
Translating HTNs to PDDL:
A Small Amount of Domain Knowledge Can Go a Long Way∗

Ron Alford1 Ugur Kuter2 Dana Nau1,3,2

1Department of Computer Science, 2Institute for Advanced Computer Studies,
3Institute for Systems Research

University of Maryland, College Park, Maryland 20742, USA
{ronwalf, ukuter, nau}@cs.umd.edu

Abstract

We show how to translate HTN domain descrip-
tions (if they satisfy certain restrictions) into PDDL
so that they can be used by classical planners. We
provide correctness results for our translation al-
gorithm, and show that it runs in linear time and
space. We also show that even small and incom-
plete amounts of HTN knowledge, when translated
into PDDL using our algorithm, can greatly im-
prove a classical planner’s performance. In ex-
periments on several thousand randomly gener-
ated problems in three different planning domains,
such knowledge speeded up the well-known Fast-
Forward planner by several orders of magnitude,
and enabled it to solve much larger problems than
it could otherwise solve.

1 Introduction

Most classical planners are either domain-independent,
hence work in any classical planning domain, or domain-
configurable, hence can exploit domain-specific knowledge.
Each approach has advantages and disadvantages:

• Domain-configurable planners can read and make use of
domain-specific planning knowledge, typically in the form
of control rules (e.g., TLPlan [Bacchus and Kabanza,
2000] and TALplanner [Kvarnström and Doherty, 2001])
or HTN methods (e.g., SIPE-2 [Wilkins, 1988], O-PLAN
[Currie and Tate, 1991], SHOP [Nau et al., 1999], and
SHOP2 [Nau et al., 2003]). Using this domain knowledge,
such planners can solve much larger planning problems,
and solve them more quickly, than domain-independent
planners. But the domain-specific knowledge used by
these planners can sometimes be quite complicated, hence
difficult for the general user to specify.

• Domain-independent planners, such as FastForward (FF)
[Hoffmann and Nebel, 2001], AltAlt [Nguyen et al.,
2002], SGPlan [Chen et al., 2006], HSP [Bonet and
∗This work supported in part by AFOSR grant FA95500610405,

NAVAIR contract N6133906C0149, DARPA’s Transfer Learning
Program, DARPA IPTO grant FA8650-06-C-7606, and NSF grant
IIS0412812. The opinions in this paper are those of the authors and
do not necessarily reflect the opinions of the funders.

Geffner, 1999], Fast Downward [Helmert, 2006], and LPG
[Gerevini et al., 2003], usually do not need any domain-
specific knowledge other than the planning operators for
a domain. This makes it much easier for the general user
to specify the input to these planners. On the other hand,
a domain-independent planner may perform much worse
in a given domain than a domain-configurable planner that
has been given a good set of domain knowledge.

We show that HTN planning knowledge, if it satisfies some
restrictions, can automatically be translated into PDDL, and
that even small amounts of such knowledge can greatly im-
prove a classical planner’s performance. In particular:

• We describe how to translate a restricted class of HTN
methods and operators into PDDL. We provide theorems
showing that our translation is correct, that its time and
space complexity are both linear, and that it can be used
even on partial HTN models of a domain (which can be
much easier to write than full HTN models).

• Our experiments show that by translating partial HTN
models into PDDL, we can substantially improve a clas-
sical planner’s performance. In experiments with the well-
known Fast-Forward (FF) planner [Hoffmann and Nebel,
2001] on more than 3500 planning problems, the translated
knowledge improved FF’s running time by several orders
of magnitude, and enabled it to solve much larger planning
problems than it could otherwise solve.

2 Basic Definitions and Notation

Classical Planning. Our definitions for classical planning are
based on the ones in [Ghallab et al., 2004].

Let L be the set of all literals in a function-free first-order
language. A state is any set of ground atoms of L. A classical
planning problem is a triple P = (s0, g, O), where s0 is the
initial state, g is the goal (a set of ground literals of L), and
O is a set of operators. Each operator o ∈ O is a triple

o = (name(o), precond(o), effects(o)),
where name(o) is o’s name and argument list, and precond(o)
and effects(o) are sets of literals called o’s preconditions and
effects. An action α is a ground instance of an operator.
If a state s satisfies precond(α), then α is executable in s,
producing the state γ(s, α) = (s − {all negated atoms in

1629

effects(α)})∪ {all non-negated atoms in effects(α)}. A plan
is a sequence π = 〈α1, . . . , αn〉 of actions. π is a solution
for P if, starting in s0, the actions are executable in the order
given and the final outcome is a state sn that satisfies g.

TSTN Planning. [Ghallab et al., 2004] describes a restricted
case of HTN planning called Total-order Simple Task Net-
work planning, which we’ll abbreviate as TSTN Planning.
The definitions are as follows.

A task is a symbolic representation of an activity. Syn-
tactically, it is an expression τ = t(x1, . . . , xq) where t is a
symbol called τ ’s name, and each xi is either a variable or a
constant symbol. If t is also the name of an operator, then τ is
primitive; otherwise τ is nonprimitive. Intuitively, primitive
tasks can be instantiated into actions, and nonprimitive tasks
need to be decomposed (see below) into subtasks.

A method is a prescription for how to decompose a task
into subtasks. Syntactically, it is a four-tuple

m = (name(m), task(m), precond(m), subtasks(m)),
where name(m) is m’s name and argument list, task(m) is the
task m can decompose, precond(m) is a set of preconditions,
and subtasks(m) = 〈t1, . . . , tj〉 is the sequence of subtasks.

A TSTN planning problem is a four-tuple P =
(s0, T0, O, M), where s0 is an initial state, O is a set of oper-
ators, T0 is a sequence of ground tasks called the initial task
list, and M is a set of methods.

If T0 is empty, then P ’s only solution is the empty plan
π = 〈〉, and π’s derivation (the sequence of actions and
method instances used to produce π) is δ = 〈〉. If T0 is
nonempty (i.e., T0 = 〈t1, . . . , tk〉 for some k > 0), then
let T ′ = 〈t2, . . . , tk〉. If t1 is primitive and there is an ex-
ecutable action α with name(α) = t1, then let s1 = γ(s0, α).
If P ′ = (s1, T

′, O, M) has a solution π with derivation δ,
then the plan α • π is a solution to P (where • is concatena-
tion) whose derivation is α • δ. If t1 is nonprimitive and there
is a method instance m such that task(m) = t1, and if s0 sat-
isfies precond(m), and if P ′ = (s1, subtasks(m) • T ′, O, M)
has a solution π with derivation δ, then π is a solution to P
and its derivation is m • δ.

Using TSTN Planners for Classical Planning. To use a
TSTN planner in a classical planning domain D (i.e., a set
of classical planning problems that all have the same op-
erator set O), the usual approach is augment D with a set
M of methods and a way to translate each classical goal g
into a task list T g

0 . This maps each classical planning prob-
lem P = (s0, g, O) in D into a TSTN planning problem
P ′ = (s0, T

g
0 , O, M). The mapping is correct if P ′ is solv-

able whenever P is, and if the solutions for P ′ are also so-
lutions for P . Since the objective is for P ′ to have a small
search space, the set of solutions for P ′ may be much smaller
than the set of solutions for P .

In the above mapping, we will say that M is O-complete if
every operator in o ∈ O is mentioned in M , i.e., at least one
method in M has a subtask that is an instance of name(o).

3 Translating TSTN to Classical

Let P = (s0, T, O, M) be a TSTN planning problem, and
suppose T0 is a correct translation (as defined above) of a

classical goal g. We now describe how to translate P (if a re-
striction holds) into a classical planning problem trans(P) =
(s′0, g, O′) that is equivalent to P in the following sense: as
we’ll show in Section 4, there is a one-to-one mapping from
P ’s solution derivations to trans(P)’s solutions.

Preliminaries. We begin by introducing a restriction. For ev-
ery solution π of P , let the non-tail height of π be the number
of levels of method decomposition used to produce π, ignor-
ing tail decomposition (i.e., decomposition of the last task in
a task list). Then either we need to extend the planning lan-
guage to include function symbols,1 or else we must be given
an upper bound H on the non-tail height of all solutions of P .

We need the above restriction in order to implement a sym-
bolic representation of a numeric counter, to keep track of the
current number of levels of task decomposition. Here is how
to implement the counter when H is given:2

• We’ll introduce new constant symbols d0, d1, . . . , dH to
denote levels of task decomposition, and a predicate sym-
bol level so that the atom level(di) can be used to mean
that the current level of task decomposition is di. We give
a special meaning to the constant symbol d0: it marks the
successful end of method decomposition process.

• To specify a total ordering of the constant symbols,
we will put new atoms next(d1, d2), next(d2, d3), . . . ,
next(dH−1, dH) into the initial state.

In addition, for each method m(x1, . . . , xk) and task
t(y1, . . . , yj) we will introduce new atoms dom(x1, . . . , xk)
and dot(y1, . . . , yj).

Translating operators. Let o be any operator in O, and sup-
pose name(o) = o(x1, . . . , xn), precond(o) = {p1, . . . , pj}
and effects(o) = {e1, . . . , ek}. If o is not mentioned in M
(whence M is not O-complete), then trans(o) = o. Oth-
erwise trans(o) is the following operator o′, which is like
o except that it is applicable only when doo is true, and it
decrements the counter:

name(o′) = o′(x1, . . . , xn)

precond(o′) = {doo(x1, . . . , xn), p1, . . . , pj ,

level(v), next(u, v)}
effects(o′) = {¬doo(x1, . . . , xn),¬level(v),

level(u), e1, . . . , ek}
We define trans(O) = {trans(o) | o ∈ O}.

Translating methods. Let m be any method in M , and sup-
pose name(m) = m(x1, . . . , xn), task(m) = t(y1, . . . , yjt),
and precond(m) = {p1, . . . , pjm}. There are two cases:

1PDDL includes this extension, but traditional formulations of
classical planning (e.g., [Ghallab et al., 2004]) do not.

2If H is not given but the planning language contains function
symbols, we can instead use an unbounded number of ground terms
1, next(1), next(next(1)),

1630

Case 1: subtasks(m) = ∅ (i.e., m specifies no subtasks for
t). Then trans(m) is the operator m′ defined as follows:

name(m′) = m′(x1, . . . , xn)

precond(m′) = {dot(y1, . . . , yjt
), p1, . . . , pj ,

level(v), next(u, v)}
effects(m′) = {¬dot(y1, . . . , yjt),¬level(v), level(u)}

Case 2: subtasks(m) = {t1, . . . , tk} for k ≥ 1. Then
trans(m) is the set of planning operators {m′

0, . . . , m
′
k} de-

fined below, where m′
0 is an operator that checks whether m

is applicable, and m′
1, . . . , m

′
k are operators that correspond

to calling m’s subtasks. The definition of m′
0 is

name(m′
0) = m′

0(x1, . . . , xn)

precond(m′
0) = {dot(y1, . . . , yjt), p1, . . . , pjm , level(v)}

effects(m′
0) = {¬dot(y1, . . . , yjt

), dom1(x1, . . . , xn, v)}
Intuitively, m′

0’s preconditions say that t is the current task
and that m’s preconditions hold; and m′

0’s effect dom1 makes
it possible to apply the planning operator m′

1 that corresponds
to m’s first subtask.

For i = 1, . . . , k − 1, if m’s ith subtask is ti(yi1, . . . , yiji
)

then m′
i is defined as follows:

name(m′
i) = m′

i(x1, . . . , xn)

precond(m′
i) = {domi

(x1, . . . , xn, v), level(v), next(v, w)}
effects(m′

i) = {¬domi(x1, . . . , xn, v),¬level(v), level(w),
doti

(yi1, . . . , yiji
), domi+1(x1, . . . , xn, v)}

The operator m′
k, which corresponds to m’s last subtask tk,

is like m′
i but omits the effects ¬level(v) and level(w).

We define trans(M) =
⋃

m∈M trans(m).

Translating planning problems. Finally, we define
trans(P) = (s′0, g, O′), where

s′0 = s0 ∪ {next(d0, d1), . . . , next(dk−1, dk),
level(d1), dot0(c1, . . . , cn)};

O′ = trans(O) ∪ trans(M).

4 Properties

The theorems in this section establish the correctness and
computational complexity of our translation scheme.

Theorem 1 Let P = (s0, 〈t1, . . . , tk〉, O, M) (where k ≥ 0)
be any TSTN planning problem. Let Δ = {all derivations of
solutions for P}, and Π = {all solutions for trans(P)}. If
M is O-complete, then there is a one-to-one correspondence
that maps Δ onto Π.

Sketch of proof. We need to define a mapping F : Δ → Π
and show that F is one-to-one and onto. Below we define F ;
the proof that it is one-to-one and onto can be done straight-
forwardly by induction.

Let π be a solution for P with derivation δ. Recall that δ
is the sequence of the actions and method instances used to
produce π, in the order that they were applied. In particular, δ
is a concatenation of subsequences δ1, . . . , δk corresponding

to t1, . . . , tk. We will let F (δ) = F (δ1) • . . . • F (δk), where
• denotes concatenation, and where each F (δi) is defined re-
cursively as follows:

If δi is empty, then F (δi) also is empty. If δi is nonempty
(i.e., δi = 〈αi1, . . . , αik〉), then let δ′i = 〈αi2, . . . , αik〉.
There are three cases:

1. If αi1 is an action, then F (δi) = trans(αi1) • F (δ′i).
2. If αi1 is a substitution instance mθ of a method m with

substitution θ, and subtasks(m) is empty, then F (δi) =
m′θ • F (δ′i), where m′ is as in Case 1 of Section 3.

3. If αi1 is a substitution instance mθ of a method m
and subtasks(m) is nonempty (i.e., subtasks(m) =
〈t′1, . . . , t′j〉 for some j > 0), then δ′i is the concatenation
of subsequences δ′i1, . . . , δ

′
ij produced by decomposing

t′1, . . . , t
′
j , respectively. In this case,

F (δi) = m′
0θ •m′

1θ • F (δ′i1) • . . . •m′
jθ • F (δ′ij),

where m′
1, . . . , m

′
j are as in Case 2 of Section 3. �

Corollary 1 In Theorem 1, if M is not O-complete, then the
mapping F is one-to-one but not necessarily onto.

Sketch of proof. If M is not O-complete, then there is at
least one operator o ∈ O that is not mentioned in M . Con-
sequently, no instance of o will appear in any solution for
P , nor in Δ, hence no instance of trans(o) will appear in
{F (δ) | δ ∈ Δ}. But instances of trans(o) can appear in
solutions to trans(P), in which case F is no longer onto. �

Theorem 2 The time and space complexity of computing
trans(P) are both O(|P |+ H).

Sketch of proof. For each o ∈ O, trans(o) is a single op-
erator that is computed by a linear-time scan of o, and it can
be seen by inspection that the size of that operator is O(|o|).
Suppose there are no non-tail recursive methods in M . This
means that H = 0 in this case. For each m ∈ M , trans(m)
is a set of methods that can be produced by a linear-time scan
of m, and it can be seen by inspection that the set of methods
has size O(|m|). If there is a non-tail recursive method in M ,
then H is given as input and it is a fixed number. Thus, the
theorem follows. �

5 Implementation and Experiments

We implemented an algorithm that uses our translation tech-
nique to translate TSTN domain descriptions into PDDL, and
did an experimental investigation of the following question:

In domains that are hard for a classical planner,
how much can its performance be improved by
PDDL translations of partial HTN knowledge?

For the classical planner, we used FF [Hoffmann and Nebel,
2001]. FF is perhaps one of the most influential classical
planners available; many recent classical planning algorithms
either directly depends on generalizations of FF or they in-
corporate the core ideas of FF in their systems.

For the planning domains, we chose three planning do-
mains for which we wrote simple HTN domain descriptions
with varying amounts of incompleteness: the Blocks World,

1631

the Towers of Hanoi problem, and a transportation domain
called the Office Delivery domain.

The source code for our translation technique and the
HTN method descriptions of the three planning domains
described below are available at http://www.cs.umd.edu/
projects/planning/data/alford09translating/.

Towers of Hanoi. The Towers of Hanoi problem causes
problems for many classical planners because of its combi-
natorial nature. On the other hand, it is almost trivially easy
to write a set of HTN methods to solve the problem without
any backtracking. The methods say basically the following:

• Method to move a disk:
precond: the smallest disk wasn’t the last one moved
subtask: move the smallest disk clockwise.

• Method to move a disk:
precond: the smallest disk was the last one moved
subtask: move the other disk.

Note that in a tower of a Towers of Hanoi problem, the largest
disk is always at the bottom of the tower and no disk can
be place on a smaller disk – i.e., the disks in a tower are in
the increasing order by their sizes with the smallest is always
at the top. Thus, whether the smallest disk was the last one
moved can be checked in the above methods by examining
the towers to the left or to the right of a tower.

The methods above provide an almost-complete solution to
the Towers of Hanoi problem, except that the second method
doesn’t say where to move the disk. To use the PDDL trans-
lation, FF must figure out for itself that there is only one place
the disk can be moved.

Below, “FF-Plain” refers to FF using the ordinary classical-
planning definition of the Towers of Hanoi domain, and “FF-
HTN” refers to FF using the PDDL translations of the HTNs
described above. We varied the number n of disks from 3
to 14. For each value of n, we ran FF-HTN and FF-Plain
each 100 times, averaging the running times. The reason for
the multiple runs is because FF makes some random choices
during each run that make its running time vary from one run
to another. Fig. 1 shows the results.

For FF-Plain at 14 rings (the * in Fig. 1), two runs took
longer than 2 hours (our time limit per problem) to finish. We
counted these runs as 2 hours each, and averaged them with
the other 98 runs; hence the data point for 14 rings makes
FF-Plain’s performance look better than it actually was.

As shown in Fig. 1, FF-Plain’s running times grew much
faster than FF-HTN’s did. With 14 disks, FF-HTN was about
2 orders of magnitude faster than FF-Plain.

Blocks World. The Blocks World has previously been shown
to pose some difficulities for FF. Complete HTN domain de-
scriptions can work very efficiently [Ghallab et al., 2004],
but are somewhat complicated. To see how well FF could
do with some simple and partial HTN knowledge, we wrote
HTN methods that said basically the following:

• Method to move a block:
precond: the block is not in its final position
subtasks: pick up the block; put it in its final position.

● ● ● ● ● ● ● ● ● ● ● ●0
10

00
20

00
30

00

● ● ● ● ● ● ● ● ● ● ● ●

3 4 5 6 7 8 9 10 12 143 4 5 6 7 8 9 10 12 14

*

Number of Rings

T
ot

al
 C

P
U

 S
ec

on
ds ●

FF−Plain
FF−HTN

Figure 1: FF’s CPU time in the Towers of Hanoi domain,
with and without the translated domain knowledge. Each data
point is FF’s average CPU time on 100 runs. The asterisk is
explained in the text.

● ● ● ● ● ● ● ● ● ●
●

●

●

●
●

●

●

0
10

0
30

0
50

0

● ● ● ● ● ● ● ● ● ●
●

●

●

●
●

●

●

5 15 25 35 45 55 65 75 855 15 25

*

*
* * *

*

Number of Blocks

T
ot

al
 C

P
U

 S
ec

on
ds

●

FF−Plain
FF−HTN

Figure 2: FF’s CPU time in the Blocks World, with and with-
out the translated domain knowledge. Each data point is FF’s
average CPU time on 100 randomly generated planning prob-
lems. The asterisks are explained in the text.

• Method to move a block:
precond: the block is not in its final position
subtasks: pick up the block; put it on the table.

At each point in the planning process, both of the methods are
applicable. To use the PDDL translation of them, FF must use
its heuristics to choose which of them to use.

Below, “FF-Plain” refers to FF using the ordinary classical-
planning definition of the Blocks World, and “FF-HTN”
refers to FF with the PDDL translations of the methods
described above. We ran both FF-HTN and FF-Plain on
100 randomly generated n-block problems for each of n =
5, 10, 15, . . . , 90, giving a total of 1800 Blocks World prob-
lems. Fig. 2 shows the results.

As before, we gave FF a 2-hour time limit for each run. At
data points where all 100 runs took less than 2 hours each, the
data point was the average time per run. At data points where
3 or fewer of the 100 runs failed to finish within 2 hours, we
counted each failure as 2 hours when computing the average,
and marked the data point with an asterisk. In all of the other

1632

● ● ● ● ● ● ● ● ●0
10

0
20

0
30

0
40

0
50

0

● ● ● ● ● ● ● ● ●

10 20 30 40 50 60 70 80 9010 20 30 40 50 60 70 80 90

Number of Rooms

T
ot

al
 C

P
U

 S
ec

on
ds ●

FF−Plain
FF−HTN

● ● ● ● ● ● ● ● ●0
50

10
0

20
0

30
0

● ● ● ● ● ● ● ● ●

10 20 30 40 50 60 70 80 9010 20 30 40 50 60 70 80 90

Number of Packages

T
ot

al
 C

P
U

 S
ec

on
ds ●

FF−Plain
FF−HTN

Figure 3: FF’s CPU time in the Office domain, with and without the translated domain knowledge. In the graph at left, the
number of packages is fixed at 40 and the number of rooms varies. In the graph at right, the number of rooms is fixed at 40 and
the number of packages varies. Each data point is FF’s average CPU time on 100 randomly generated planning problems.

cases, a large number of the 100 runs failed to finish with 2
hours, so we omitted those data points.

As shown in Fig. 2, FF-Plain could not solve problems
larger than 25 blocks, but FF-HTN could solve problems up
to 85 blocks. At 25 blocks, FF-HTN was about 4.2 orders of
magnitude faster than FF-Plain.

Office Delivery. This is a transportation domain in which a
robot needs to pick up and deliver packages in a building. It
is similar to the well-known Robot Navigation Domain [Ka-
banza et al., 1997], with the following differences: (1) the
problem is deterministic, (2) there is a variable number of
rooms, and (3) some of the rooms can be quite far from the
hallway (hence to get to a room r, the robot may need to go
through many other rooms). For this domain, we wrote a very
incomplete set of HTN methods:

• Method to move all remaining packages:
precond: there is a package that’s not at its destination
subtasks: pick up the package; put it in its final location;

move all remaining packages.

Above, we omitted (1) how to get to the package’s location
in order to pick it up, and (2) how to take the package to its
destination. To use the PDDL translation of the method, the
planner must figure out those things for itself.

Fig. 3 shows the results of our Office Delivery experiments.
For the graph on the left, we fixed the number of packages at
40 and varied the number n of office rooms from 10 to 90;
and for the graph on the right we fixed the number of rooms
at 40 and varied the number k of packages from 10 to 90.
For each combination of n and k we ran FF on 100 randomly
generated problems, giving a total of 1700 problems.

As shown in Fig. 3, FF-Plain’s running time increased
much faster than FF-HTN’s. On the largest problems (90
rooms and 90 packages), FF-HTN was faster than FF-Plain
by about 2.8 and 1.9 orders of magnitude, respectively.

6 Related Work

Section 1 began with a discussion of related work on domain-
independent and domain-configurable planners. We now dis-

cuss additional related work.
[Smith et al., 2008] described the Action Notation Model-

ing Language (ANML) as an alternative to the exiting plan-
ning languages such as PDDL and HTNs, while preserving a
clear semantics. [Smith et al., 2008] also describes a tecnique
for translating HTNs specified as in ANML into PDDL. The
ANML translation has several similarities to ours, but also
a difference that can significantly affect planning time and
solutions found: the ANML translation does not distinguish
(see our ”translating operators” subsection) between actions
that aren’t used as subtasks of methods (in which case we use
standard PDDL semantics) and actions that are (in which case
we use standard HTN semantics, i.e., the action is applicable
only when called by the methods that mention it). This affects
both planning time and solutions found, and would seem to
relate to the two sides of the controversy described at the start
of ”HTN Decomposition” section in [Smith et al., 2008]. We
believe there is merit in both sides of this controversy.

[Estlin et al., 1997] argued that the knowledge-engineering
effort required to produce effective HTN planning knowl-
edge could be reduced by using partial-order-planning tech-
niques such as causal-link analysis and goal regression, and
using HTNs only to specify high-level goal hierarchies. They
pointed out how more-specific but similar combinations of
HTNs and classical-planning techniques were useful and ef-
fective in two planning systems developed at NASA.

In a similar vein, [Kambhampati et al., 1998] proposed
a plan-space refinement framework to allow HTN planning
knowledge to be combined with classical planning, and ar-
gued that this would provide a principled way of handling
partially hierarchical domains. As an instance of this ap-
proach, they cited [Mali and Kambhampati, 1998], which de-
scribes how to translate a restricted case of HTN planning
into the satisfiability problem.

[Dix et al., 2003] describes a translation of TSTN planning
problems into Answer Set Programs (ASPs). In their exper-
iments, the approach did not perform as well as the SHOP
planning algorithm [Nau et al., 1999], but it provided sub-
stantial speedups compared to direct formulations of classical
planning as ASPs.

1633

[Baier et al., 2007] provide a way to translate a subset of
GOLOG into classical planning problems via finite state au-
tomatons. The translation supports conditionals, loops and
non-deterministic choice, but lacks procedures. [Fritz et al.,
2008] provides a theoretical extension which supports con-
currency and procedures, and would support TSTN transla-
tion by first translating to ConGolog. In contrast, we provide
a direct translation of TSTNs to PDDL, an implementation,
and experimental results.

As a way to do planning with incomplete HTN knowl-
edge, the Duet planner [Gerevini et al., 2008] combines a
domain-independent planner, LPG [Gerevini et al., 2003],
with a domain-configurable planner, SHOP2 [Nau et al.,
2003]. During planning, Duet uses SHOP2 to decompose
tasks into smaller subtasks, and LPG to satisfy goal condi-
tions. In their experiments, Duet was able to solve classical
planning problems faster, on average, than LPG.

7 Conclusions

Our results show that HTN planning knowledge, if it satisfies
the restrictions described in Section 3, can easily be translated
into a form usable by domain-independent PDDL planners.

In our experiments with FF, PDDL translations of small
amounts of HTN planning knowledge improved FF’s perfor-
mance by several orders of magnitude. This occurred even
though the HTN knowledge was incomplete, i.e., it omitted
some of the knowledge that an HTN planner would need. In
places where the knowledge was missing, FF simply used its
ordinary planning heuristics.

FF’s ability to augment the translated HTN knowledge with
its own heuristics suggests that if we were to take a complete
domain description (e.g., for an HTN planner such as SHOP)
and translate it into PDDL, this might enable FF (and perhaps
other PDDL planners) to perform better than HTN planners.
We haven’t yet been able to test this hypothesis since our cur-
rent set of HTNs are only partial domain descriptions, but we
hope to test it in the near future.

References

[Bacchus and Kabanza, 2000] F. Bacchus and F. Kabanza.
Using temporal logics to express search control knowl-
edge for planning. Artificial Intelligence, 116(1-2):123–
191, 2000.

[Baier et al., 2007] J. Baier, C. Fritz, and S. McIlraith. Ex-
ploiting procedural domain control knowledge in state-of-
the-art planners. In ICAPS, 2007.

[Bonet and Geffner, 1999] B. Bonet and H. Geffner. Plan-
ning as heuristic search: New results. In ECP, 1999.

[Chen et al., 2006] Y. Chen, C. Hsu, and B. Wah. Tempo-
ral planning using subgoal partitioning and resolution in
SGPlan. JAIR, 26:323–369, 2006.

[Currie and Tate, 1991] K. Currie and A. Tate. O-Plan:
The open planning architecture. Artificial Intelligence,
52(1):49–86, 1991.

[Dix et al., 2003] J. Dix, U. Kuter, and D. Nau. Planning in
answer set programming using ordered task decomposi-
tion. In KI, 2003.

[Estlin et al., 1997] T. A. Estlin, Steve Chien, and X. Wang.
An argument for a hybrid HTN/operator-based approach
to planning. In ECP, 1997.

[Fritz et al., 2008] C. Fritz, J. Baier, and S. McIlraith. Con-
golog, sin trans: Compiling congolog into basic action the-
ories for planning and beyond. In KR, 2008.

[Gerevini et al., 2003] A. Gerevini, A. Saetti, and I. Serina.
Planning through stochastic local search and temporal ac-
tion graphs in lpg action graphs in LPG. JAIR, 20:239–
290, 2003.

[Gerevini et al., 2008] A. Gerevini, U. Kuter, D. Nau,
A. Saetti, and N. Waisbrot. Combining domain-
independent planning and HTN planning: The Duet plan-
ner. In ECAI, 2008.

[Ghallab et al., 2004] M. Ghallab, D. Nau, and P. Traverso.
Automated Planning: Theory and Practice. Morgan Kauf-
mann, 2004.

[Helmert, 2006] M. Helmert. The Fast Downward planning
system. JAIR, 26:191–246, 2006.

[Hoffmann and Nebel, 2001] J. Hoffmann and B. Nebel. The
FF planning system: Fast plan generation through heuris-
tic search. JAIR, 14:253–302, 2001.

[Kabanza et al., 1997] F. Kabanza, M. Barbeau, and R. St-
Denis. Planning control rules for reactive agents. Artificial
Intelligence, 95(1):67–113, 1997.

[Kambhampati et al., 1998] S. Kambhampati, A. Mali, and
B. Srivastava. Hybrid planning for partially hierarchical
domains. In AAAI, 1998.

[Kvarnström and Doherty, 2001] J. Kvarnström and P. Do-
herty. TALplanner: A temporal logic based forward chain-
ing planner. AMAI, 30:119–169, 2001.

[Mali and Kambhampati, 1998] A. Mali and S. Kambham-
pati. Encoding HTN planning in propositional logic. In
AIPS, 1998.

[Nau et al., 1999] D. Nau, Y. Cao, A. Lotem, and H. Muñoz-
Avila. SHOP: Simple hierarchical ordered planner. In IJ-
CAI, 1999.

[Nau et al., 2003] D. Nau, T.C. Au, O. Ilghami, U. Kuter,
J.W. Murdock, D. Wu, and F. Yaman. SHOP2: An HTN
planning system. JAIR, 20:379–404, 2003.

[Nguyen et al., 2002] N. Nguyen, S. Kambhampati, and
R. Nigenda. Planning graph as the basis for deriving
heuristics for plan synthsis by state space and CSP search.
Artificial Intelligence, 2002.

[Smith et al., 2008] David E. Smith, Jeremy Frank, and
William Cushing. The anml language. In The ICAPS-
08 Workshop on Knowledge Engineering for Planning and
Scheduling (KEPS), 2008.

[Wilkins, 1988] D. Wilkins. Practical Planning: Extending
the Classical AI Planning Paradigm. Morgan Kaufmann,
1988.

1634

