
Learning to Follow Navigational Route Instructions

Nobuyuki Shimizu
Information Technology Center

University of Tokyo
shimizu@r.dl.itc.u-tokyo.ac.jp

Andrew Haas
Department of Computer Science

State University of New York at Albany
haas@cs.albany.edu

Abstract
We have developed a simulation model that accepts
instructions in unconstrained natural language, and
then guides a robot to the correct destination. The
instructions are segmented on the basis of the ac-
tions to be taken, and each segment is labeled with
the required action. This flat formulation reduces
the problem to a sequential labeling task, to which
machine learning methods are applied. We pro-
pose an innovative machine learning method for ex-
plicitly modeling the actions described in instruc-
tions and integrating learning and inference about
the physical environment. We obtained a corpus of
840 route instructions that experimenters verified
as follow-able, given by people in building naviga-
tion situations. Using the four-fold cross validation,
our experiments showed that the simulated robot
reached the correct destination 88% of the time.

1 Introduction
Advances in technologies supporting task-oriented, deep se-
mantic understanding are important for seamless interactions
with computers. The following of navigation instructions by
a computer, for example, is one area where such advances
would be beneficial. Although the vocabulary in this do-
main is limited and strong domain knowledge is available, the
need to understand unrestricted natural language instructions
poses a significant challenge due to the rich structures and
creative expressions that people use. Consider these quotes
taken from a corpus of building navigation instructions given
by undergraduate students at a U.S. university.

“Just head straight through the hallway ignoring the
rooms to the left and right of you, but while going straight
your going to eventually see a room facing you, which is
north, enter it.”

“Head straight then make a right turn, then head straight
again ignoring the first left and right rooms, but not ig-
noring the second room to the right, enter it.”

The examples contain a number of typos and grammatical
errors. They are clearly not from a restricted command set,
like one might imagine, and a syntactic parser would obvi-
ously have trouble parsing them.

We have addressed this problem by developing a model,
to be used as a natural language interface for mobile robots,
which we trained using machine learning methods. Our aim is
to create a system capable of understanding instructions given
in unrestricted natural language and display its understanding
in a simulated environment. The model requires three inputs.

• An instruction for reaching a destination given in unrestricted
English.

• An abstraction of the real world.

• The current position of and the direction in which the instruc-
tion follower is facing.

The task is to find the location corresponding to the desti-
nation in an instruction.

To simplify the task, a map of a building is abstracted to
a graph in which the edges represent hallways and doorways
and the points represent where the edges end (such as inside
an office or at the end of a hallway) or meet each other (such
as at an intersection of hallways or at a doorway). Since it is
difficult to solve the complete input-output problem, a typical
system breaks the task down into two components.

Front End: RouteInstruction → ActionSequence
Back End: ActionSequence × Map × Start → Goal
The front end of the system is an information extraction

system that extracts how to move in accordance with a route
instruction. The back end is a reasoning system that takes a
sequence of moves and finds the destination on the map.

While most previously proposed systems are based on
heuristics crafted by a person, we use the novel formulation
developed by Shimizu [Shimizu, 2006], which reduces the
task of following the route instructions to a sequential label-
ing problem. We use their frame-based flat knowledge rep-
resentation to represent an action. An action frame is a tu-
ple with four slots 〈(G|E), (H|D), (L|R|S), (1|2|3|Z)〉. The
first slot takes either G or E, where G means that the desired
action is to advance down the hall, then turn and face a door
or side hall, and E means that the desired action is to actually
enter a doorway. In the second slot, H means “a hallway”
and D means “a door.” In the third slot, L means “left,” R
means “right,” and S means “straight,” i.e., there is no turn
in the action. The last slot represents the ordinal number
that modifies an entity, and Z means either “last” or “at the
end.” For example, if the entity is “the third door,” the ordi-
nal number slot contains 3. If the entity is “the door at the

1488

end,” the ordinal number slot contains Z. If the third slot con-
tains S, the last slot must contain Z. Although “first right”
and “second left” make sense, there is no object that satisfies
“first straight,” “second straight,” and so on. For example,
〈G, H, R, 2〉 means [advance to the second hall on the right,
turn to face it]. 〈E,D, L, 3〉 means [advance to the third door
on the left, turn to face it, enter it]. 〈E,D, S, Z〉 means [ad-
vance to the door straight ahead of you, enter it]. When im-
possible combinations, such as S with 1, are eliminated from
the corpus, the total number of possible actions, i.e., labels, is
15.

Shimizu concatenated the values of frame slots to form
one label for each token [Shimizu, 2006]. They annotated
the instructions using the BIO tagging scheme used in syn-
tactic chunkers [Ramshaw and Marcus, 1995] and reduced
the problem to segmentation and labeling of segments, much
like the noun phrase chunking in the CoNLL-2000 shared
task [Sang and Buchholz, 2000]. Their use of a simplify-
ing assumption – which states that an action can be repre-
sented by an atomic label – enables the use of machine learn-
ing methods such as the linear-chain conditional random field
(CRF) [Lafferty et al., 2001; Sha and Pereira, 2003], but also
results in data sparseness for rare actions and lessens the per-
formance of the learning system. We avoid this problem by
combining two chains of sequential labeling into one decod-
ing algorithm.

We next review related work. Then we evaluate Shimizu’s
method using a larger corpus and analyze the errors it pro-
duced. We then describe our frame-segmentation model, dis-
cuss the results of testing, examine the generalizability of our
approach, and conclude with a short summary.

2 Related Work: Rule-based Systems
Previous work on giving instructions to an agent include us-
ing the SHRDLU program by Winograd [1972] to give in-
structions to a simulated robot. SHRDLU is a rule-based pro-
gram that works in a tabletop environment. This restricted
world enables SHRDLU to deduce what it can do in the envi-
ronment. Combined with a basic memory, SHRDLU is capa-
ble of holding a text-based conversation.

Some researchers concentrated on the understanding of
simple spatial commands in small space and focused on
grounding, that is, mapping the language to the physical ob-
ject. Notable works include that of Roy [Roy, 2005], who
used an actual robotic hand in a tabletop environment, and
Skubic et al. [Skubic et al., 2004], who used a mobile robot
to generate spatial language from occupancy grid maps and
integrated it into a dialog.

The Instruction-based Learning for Mobile Robots (IBL)
project [Bugmann et al., 2004] used a miniature model of a
city center with many different landmarks and roads and had
a remotely controlled human-operated robot navigate through
the model. Participants were asked to give the operator in-
structions for guiding the robot. From these instructions, a
corpus of 144 spoken route instruction sets was obtained. The
instructions were then annotated with functional action prim-
itives, and a robotic system capable of following these prim-
itives was implemented. Testing showed that people follow-

ing the instructions were able to reach the destination 83% of
the time, while the robot following hand-translated primitives
succeeded 63% of the time.

To see how a system performs, it is important to know
how successful the system is in reaching the destination from
given instructions that human can follow. “Instruction follow
through” measures this performance. Using this metric, their
result would translate to a 75.9% success rate. We note that
only 14% of the routes that were automatically annotated ac-
tually led the robot to the goal, resulting in a 16.5% success
rate in terms of instruction follow through. All of the auto-
mated translations from route instructions to action primitives
were done using heuristics rather than statistical learning.

MacMahon and Stankiewicz [MacMahon and Stankiewicz,
2006] took a similar approach to following route instruc-
tions. The main difference was the simulated environment
- they used one very similar to a first-person shooter game
like DOOM. Unlike the IBL project, they annotated the in-
structions with a semantic grammar. In their MARCO sys-
tem, they feed a semantic tree to a “content framer” and then
to an “instruction modeler,” which compiles the tree into a
compound action specification. During this procedure, any
information missing from the tree is filled in using hand-built
heuristics in accordance with a model of the environment.
Their corpus consisted of 786 natural language route instruc-
tions produced by six participants. They found that a human
instruction follower was capable of reaching the correct desti-
nation with a mean success rate of 69% for 682 of the instruc-
tions. For comparison, they also handcrafted gold standard
semantic parses of the same instructions and fed them into
the MARCO system. The system successfully followed 61%
of the instructions. Again, this result translates to a 88.4%
success rate in instruction follow through.

When the missing information was not inferred, system
performance dropped to 28% (40.6% with instruction follow
through). Considering that the performance of today’s best
syntactic parser is around 90% for constituents and less than
50% for whole sentences, we can infer that the performance
of an end-to-end MARCO system would not be very high.

3 Supervised Machine Learning for
Understanding Route Instructions

Given an input x, a multi-class linear classifier uses a lin-
ear combination of features to predict to which class (la-
beled as y) x belongs. That is, if the input feature vec-
tor is φ(x, y) , then the most likely class y has a score
y = argmaxy′(w�φ(x, y′)) where w is a real vector of
weights. If we would like to predict the genre of a book,
then x would be the text of a book and y the genre. For ex-
ample, the features could be words in the text, and a word
‘extraterrestrial’ is heavily weighted for science fiction but
not so much for comedy. The weight vector is learned from a
set of labeled training samples.

We now explain slightly more complex prediction prob-
lems. Suppose we want to predict both the writing style (jour-
nalistic, scholarly and so on) and the genre of a book. In this
case, y would be a combination of writing style and genre.
If writing style and genre is independent of each other, we

1489

may independently predict the writing style using one clas-
sifier and the genre with another; doing so will improve the
performance since there would be more training examples for
a label, say, science fiction, than for a combination of labels
such as journalistic-comedy. Furthermore, if writing style and
genre are not independent, we may predict using the sum of
the scores produced by the two classifiers above and a clas-
sifier that predicts combined labels. Since a score is a linear
combination of features, the summation simply results in one
linear classifier. In this case, a label could be factorized into
three parts, and we will call this label factorization.

The CRF applies this idea of label factorization to a se-
quence of labels, assuming a label is affected by only a
label before and after it in the sequence. We follow the
framework for structured problems described by Bartlett et
al. [Bartlett et al., 2004]. Each structure, or label y is now
defined to be a set of parts. We assume that the feature
vector for an entire structure y decomposes into a sum over
feature vectors for individual parts as follows: φ(x, y) =∑

r∈y φ(x, r). Note that we have overloaded the symbol φ
to apply to either a structure y or its parts r. Given the in-
put sequence x = (x1, x2, x3, ...xn) and the output sequence
y = (y1, y2, y3, ...yn), the linear chain CRF we used is an
undirected graphical model where for 0 < j < n, yj are
the states in the graph (we write state〈yj〉j to indicate these
parts), and the probabilistic dependency is modeled with a
linear chain of transition parts trans〈yj → yj+1〉j between
the state yj and yj+1.

For each sentence x, we have binary state fea-
tures φp(x, state〈y′

j〉j) and binary transition features
φq(x, trans〈y′

j → y′
j+1〉j), where p and q range over the

number of features for state and transition, respectively. The
conditional probability of y given x is:

P (y|x) = 1
Zx

exp(
∑

j,q
w�

p φp(x, state〈y′
j〉j)

+
∑

j,p
w�

q φq(x, trans〈y′
j → y′

j+1〉j))
where w is the weight for each feature and Zx is a normal-

ization constant for each x.

Zx =
∑

y
exp(

∑
j,q

w�
p φp(x, state〈y′

j〉j)
+

∑
j,p

w�
q φq(x, trans〈y′

j → y′
j+1〉j))

Given a training set T = {(xiyi)}m
i=1, the weights

in the CRF is learned by maximizing the log-likelihood,∑
j logP (yi|xi). A detailed description of the CRF can be

found in [Lafferty et al., 2001; Sha and Pereira, 2003].
The inference uses the Viterbi algorithm much like a Hid-
den Markov Model in order to find y = argmaxy′P (y′|x),
which is

y = argmaxy′(
∑

j,q
wpφ(x, state〈y′

j〉j)
+

∑
j,p

wqφ(x, trans〈y′
j → y′

j+1〉j))

Shimizu [2006] applied the CRF to the segmentation task
in a straightforward manner by combining the slots of an ac-
tion frame into one atomic label. He improved performance
by discarding action sequences that did not make sense in
context, for example, a reference to the second door on the
left when there is only one door on the left. This was done
by modifying the Viterbi algorithm used to extract the best

Table 1: Frequencies of Labels in Dataset

Label Count Avg. length Label Count Avg. length
GHL1 277 8.8 EDL1 201 10.1
GHL2 12 6.9 EDL2 169 11.4
GHLZ 82 15.0 EDL3 47 13.0
GHR1 315 10.4 EDR1 152 10.4
GHR2 6 15.3 EDR2 84 12.7
GHRZ 110 11.8 EDR3 8 12.5
EDLZ 47 14.6 EDRZ 25 18.0
EDSZ 112 16.0

action sequences from the model. This is effectively the ma-
chine learning version of filling the missing information in
the semantic tree in accordance with a model of the environ-
ment [MacMahon and Stankiewicz, 2006].

We evaluated the method using 840 samples of route in-
structions collected in the same manner. In the corpus, there
were 1.96 actions per instruction on average. There were 389
cases in which a period (i.e., a boundary) appeared in the mid-
dle of a segment, which corresponded to an action. This num-
ber underestimates the number of sentence boundaries since
sentence endings are often not clearly marked with punctua-
tion in unedited text.

There were 45 distinct routes, and on average there were
three destinations given that there was one starting point for
these distinct routes. There were 18.6 instructions on average
for each route. If we simply memorized the map and learned
to associate each starting point with a destination, we would
theoretically reach the correct destination around 30% of the
time. However, since there were many more than three rooms
within any two actions, the probability of reaching the cor-
rect destination by simply randomly picking doors was much
lower than 30%.

Table 1 lists the frequencies of action frames in the cor-
pus and the average length of the text segments describing
them. The distribution of labels was highly skewed; there
were many more GHL1 labels than GHL2 ones.

3.1 Error Analysis

The problem with the formulation used for the linear-chain
CRFs is that all the attributes for one action are represented
by a single label. For example, although “take the first door
on the right” and “take the first door on the left” differ by only
one word, they have completely different labels, EDR1 and
EDL1, respectively. Ideally, “take X door” should contribute
to the learning of the E and D slot fillers, and “first” should
help learn the ordinal 1 attribute of both labels. However,
with linear-chain CRFs, a label is atomic, so no such factor-
ization takes place. This obviously causes data sparseness for
each label. In fact, GHR2 was always mistaken for GHR1.
This tendency is evident in Table 2. The left-hand side of
→ represents the CRF result, and the right-hand side repre-
sents the results of our frame-segmentation model, which is
described in the next section. With our model, both the recall
percentage and F1 measure for GHR2 were improved.

1490

Table 2: Results by Label (CRF → FS)

Label Precision (%) Recall (%) Fβ=1 (%)
GHL1 77.94 → 78.15 82.64 → 79.62 80.22 → 78.88
GHL2 100.00 → 100.00 25.00 → 83.33 40.00 → 90.91
GHLZ 76.25 → 79.49 74.39 → 75.61 75.31 → 77.50
GHR1 66.67 → 69.20 69.13 → 67.11 67.87 → 68.14
GHR2 0.00 → 50.00 0.00 → 33.33 0.00 → 40.00
GHRZ 73.96 → 74.74 65.14 → 65.14 69.27 → 69.61
EDL1 81.41 → 84.74 84.38 → 83.85 82.86 → 84.29
EDL2 79.04 → 82.91 85.16 → 84.52 81.99 → 83.71
EDL3 78.95 → 82.93 66.67 → 75.56 72.29 → 79.07
EDLZ 53.66 → 77.55 47.83 → 82.61 50.57 → 80.00
EDR1 82.17 → 83.44 86.58 → 84.56 84.31 → 84.00
EDR2 81.01 → 89.33 80.00 → 83.75 80.50 → 86.45
EDR3 50.00 → 100.00 12.50 → 75.00 20.00 → 85.71
EDRZ 50.00 → 40.74 23.81 → 52.38 32.26 → 45.83
EDSZ 75.00 → 80.39 81.82 → 74.55 78.26 → 77.36

4 Frame-segmentation Model
To overcome the data sparseness problem, our proposal is to
take one further step in label factorization; instead of combin-
ing the slots into one atomic label, we factorize each action
frame and the slots associated with it into a segment.

In our model, we use segments and transitions between
neighboring segments, as well as sequences of slot fillers
within a segment and transitions between these fillers.

The frame-segment structure takes the frame-based knowl-
edge representation and lays it on top of the input tokens.
Each token carries four slot fillers. If the token at index r
carries slot filler P , the structure includes state〈P 〉. We also
write state〈P 〉r to indicate with which token the part is asso-
ciated. If the tokens at indexes r − 1 and r are in the same
segment, the segment also includes trans〈P → P 〉 (since the
tokens at r − 1 and r belong to the same segment, their slot
fillers are the same). Such parts are called transitions. They
represent slot fillers and transitions between the slot fillers.

If a segment extends from the token at q to the token at r
inclusive, the structure includes seg state〈I, q, r〉. Also if the
token at q − 1 is the last token in a segment, while the token
at q is the first token of the next segment, the second layer
(segments) includes seg trans〈I → I〉. This part is also a
transition. These parts indicate the beginning and ending of
segments and the transitions between the segments.

Note that since G always occurs with H, and E always with
D, we can eliminate (H|D) from the knowledge represen-
tation. However, doing so reduces the performance of the
system. We postulate that having (H|D) in the model allows
the system to place more importance on the distinction be-
tween “going to a hall” and “entering a door”. We limit the
following discussion to the case where (H|D) is included.

The score of the frame-segment structure is factorized as
the sum of the scores of all the parts, in exactly the same way
that the conditional random field method factorizes the score
of the undirected linear-chain graph.

In the next section, we describe the decoding algorithm for
the frame-segment structures.

4.1 Decoding
The decoder finds argmaxyw�φ(x, y). We state the recur-
sive version of the Viterbi algorithm for the Markov model.

Vm(i, L) = maxL′Vm(i − 1, L′)
+w�φ(x, trans〈L′ → L〉i)
+w�φ(x, state〈L〉i)

Vm(0, L) = 0.

where 〈L(y,n), i〉 is the state part for the tag at n, and
〈L(y,n−1) → L(y,n), n − 1, n〉 is the transition from n − 1
to n.

The following is the Viterbi algorithm for the semi-Markov
model [Cohen and Sarawagi, 2004].

Vsm(r, L) = maxL′,d=1..rVsm(r − d, L′)
+w�φ(x, seg trans〈L′ → L〉r−d)
+w�φ(x, seg state〈L, r − d, r〉)

Vsm(0, L) = 0

where 〈L′ → L, r − 1, r〉 is the transition part, which tells
us that as the sequence moved from r − 1 to r, the transition
from label L′ to L took place. 〈L, r−d, r〉 is the segment part,
which tells us that the sequence had a segment from r − d to
r labeled with L.

We attempt to combine the decoding algorithm for the
Markov model and semi-Markov model. First, we modify
the Viterbi algorithm for the Markov model so that the chain
does not necessarily start at 0.

Vm′(q, r, L) = maxL′Vm′(q, r − 1, L′)
+w�φ(x, trans〈L′ → L〉r)
+w�φ(x, state〈L〉r)

Vm′(q, q, L) = 0

We embed this Vm′ into Vsm.
Vsmm(r, L) = maxL′,d=1..rVsmm(r − d, L′)

+w�φ(x, seg trans〈L′ → L〉r−d)
+w�φ(x, seg state〈L, r − d, r〉)
+maxL′′Vm′(r − d, r, L′′)

Vsmm(0, L) = 0

Our frame-segment model for following route instructions
is as follows. First, we define VE(q, r) to be Vm′(q, r, L),
with LE as the sole label. The labels of this model comprise
a singleton set. This means that VE examines the score of se-
quence [LE , LE , LE , .., LE], which is the only sequence the
model can have since there is only one label LE . Similarly,
we define VG, VH , VD, VS , VR, VL, V1, V2, V3, andVZ . The
frame-segment model thereby becomes

Vsmm(r, L) = maxL′,d=1..r(Vsmm(r − d, L′) + Z)
Vsmm(0, L) = 0,

where
Z = w�φ(x, seg trans〈L′ → L〉r−d)

+w�φ(x, seg state〈L, r − d, r〉)
+maxLE ,LG(VE(r − d, r), VG(r − d, r))
+maxLH ,LD (VH(r − d, r), VD(r − d, r))
+maxLS ,LR,LL(VS(r − d, r),

VR(r − d, r),
VL(r − d, r))

+maxL1,L2,L3,LZ (V1(r − d, r),
V2(r − d, r),
V3(r − d, r),
VZ(r − d, r))).

1491

We now explain the dynamic programming version of this
algorithm. To shorten the discussion, we provide only a brief
overview of how to integrate the backend into the algorithm.
First, one Viterbi extends a segment [q, r − 1] to [q, r], con-
sidering the state indexed by r. While this is being done, we
evaluate the scores for the slot filler combinations and sort
them for each segment. To do this, we make use of a sorted
tree structure such as a red-black tree. The other Viterbi ex-
tends a sequence of segments [0, q] to [0, r], considering the
state indexed by [q, r]. While this is being done, we find the
score for the highest scoring combination that does not vio-
late the physical environment given the current location on
the map, such as entering a door where there is no door. This
is much like the path-Viterbi described by Shimizu [Shimizu,
2006]. We retrieve the best scoring action frame from the
sorted tree that fits the environment and add the score of the
frame to that of the action segment sequence, [0, r]. The algo-
rithm returns the best score for the frame-segment structure.

To enable recovery of the structure, we simply maintain
back pointers to the items that gave rise to each item in the
dynamic programming table. This is exactly like maintaining
back pointers in the Viterbi algorithm for sequences.

The run-time complexity of this decoding algorithm is
O(cscfn2) compared to O(c2

sc
2
fn) for linear-chain CRFs. The

constant cs is the number of slots, cf is the number of fillers
for a slot, and n is the length of the instruction. The decod-
ing algorithm for our frame-segment model scales better than
the Viterbi algorithm for the Markov model as the number of
actions increases.

Although fitting a log-linear model (such as CRF) is gen-
erally thought to have a superior performance than using per-
ceptron, it requires the computation of the marginal proba-
bility of parts. Since an effective dynamic programming al-
gorithm for computing this value is not known, we used the
averaged perceptron [Collins, 2002] to train our model.

Algorithm
4.1: AVERAGED PERCEPTRON(T, {(xi, yi)}n

i=1)

k := 0; w1 := 0; c1 := 0;
for t := 1 to T

for i := 1 to n
y := argmaxy′(w�

k φ(xi, y′))
if (y = yi)

ck := ck + 1;
else
wk+1 := wk − φ(xi, y) + φ(xi, yi);
ck+1 := 1; k := k + 1; ck := ck + 1;

return ({(w1, c1), ..(wk, ck)})

We average the resulting weight vectors to obtain the
model parameters of the classifier.

We tested the model using a four-fold cross validation in
which each instruction was randomly assigned to a partition.
The evaluation metrics were precision P (fraction of output
chunks that exactly matched the reference chunks), recall R
(fraction of reference chunks returned by the chunker), and
their harmonic mean, the F1 score (F1 = 2PR/(P + R)).

Table 3: Overall Results
Exact match Recall Precision F1

CRF 75.4% 75.3% 75.3%
CRF w/Backend 76.0% 75.6% 75.8%
Perceptron 64.4% 58.1% 61.1%
Perceptron w/Backend 66.6% 60.2% 63.2%
Frame-Segment 75.8% 73.6% 74.7%
Frame-Segment w/Backend 77.0% 78.2% 77.6%
Overlap match Recall Precision F1

CRF 89.5% 89.3% 89.4%
CRF w/Backend 89.9% 89.4% 89.7%
Perceptron 88.8% 80.1% 84.2%
Perceptron w/Backend 90.9% 82.2% 86.3%
Frame-Segment 92.8% 90.1% 91.4%
Frame-Segment w/Backend 92.6% 94.1% 93.4%
Instruction follow through Success rate
CRF 80.1%(**)
CRF w/Backend 81.0%(*)
Perceptron 73.9%
Perceptron w/Backend 76.8%
Frame-Segment 82.5%(*) (**)
Frame-Segment w/Backend 88.1%
Heuristic 39.5%

4.2 Results
The overall results are listed in Table 3. “Exact match”
means that, to be judged a correct segment, both boundaries
of the segment must match those in the annotation. “Over-
lap match” is a lenient measure that considers segmentation
or labeling to be correct if it overlaps with any of the an-
notated labels. “CRF” is a straightforward application of the
conditional random field method, “CRF w/Backend” discards
impossible paths when running the Viterbi algorithm. “Per-
ceptron” is the same undirected model as the CRF model but
is trained with the averaged perceptron instead of the maxi-
mum log-likelihood as in the CRF model. “Frame-Segment
w/Backend” is the algorithm described in the previous sec-
tion. “Frame-Segment” is the version of Frame-Segment that
does not discard paths that are impossible in context (i.e.,
paths that refer to objects not in the scene). “Heuristic” is
a simple rule-based method defined by Shimizu [Shimizu,
2006]. We also conducted the experiment using the model de-
veloped by Cohen and Sarawagi [Cohen and Sarawagi, 2004],
but the performance was quite low due to the lack of features
that span a segment, unlike the named entity recognition task.

“Instruction follow through” measures the success rate of
reaching the destination; it is the most important measure of
performance in this domain. If we increase the number of
features around the segment boundaries, F1 may increase;
however, this is not the objective of the application. Surpris-
ingly, a paired samples T-test showed that the differences be-
tween CRF(*) and frame-segment (*) and between CRF with
backend integration (**) and frame-segment (**) are statis-
tically not significant, although the difference between CRF
and CRF with Backend is statistically significant. The differ-
ences between the other pairs are statistically significant.

The large gain obtained by integrating the backend with the
frame-segment model suggests that the frame-segment model

1492

Table 4: Results: Frame-Segment Model w/ Backend on Var-
ious Train-Test Partition

Exact Match Recall Precision F1

Instruction Giver Partition 70.7% 72.3% 71.4%
Start Position Partition 67.9% 69.5% 68.7%
Mixed Partition 77.0% 78.2% 77.6%
Overlap Match Recall Precision F1

Instruction Giver Partition 90.7% 92.7% 91.7%
Start Position Partition 87.0% 89.0% 88.0%
Mixed Partition 92.6% 94.1% 93.4%
Instruction Follow Through Success rate
Instruction Giver Partition 86.3%
Start Position Partition 80.0%
Mixed Partition 88.1%

has a better 2nd best or 3rd best action frame in the queue
than the CRF model. We attribute this to factorization of the
slot fillers. Our model allows swapping of slot fillers when
the frame is found to be incompatible with the environment,
whereas the linear-chain CRF model must replace the whole
action frame.

To determine the generalizability of our results, we tested
our frame-segment model (with the backend) for various par-
titions of the route instructions. First, we partitioned the in-
structions so that no person appeared in two different parti-
tions. This is called “Instruction Giver Partition.” This parti-
tioning reduced the success rate by about 2% from that of the
“Mixed Partition” version described in the previous sections.
We then partitioned the instructions on the basis of the build-
ing. To test how training on one area of the building general-
izes to the other areas, we partitioned the route instructions on
the basis of the starting position when the demonstration was
shown to an instruction giver. The building was partitioned
into four separate areas, and the instructions starting from the
four areas were placed in four corresponding partitions. Nat-
urally, no route was shared between partitions. Again, we
applied four-fold cross validation to this partition. This re-
duced the performance by about 8 to 80%. The results listed
in Table 4 demonstrate that the system is quite robust and that
its performance does not suffer much when tested in unseen
environments.

5 Conclusion
We have created an end-to-end natural language understand-
ing system for route instruction following. We started by
analyzing the errors generated by a linear-chain CRF model
and developed the frame-segment model, which combines the
Markov and semi-Markov model. By extracting a frame-like
structure, we have shown that the frame-segment model ob-
tains a higher labeling accuracy and a much better success
rate than the linear-chain CRF.

References
[Bartlett et al., 2004] P. Bartlett, M. Collins, B. Taskar, and

D. McAllester. Exponentiated gradient algorithms for
large-margin structured classification,. In Advances in
Neural Information Processing Systems 16, 2004.

[Bugmann et al., 2004] G. Bugmann, E. Klein, S. Lauria, ,
and T. Kyriacou. Corpus-based robotics : A route instruc-
tion example. In Proc. of Intelligent Autonomous System,
96?E03, 2004.

[Cohen and Sarawagi, 2004] W. Cohen and S. Sarawagi. Ex-
ploiting dictionaries in named entity extraction: Combin-
ing semi-markov extraction processes and data integration
methods. In Proc. of the Tenth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Min-
ing, 2004.

[Collins, 2002] M. Collins. Discriminative training methods
for hidden markov models: Theory and experiments with
perceptron algorithms. In Proc. of Empirical Methods in
Natural Language Processing (EMNLP), 2002.

[Lafferty et al., 2001] J. Lafferty, A. McCallum, and
F. Pereira. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In
Proc. of the 18th International Conference on Machine
Learning, 2001.

[MacMahon and Stankiewicz, 2006] Matt MacMahon and
Brian Stankiewicz. Human and automated indoor route
instruction following. In Proc. of the 28th Annual Conf. of
the Cognitive Science Society, Vancouver, BC, July 2006.

[Ramshaw and Marcus, 1995] L. Ramshaw and M. Marcus.
Text chunking using transformation-based learning. In
Proc. of Third Workshop on Very Large Corpora. ACL,
1995.

[Roy, 2005] D. Roy. Semiotic schemas: a framework for
grounding language in action and perception. In Artificial
Intelligence 167(1?E):170?E05, 2005.

[Sang and Buchholz, 2000] E. F. Tjong Kim Sang and
S. Buchholz. Introduction to the conll-2000 shared task:
Chunking. In Proc. of the Fourth Conf. on Computational
Natural Language Learning (CoNLL), 2000.

[Sha and Pereira, 2003] F. Sha and F. Pereira. Shallow pars-
ing with conditional random fields. In Proc. of the Human
Language Technology Conf. (HLT), 2003.

[Shimizu, 2006] N. Shimizu. Semantic discourse segmenta-
tion and labeling for route instructions. In Proc. of the
COLING/ACL 2006 Student Research Workshop, pages
31–36, Sydney, Australia, July 2006. Association for
Computational Linguistics.

[Skubic et al., 2004] M. Skubic, D. Perzanowski, S. Blisard,
A. Schultz, W. Adams, W. Bugajska, and D. Brock. Spatial
language for human-robot dialogs. In IEEE Transactions
on Systems, Man & Cybernetics ?EPart C 34(2):154?E67,
2004.

[Winograd, 1972] T. Winograd. Understanding Natural
Language. Academic Press, 1972.

1493

