J t = 1

2‖w̃(t)‖2 + Cξ(t). Then, the whole
method is summarized in Table 1.

3Here, we denote ti as the i-th iteration of the cutting plane al-
gorithm for solving the problem from the t-th iteration of CCCP.
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3.3 Discussion

Convergence and Local Minimal

The outer iteration of our method is CCCP. It has already been
shown that CCCP decreases the objective function monoton-
ically and converges to a local minimum solution [Smola et
al., 2005]. As for the inner iteration – the Cutting Plane iter-
ation, we have the following two theorems:

Theorem 1: Each iteration from step 5 to step 9 in Table 1
takes time O(ekn) for a constant constraint set Ω, where e is
the average number of nonzero features of Bij and e = d for
non-sparse data.

Theorem 2: The Cutting Plane iteration in Table 1
terminates after at most { 2

ε2
, 8CR2

ε22
} steps, where R2 =

k
k−1 maxij ‖Bij‖2

The proofs of these two theorems are similar to the proofs
in [Joachims, 2006], and therefore are omitted here.

Although the convergence of M3IC-MBM can be guaran-
teed, it is true that its outer iteration – CCCP iteration only
converges to a local minimum solution. Therefore, we would
expect a way to get a better solution. In this paper, we run
the M3IC-MBM algorithm several times, and choose the so-
lution with the minimal J t value. We will show, in the exper-
iments, M3IC-MBM is pretty fast and with only a few repeti-
tion times, we can get good results.

Relationship

In [Zhao et al., 2008a], [Zhao et al., 2008b] and [Zhao
et al., 2008c], the authors accelerate the MMC and Semi-
Supervised SVM for the traditional single instance learn-
ing problems. They first divide the original problem into a
series of non-convex sub-problems by using Cutting Plane,
then solve each non-convex sub-problem using CCCP iter-
atively. These methods have shown state-of-the-art perfor-
mances, both in accuracy and efficiency, and they look simi-
lar to M3IC-MBM in this paper. But the main common prob-
lem in their methods is that the Cutting Plane approach is de-
signed to solve convex nonsmooth problems, rather than non-
convex problems. Since, they try to solve a non-convex prob-
lem by using cutting plane, the convergence and optimality
of their methods may not be guaranteed. Different from their
method, in M3IC-MBM, we first apply the CCCP to decom-
pose the original nonconvex problem into a series of convex
ones, and then use the Cutting Plane method to solve each
of them. In this way, the final solution can be guaranteed to
converge to a local optimal value. Therefore, M3IC-MBM is
theoretically more elegant than the previous related methods.

Dataset Categories Features Bags Instances
Corel 3 230 300 1953

SIVAL1 5 30 300 9300
SIVAL2 5 30 300 9300
SIVAL3 5 30 300 9300
SIVAL4 5 30 300 9300
SIVAL5 5 30 300 9300

Table 2: The detailed description of the datasets

4 Experiments

In this section, we will present a set of experiments to validate
the effectiveness and the efficiency of the proposed method.
All the experiments are performed with MATLAB r2008a on
a 2.5GHZ Intel CoreTM 2 Duo PC running Windows Vista
with 2.0GB main memory.

4.1 Datasets

Currently, there is no benchmark dataset for MIC algo-
rithms. Fortunately, we can utilize several available datasets
for multiple instance classifications, and make them eligible
for the MIC tasks. Although MUSK datasets, i.e., MUSK1
and MUSK2 [Dietterich et al., 1998], are two most popular
datasets, we can not use them here, because there is only one
potential concept – musk in these two datasets, while we need
at least two concepts to measure the clustering performances.

Corel We merge pictures from three categories of the
Corel dataset, namely elephant, fox, and tiger. More specif-
ically, we merge the positive bags from the benchmark
datasets – elephant, fox, and tiger [Andrews et al., 2003].
The reason why the negative bags in these datasets are not
used is that the main objective of clustering task is to dis-
cover the hidden concepts/patterns in a dataset. But, in these
datasets, the negative bags are just some background pictures,
and may contain no common hidden concept/pattern. Then,
the detailed description of this combined dataset is summa-
rized in Table 2.

SIVAL There are in total 25 categories in the SIVAL
dataset [Rahmani and Goldman, 2006]. For each cat-
egory, there are 60 images. We randomly partition
these 25 categories into 5 groups, with each group con-
taining 5 categories. We name the five groups as
SIVAL1,SIVAL2,SIVAL3,SIVAL4, and SIVAL5. The de-
scriptions of these datasets are summarized in Table 2.

4.2 Experimental Setups and Comparisons

We have conducted comprehensive performance evaluations
by testing our method and comparing it with BAMIC [Zhang
and Zhou, in press].

For BAMIC, we used the three bag distance measurement
methods as in [Zhang and Zhou, in press], i.e., minimal
Hausdorff distance, maximal Hausdorff distance and average
Hausdorff distance. We name the BAMIC methods with these
three bag distance measurements as BAMIC1, BAMIC2, and
BAMIC3, respectively. For each dataset, we run each of these
BAMIC algorithms 10 times independently, and report only
the best performance of these 10 independent runs.

For M3IC-MBM, we set ε1 = 0.01, ε2 = 0.01, The class
imbalance parameter l is set by grid search from the grid
[0, 0.001, 0.01, 0.1, 1 : 1 : 5, 10] and The parameter C is
search from the exponential grid 2[−4:1:4]. w̃0 is randomly
initialized. To avoid the local minimal problem that we have
mentioned in Section 3.3, for each experiment, we run the
M3IC algorithm 5 times independently and report the final
result with the minimal J t in Table 1.

In experiments, we set the number of clusters k to the
true number of classes for all clustering algorithms. Then,
we use the clustering accuracy to evaluate the final cluster-
ing performance as in [Valizadegan and Jin, 2006][Xu et al.,
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2005][Zhao et al., 2008b][Zhao et al., 2008c]. Specifically,
we first take a set of labeled bags, remove the labels of these
bags and run the clustering algorithms, then we relabel these
bags using the clustering assignments returned by the algo-
rithms. Finally, we measure the percentage of correct classi-
fications by comparing the true labels and the labels given by
the clustering algorithms. The average CPU-times for each
independent run of these algorithms are also reported here.

4.3 Clustering Results

The clustering accuracies for different algorithms are re-
ported in Table 3, while the average CPU time of all the inde-
pendent runs for these algorithms is reported in Table 4.

From Table 3, it is easy to tell that M3IC-MBM works
much better than the BAMIC method. From Table 4, it is
clear that our method runs much faster than BAMIC. This
is because, in our algorithm, the outer iteration–CCCP iter-
ation, as well as the inner iteration–Cutting Plane iteation,
converges very fast. But for BAMIC, since it needs to cal-
culate the distances between instances in different bags many
times, its speed will be badly affected.

M3IC-MBM BAMIC1 BAMIC2 BAMIC3
Corel 54.0 40.3 47.3 36.7

SIVAL1 47.0 26.3 35.3 38.0
SIVAL2 42.0 29.0 31.7 39.3
SIVAL3 41.0 30.0 35.7 38.7
SIVAL4 39.0 26.0 32.7 30.0
SIVAL5 40.7 25.7 36.3 34.3

Table 3: Clustering accuracy (%) comparisons

M3IC-MBM BAMIC1 BAMIC2 BAMIC3
Corel 1.2 267.8 257.1 261.6

SIVAL1 1.8 95.5 96.1 92.5
SIVAL2 3.1 95.1 98.4 95.8
SIVAL3 2.7 93.3 100.4 95.7
SIVAL4 2.9 107.7 100.5 94.8
SIVAL5 3.2 95.1 117.2 106.0

Table 4: CPU Running Time (in seconds)

5 Conclusions

In this paper, we formulate a novel M3IC problem for the
multiple instance clustering task. In order to avoid solving a
non-convex problem directly, we relax the original problem.
Then, a combination of Constrained Concave-Convex Proce-
dure (CCCP) and the Cutting Plane method – M3IC-MBM is
proposed to solve the relaxed problem. After that, we demon-
strate some important properties of the proposed method. In
the experiment part, we compare our method with the existed
method–BAMIC on several real-world datasets. However, it
is true that under some special cases, a bag may belong to
more than one clusters. But in our algorithm, we can only as-
sign a bag to one cluster. In the future, we will consider how
to deal with this problem.
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