
Temporal Planning in Domains with Linear Processes

Amanda Coles, Andrew Coles, Maria Fox and Derek Long

Department of Computer and Information Sciences,

University of Strathclyde, Glasgow, G1 1XH, UK

email: firstname.lastname@cis.strath.ac.uk

Abstract

We consider the problem of planning in domains
with continuous linear numeric change. Such
change cannot always be adequately modelled by
discretisation and is a key facet of many interest-
ing problems. We show how a forward-chaining
temporal planner can be extended to reason with
actions with continuous linear effects. We extend
a temporal planner to handle numeric values using
linear programming. We show how linear contin-
uous change can be integrated into the same linear
program and we discuss how a temporal-numeric
heuristic can be used to provide the search guidance
necessary to underpin continuous planning. We
present results to show that the approach can effec-
tively handle duration-dependent change and nu-
meric variables subject to continuous linear change.

1 Introduction

Recently, considerable progress has been made in planning
with time and metric fluents. However, there remains rela-
tively little work exploring the combination of the two, where
metric values change in time-dependent ways. PDDL2.1 [Fox
and Long, 2003] and PDDL+ [Fox and Long, 2006] of-
fer two ways to model time-dependent change: as discrete
time-dependent effects of durative actions or as continuous
process-dependent change. We present an approach to plan-
ning with linear continuous processes and with discrete time-
dependent effects using a combination of forward state-space
heuristic search planning and linear programming. The plan-
ner we describe is the only general planner able to solve the
Airplane Landing problem [Dierks, 2005], posed as a chal-
lenge by Kim Larsen in his invited ICAPS lecture in 2005.

We briefly consider motivation for the problem and related
work. We proceed by describing the temporal planning strat-
egy that forms the basis of our planner, COLIN (COntinuous
LINear process planner). We then describe the role of linear
programming in our approach and describe its integration into
our planner. Finally, we provide some results demonstrating
the effectiveness of our approach.

2 Background

PDDL2.1 [Fox and Long, 2003] is a standard language for en-

coding planning domains with both time and numeric quanti-
ties. It raises the challenge of reasoning with time-dependent
change, both discrete and continuous. Many problems in-
volve reasoning with quantities that are subject to processes,
such as energy management, fuel consumption and replen-
ishment, use of storage tanks in chemical plants and so on.
In some cases, these processes can be abstracted into discrete
changes, but the sizes of those discrete changes depend on the
time over which the corresponding processes can run. It is not
always appropriate to discretise time because the granularity
of the discretisation required to expose the necessary choices
to a planner might be so fine-grained as to make the models
infeasibly large and it might be difficult to identify an appro-
priate granularity without actually solving the planning prob-
lem in the first place. Equally, it is not always appropriate to
discretise processes themselves, since it is sometimes neces-
sary to manage interactions with the processes while they are
running, accessing the values of metric fluents at intermediate
stages of active processes.

Other researchers have considered the problem of planning
in mixed discrete-continuous domains. Early work exploring
planning with continuous processes includes the Zeno sys-
tem of Penberthy and Weld [1994], in which processes are
described using differential equations. Zeno is a partial-order
planning system and, while impressively conceived, is unable
to solve large problems and cannot handle overlapping pro-
cesses affecting the same variable. Shin and Davis [2005]

developed TM-LPSAT, using a SAT model of the discrete
parts of a planning problem combined with an LP-solver to
manage (linear) processes modelled in PDDL2.1. Linear con-
straints on the continuous dynamics are captured as logical
variables. Once a satisfying assignment for the discrete prob-
lem is found, the linear constraints corresponding to the active
variables are assembled into a linear program which is solved
separately. If it cannot be solved, the system backtracks over
satisfying assignments. The planner has no heuristic guid-
ance and solves only relatively small problems.

Brian Williams and his colleagues have explored plan-
ning for hybrid systems [Léauté and Williams, 2005; Li and
Williams, 2008]. This work has focussed on model-based
control and uses techniques based on constraint reasoning.
The continuous dynamics of systems are modelled as flow
tubes that capture the envelopes of the continuous behaviours.
The dimensions of these tubes are a function of time (typ-

1671

(:durative-action generate

:parameters (?g - generator)

:duration (= ?duration 100)

:condition (over all (> (fuel-level ?g) 0))

:effect

(and (decrease (fuel-level ?g) (* #t 1))

(at end (generator-completed))))

Figure 1: Generate Action from the Generator Domain

ically expanding as they are allowed to extend) so that fit-
ting together successive continuous behaviours involves con-
necting the start of one tube (the precondition surface) to
the cross-section of the preceding tube at a time when there
is a non-empty intersection between the spaces. Like TM-
LPSAT, the planner, Kongming, relies on an underlying it-
erative search in increasing length action sequences, without
heuristic guidance, and therefore suffers from the same scal-
ing limitations as Graphplan.

McDermott’s OPTOP system [McDermott, 2003] also
plans with linear continuous change, but cannot handle con-
current continuous change to the same variable.

3 The Problem

In this paper we focus on solving PDDL2.1 planning prob-
lems using durative actions to model temporal structure. We
extend earlier treatment of durative actions, such as [Gerevini
et al., 2006; Coles et al., 2008; Do and Kambhampati, 2001;
Edelkamp, 2003], in two ways: we allow actions of variable
duration to have effects that depend on their durations and
we allow linear continuous effects. The form of these is de-
scribed in [Fox and Long, 2003], but we present a simple
example here, based on a domain similar to the Generator
domain [Howey and Long, 2003] (simplified so that numeric
change is linear). In this domain, a generator must run for
a fixed length of time (100 minutes) and, since it powers a
critical system, it must run continuously. The generator con-
sumes fuel from an initially full tank, with capacity 90 units,
at a rate of 1 unit per minute. The tank can be refuelled while
the generator runs, but its capacity must not be exceeded. The
refuelling action increases the fuel in the tank at a rate of 2
units per minute for 10 minutes.

The action to run the generator is shown in Figure 1. The
condition on executing this action is that the fuel level in the
generator must never fall to zero. The continuous numeric ef-
fect, the first on the effects list, is the interesting feature of this
action. In PDDL2.1 continuous numeric change is specified as
the rate of change of a fluent, in this case fuel-level, with
respect to time expressed by #t. #t is a special term denoting
the time elapsed since the start of the process. Thus, the effect
states that t time units after the action has been executed, fuel
consumption is t ∗ 1, or t.

Duration-dependent effects of durative actions have been
used in prior benchmark domains (such as Rovers Time in
IPC3). Durative actions with such effects can be split into
two cases: a simple case, where the duration of the action
is determined by the values of metric fluents in the state in
which the action starts, which in turn determines the effect
of the action, and a more complex case in which the duration
of the action is only constrained in some interval. The latter

case gives the planner freedom to choose the duration of the
action within an interval at the time of application, creating
a more complex branching choice at this point than in the
simple case. Until now, no planners have dealt with this case.

Reasoning with continuous resources clearly depends on
reasoning about both numeric resources and time. We will
begin by describing an existing approach to reasoning with
this combination, restricted to discrete numeric change, be-
fore going on to present an approach that also handles linearly
changing continuous numeric effects.

4 CRIKEY3

To handle continuous numeric effects it is crucial to reason
properly with time. In PDDL2.1, durative actions are mod-
elled in terms of pre- and post-conditions at their start and
end points, together with invariant conditions that must hold
throughout their execution and a duration constraint that gov-
erns how long the action executes. In simple temporal do-
mains, durations are fixed, while in more complex domains
they can be dependent on the context in which the action is
executed. PDDL2.1 also allows the specification of bounds
within which action durations can be selected by the planner.

Many state-of-the-art planners simplify temporal planning
into non-temporal planning by compiling each temporal ac-
tion into a single instantaneous action representing the net
effect of the execution of the whole action [Cushing et al.,
2007]. The resulting semantics are close to those of actions
in TGP [Smith and Weld, 1999]. Such a compilation works
for some simple problems without interesting temporal fea-
tures, but when more complex problems are specified, using
the full power of PDDL2.1, this approach is both unsound and
incomplete. Throughout the remainder of this discussion we
refer to this compilation approach as compressing.

In a solution to the simplified generator problem, the
refill action must occur during the execution of the
generate action. The constraint that the tank must not over-
flow prevents the refill action from being applied before
the generate action, while the constraint that the generator
must not run dry requires that the refill action be applied
before the generate action ends.

In problems such as this compressing is not effective. A
different approach is needed that takes note of the temporal
structure of actions. This observation has led to the devel-
opment of planners that avoid compressing and reason with
richer temporal interactions. Such planners include Sapa [Do
and Kambhampati, 2001], TPSYS [Garrido et al., 2001],
LPGP [Long and Fox, 2003], TM-LPSAT [Shin and Davis,
2005], CRIKEY3 [Coles et al., 2008] and Kongming [Li and
Williams, 2008]. CRIKEY3 is a forward chaining temporal
planner that is able to reason with problems where concur-
rent actions are necessary in order to find a solution. It is the
temporal planning strategy upon which we base the continu-
ous planning framework.

CRIKEY3 rewrites temporal actions into two separate in-
stantaneous actions: one representing the start of the action
and the other the end. To ensure a one-to-one correspondence
between starts and ends of actions in any plan, additional
dummy facts are used. This rewriting is similar to that used

1672

in LPGP. The starts and ends of actions can be interleaved
by the planner during search. Ignoring the metric constraints
for the moment, a solution can be constructed to the rewrit-
ten generator problem as follows: 0: generate start;

1: fill start; 2: fill end; 3: generate end.

To ensure that planning with start and end actions remains
sound requires two further elements. First, starting an action
establishes invariants that must be maintained until the action
is ended. To ensure this, the state representation is extended
to record the invariants of any actions that have started, but
not yet finished. When considering which actions have sat-
isfied preconditions, actions that violate any of these active
invariants are excluded. Second, when searching for a so-
lution plan, we must also consider the duration constraints
between the start and end points of actions. There are two
sources of temporal constraints: successive steps in the plan
are sequenced one after the other and the duration constraint
of an action must hold between its start and its end. To capture
these constraints, CRIKEY3 uses a Simple Temporal Network
(STN). To encode the steps 1..i within the plan, one vertex is
added to the plan for each, denoted step1..stepi. Successive
pairs of plan steps are constrained thus: ε ≤ stepi+1 − stepi.
Separation by a small non-zero amount, ε, is sufficient to
avoid violation of mutex constraints between successive ac-
tions. A more sophisticated analysis to determine where this
separation is necessary might be possible, but we have not
yet explored this further. Then, for each linked pair of start
and end actions 〈Astart, Aend〉, at steps i and j, a duration
constraint is added: min ≤ stepj − stepi ≤ max, for appro-
priate minimum and maximum duration values for A.

These constraints together form an STN. If the STN is in-
consistent the plan cannot be scheduled. By constructing an
STN at each state in the search space, CRIKEY3 ensures the
action choices are both logically and temporally sound.

To navigate the space of states we have described,
CRIKEY3 employs a temporal relaxed planning graph
(TRPG) heuristic. The first fact layer in the TRPG corre-
sponds to the state being evaluated. Following this are time-
stamped action and fact layers, with action layers containing
both start and end actions and fact layers their (positive) ef-
fects. The durations of actions are used to offset start and end
points between fact layers in order to capture the temporal re-
lationships between the starts and ends of actions. If a start
action Astart appears at layer t in the planning graph, its end
is delayed until layer t+durmin(A). This is the earliest point
at which the end could be applied, given that it has to follow
the start. For each action that started before the current state
but has not yet finished, the TRPG maintains an upper bound
on the elapsed time since the start. The corresponding end
action is delayed until the layer timestamped with the mini-
mum duration of the action minus that bound. Both logical
and temporal constraints are therefore considered within the
heuristic and, as discussed in [Coles et al., 2008], the search
guidance is effective in domains with required concurrency
and deadlines. Unlike the planning graph heuristic used in
Sapa [Do and Kambhampati, 2001], the TRPG constructed in
this way is able to correctly observe the PDDL start–end se-
mantics: Sapa’s planning graph with compiled actions results
in false dead-ends. The TRPG also contains bounds estimates

step
i+1

step

timespent

step

stateB

stateA

timespent
instateA

instateB

V’

V

V’

V

i1

i

i1

i

i

i+1

Figure 2: The relationship between numeric variables, actions
and time, encoded in the LP.

for numeric variables, maintained and used in the same way
as Metric-FF [Hoffmann, 2003], allowing CRIKEY3 to tackle
problems with discrete numeric effects. CRIKEY3 does not
handle continuous change.

5 Planning with Linear Continuous Change

The key differences between COLIN and CRIKEY3 that al-
low COLIN to reason with linear continuous change are in the
representation of temporal constraints, the rules for state pro-
gression and the construction of the TRPG. These elements
are detailed in the three following subsections. Briefly, the
representation of temporal constraints uses a LP instead of a
STN, allowing constraints on linear processes to be combined
with temporal constraints. State progression is modified to
use the same LP to confirm that processes interact correctly
with action preconditions. The TRPG is modified to use the
LP to model metric variables subject to continuous change.
We now show how the LP is constructed and used.

5.1 LP Action Scheduling

In CRIKEY3 an STN was used to schedule the chosen se-
quence of start and end actions. With the presence of contin-
uous numeric change, this is no longer adequate. Precondi-
tions can be specified over numeric variables that are subject
to continuous change so resolving temporal interactions can-
not be separated from reasoning about numeric values. In the
case of the generator problem, the solution is to refill the tank
while the generator is running. If the interaction between time
and numeric values is ignored, it seems that the fill action can
immediately follow the action to start the generator. In fact,
sufficient time must elapse to consume enough fuel for the
tank to be refilled without overflowing.

In COLIN the plan is formulated as a linear program con-
taining both the temporal constraints and the numeric con-
straints imposed by the actions. As well as defining times-
tamp variables for the start and end points of each action
stepi, we define a collection of variables, Vi, that denote the
values of the numeric state variables at stepi. We also de-
fine a collection of variables, V ′i , denoting the values of the
numeric variables immediately following the execution of the
action at stepi. These sets of variables allow numeric precon-
ditions and effects to be encoded in the LP.

• Start and end preconditions are constraints over Vi that
must hold at the point the action is applied.

• An action, A, starting at step i and ending at step j has
its invariants added as constraints over each of V ′i ..V ′j−1

and Vi+1..Vj .

1673

Variable Constraints

step0 N/A
v0 =90
v
′

0 = v0, > 0
step1 ≥ step0 + ε

v1 = v
′

0 − 1.(step1 − step0), > 0
v
′

1 = v1, > 0, ≤ 90
step2 = step1 + 10

v2 = v
′

1 + 1.(step2 − step1), > 0, ≤ 90
v
′

2 = v2, > 0
step3 ≥ step2 + ε, and = step0 + 100

v3 = v
′

2 − 1.(step3 − step2), > 0
v
′

3 = v3

Table 1: Variables and Constraints for the Generator Problem

• Start and end effects on a variable v are written as con-
straints defining v′i in terms of variables in Vi. For ex-
ample, (increase v (+ w x)) becomes: v′i = vi +
wi + xi.

Following PDDL2.1 and PDDL+ semantics, continuous
change always occurs within a state, progressing up the
time dimension as shown in figure 2. Therefore, continuous
change within a state can be represented using constraints that
dictate the relationships between variables V ′i and Vi+1. The
LP is constructed by iterating through the steps of the plan,
tracking the accumulated rate of continuous change, δvi, on
each variable v at each step i:

• Initially, for each variable v, δv0 = 0: no continuous
change is active.

• If step i is the start of an action that changes v with rate
m, δvi+1 = δvi + m.

• If step i is the end of an action that changes v with rate
m, δvi+1 = δvi − m.

• Otherwise, δvi+1 = δvi.

The values of each vi+1 ∈ Vi+1 can then be written as:

vi+1 = v′i + δvi+1.(stepi+1 − stepi) (1)

The resulting LP encodes the changes occurring to numeric
values during plan execution, along with the conditions spec-
ified over them both at time points and as invariants. By set-
ting the objective function to minimise the timestamp variable
of the final step, attempting to solve the LP will either sched-
ule the plan or discover that it is invalid.

The LP for the four step generator plan contains the vari-
ables and constraints shown in Table 1. The corresponding
sequence of state transitions, coupled with the temporal struc-
ture and the timing of the variable values, is shown in figure 3.
The constraint that v > 0 is added to all relevant points during
generate and forces fill start to occur sufficiently early.
The constraint that v ≤ 90 forces fill start to occur suffi-
ciently late. The solution assignments to step0 and step1 then
give the timestamps of generate start and fill start

and hence a schedule for the plan.

5.2 Using an LP to Determine State Validity

We have so far considered the scheduling of a plan containing
actions with linear continuous effects. Search for a plan poses
an interesting challenge. In a state reached after the execution

of some actions, the values of numeric state variables depend
on how much time elapses before the next action is applied.
For example, once the generator is running, there is no fixed
value for the level of fuel in the tank. In effect, unlike the
discrete case, the numeric state variables no longer hold fixed
values. The significance of this becomes clear when consider-
ing which actions to apply to expand a state. In CRIKEY3, nu-
meric and propositional facts are known, and this information
is used to determine whether actions are logically applicable.
The STN is used to determine whether the action is also tem-
porally applicable. With the scheduling now being performed
using an LP, considering both time and numbers, aspects of
numeric applicability are not fully known until attempting to
schedule the plan. We can safely assume propositional appli-
cability, but the scheduler now determines numeric–temporal
applicability. This creates a problem because the test for nu-
meric applicability is delayed until the the LP is checked.
Many more actions appear applicable when logical precon-
ditions are tested than will survive the (relatively expensive)
numeric–temporal applicability test.

To solve this problem, we extend the state definition used
in CRIKEY3 to record an upper and lower bound for each
numeric variable in

⋃
i(Vi ∪V ′i). To determine these bounds,

we extend the formulation of the LP by the addition of a new
collection of variables and constraints.

In the current state, which follows the application of the
action at stepi, we define a set of variables Vnow and a times-
tamp stepnow. This timestamp represents the time in the cur-
rent state and will become the time at which the action (if
any) is applied at stepi+1. Vnow is defined in terms of V ′i
according to Equation 1 and stepnow ≥ stepi + ε. For each
action that has started but not yet finished, a maximum du-
ration constraint is added between the start of the action and
stepnow: the time elapsed between the start of the action and
now necessarily cannot exceed the duration of the action.

Having extended the LP to contain the now variables it can
be used to find the upper and lower bounds on each numeric
variable in the state. To achieve this, we change the objec-
tive function of the LP to maximise and minimise the values
of each of the Vnow variables in turn, in order to compute
their upper and lower bounds. For efficiency, if the value of
a variable is not continuously changing, its value can be es-
tablished by applying the numeric effects of the actions in the
plan starting at the initial state.

Reasoning about bounds on resources under the influence
of linear processes is also condidered by [Frank and Mor-
ris, 2007]. They treat the harder problem of computing these
bounds in partially ordered STNs but they do not discuss the
integration of their solution with a planner. The power of
their approach is not needed in COLIN because of the total
ordering of the start and end points of the actions.

An LP is solved at every node in the search space, so its so-
lution must be as efficient as possible. Variable bounds in the
LP can be improved by storing, in each state, a lower bound
on the timestamp of each action in the plan. When a state S is
expanded to reach a state S′ by applying an action a, the LP
scheduler is used with the objective function to minimise the
timestamp of a. Assuming the plan can indeed be scheduled,
the value of the objective function is a lower bound on the

1674

Initialstate

step
0 v 0

v=fuellevel
generateend

refuelend

refuelstart

generatestart

Generator
started

step
1 v 1

started
Refuelling

step
2 v 2

Refuelling
ended

3
step

v 3

Generator
stopped

step
now

vnow

v’

v’2

1

v’0

v’3

Figure 3: The state transitions and time dimension, showing variable values, for the generator problem

timestamp of a in S′ and in all states reachable from S′. If
these lower bounds are stored in a state, together with their as-
sociated actions, they can be used within the scheduler when
evaluating successor states.

It is also useful to exploit the fact that stepnow will become
the time of stepi+1, so that bounds on Vnow become bounds
on Vi+1 when S is expanded.

5.3 Extending the Temporal RPG Heuristic

Finally, we describe how the temporal RPG heuristic of
CRIKEY3 can be extended to provide guidance in problems
with continuous numeric effects. Modifications are made in
three places. First, since the current state no longer has fixed
values for variables subject to continuous change, we use the
bounds for the Vnow variables as bounds on metric variables
in the first layer of the temporal RPG.

The second modification concerns how the linear contin-
uous effects are encoded. In CRIKEY3 change is instanta-
neous, occurring either at the start or the end of an action. In
COLIN we make the optimistic assumption that the continu-
ous effects of an action are available as soon as the action has
started. For example, the net effect of the refill action is
to increase the fuel level by 20. In the extended TRPG the
increase occurs as a start effect of the refill action. If the
start of the action appears in the planning graph, it has this
start effect added to it. If an action has already started then
the remainder of its effect, not already accounted for in the
time that has elapsed since the action started, is used to com-
pute the upper and lower bounds for the variables it affects.

Finally, we recognise certain implicit conditions intro-
duced by continuous resource consumption and attach these
to the end points of the relevant actions. Suppose an action,
A, consumes a resource, v, during its execution and there-
fore requires v > 0 throughout. If the duration of A is d
and the rate of consumption of v is m, then by the end of
A the amount of v produced must be at least d.m − ub(v),
where ub(v) is the initial upper bound on the level of v.
This condition is added as an end precondition of A. When
an action that consumes a resource has already started, we
make the optimistic assumption that as much of its consump-
tion as possible has been satisfied before the start of the cur-
rent TRPG construction. This is implemented by adding
a constraint to the end of the consuming action, A, that
v ≥ (d − exec(A)).m − ub(v), where exec(A) is the maxi-
mum time since the start of A.

6 Evaluation

COLIN can handle two features of PDDL that extend the state-

 0.01

 0.1

 1

 10

 100

 1000

 2 4 6 8 10 12 14 16 18 20

Colin (7 solved)
Sapa (9 solved)
MIPS (6 solved)

LPG-td (20 solved)
Colin: Continuous single rover (16 solved)

Colin: Continuous multiple rovers (6 solved)

Figure 4: Time (in seconds) taken by several planners to solve
Rovers Time problems and by COLIN to solve single and mul-
tiple rovers variants of Continuous Rovers problems

of-the-art: general linear duration-dependent effects and the
continuous linear change expressed through #t. Although
other planners can solve some problems containing duration-
dependent effects they are restricted to specific cases, as dis-
cussed below. Because COLIN is based on CRIKEY3 it can
manage required concurrency, including concurrent actions
with continuous effects. This is beyond the capabilities of
other PDDL planners that are available for testing.

We first show that COLIN is competitive with other state-
of-the-art planners to show that the cost of sophisticated
temporal-numeric reasoning in COLIN is acceptable. We then
demonstrate the performance of COLIN on domains with con-
tinuous numeric change and duration-dependent effects.

We compared the performances of COLIN and CRIKEY3
on a range of temporal problems to determine the overhead
paid by COLIN. We ran both planners on a collection of
115 benchmark problems taken from Airport, Mine, Satel-
lite, Pipes and Driverlog. CRIKEY3 solved 86 problems and
COLIN solved 91, while 84 of the problems were solved by
both planners. CRIKEY3 took a total of 4424.35 seconds to
solve these 84 problems and COLIN took a total of 4857.32
seconds. At worst, this implies that COLIN pays a 10% over-
head, but closer inspection of the data reveals that most of the
overhead is paid in a small subset of the problems.

Figure 4 shows the performance of COLIN on the IPC3
Rovers Time domain and problem set, compared with other
planners that can solve these problems. In this problem set
the recharge action has a duration that is constrained by the
remaining capacity of the rover battery and its recharge rate.
During the recharge action power can also be consumed, so

1675

the effect of recharging is determined by its duration, rather
than simply by the capacity of the battery. MIPS, Sapa and
LPG-td can all solve problems in this domain even though
none of them can reason about continuous time. All of these
planners use the compressing compilation which explicitly
prevents them from reasoning about concurrent continuous
activity. LPG-td can only cope with expressions of the form
(* ?duration rate). Sapa and MIPS [Edelkamp, 2003]

can deal with cases where the time-points of interest can be
pre-computed (ie: the durations of the actions can be com-
puted from the context at the time of application) but cannot
deal with cases where the time-points must be selected from
within ranges to satisfy dynamic constraints.

The figure also shows the performance of COLIN on a mod-
ified version of the Rovers Time domain in which recharging
and discharging due to navigation are continuous effects and
an additional continuous recharge action is available whilst
the rover is navigating. We used the IPC3 problem set (the
multiple rovers curve in the figure) and a second problem set
where only a single rover is provided (the single rover curve).
We also tested COLIN on a continuous version of the IPC3
satellite domain in which satellites have a power level that is
subject to continuous change throughout the day, and opera-
tions consume power. The result is that the satellite can only
perform certain tasks at certain times and sometimes must
wait for sufficient power to be available. The satellite results
are not presented here for space reasons.

In the Airplane Landing problem the objective is to land a
collection of airplanes as close as possible to a target time,
while minimising the early and late-landing penalties that de-
crease and increase, respectively, according to linear func-
tions. Certain logical constraints must also be respected (the
runway must be cleared between planes and landings must
be scheduled before they occur). This problem uses vari-
able length durative-actions, duration-dependent effects and
requires concurrency. No other planner that we know of can
solve this problem. COLIN produces the following plan to
land 3 planes on 1 runway, given that it takes 40 time units to
clear the runway between landings.

0.000: (releaseplanes) [0.020]

0.001: (land-early kl101 main) [129.000]

0.018: (land-early kl108 main) [208.986]

0.019: (land-late kl115 main) [288.988]

0.021: (schedule kl101 main) [40.000]

129.002: (clear kl101 main) [40.000]

169.003: (schedule kl108 main) [40.000]

209.005: (clear kl108 main) [40.000]

249.006: (schedule kl115 main) [40.000]

It can be observed that the plan contains considerable par-
allel activity and, although not optimal, is of good quality.
VAL [Howey and Long, 2003] reports the plan as incurring
a penalty of 7270.22 while a good hand-built plan incurs
4940.3. A trivial plan, landing the planes in the order of their
target landing times, costs 9450.26. The details of the domain
and problem instance are available from the authors.

Our final set of experiments examine whether repeated so-
lution of an LP, to schedule a plan at each node during search,
is practical. We took the largest plan obtained in our test (142
start and end steps) and scheduled increasing length action
sequences, obtaining action timestamps and updated variable
bounds in the state reached at the end of the sequence. This

provides a measure of the overheads incurred by using the LP
during search. We also consider the case where the additional
variable bounds discussed in Section 5.2 are not used. The
data we obtained (not shown for lack of space) shows that
the LP costs increase polynomially to a maximum of 0.05
seconds while the additional variable bounds reduce the time
taken by an increasing margin (from 10% to about 20%).

7 Conclusions

Planning with mixed discrete-continuous numeric change is a
challenging problem. Previous approaches have been largely
based on an underlying temporal model that uses the com-
pressing compilation of durative actions, severely compro-
mising the range of problems that can be tackled.

We have described a new approach, built on CRIKEY3, a
temporal planner that can solve problems that require concur-
rency. We have shown how the treatment of discrete numeric
fluents in CRIKEY3 can be replaced with a more capable solu-
tion, using linear programming. This solution is sufficiently
powerful to support duration-dependent effects, both in ac-
tions with context-dependent durations and in actions with
bounded durations, and also continuous linear change within
durative actions. We have shown how the TRPG heuristic
used in CRIKEY3 can be extended to guide search in the con-
text of duration-dependent and continuous change.

References
[Coles et al., 2008] A. I. Coles, M. Fox, D. Long, and A. J. Smith. Planning with problems requiring

temporal coordination. In Proc. 23rd Nat. Conf. on AI (AAAI), 2008.

[Cushing et al., 2007] W. Cushing, S. Kambhampati, Mausam, and D. Weld. When is temporal plan-

ning really temporal planning? In Proc. Int. Joint Conf. on AI (IJCAI), pages 1852–1859, 2007.

[Dierks, 2005] H. Dierks. Finding optimal plans for domains with restricted continuous effects with

uppaal-cora. In ICAPS Workshop on Verification and Validation of Model-Based Planning and

Scheduling Systems, 2005.

[Do and Kambhampati, 2001] M. Binh Do and S. Kambhampati. Sapa: a domain-independent

heuristic metric temporal planner. In Proc. European Conf. on Planning (ECP’01), 2001.

[Edelkamp, 2003] S. Edelkamp. Taming numbers and durations in a model-checking integrated plan-

ning system. J. Art. Int. Research, 20:195–238, 2003.

[Fox and Long, 2003] M. Fox and D. Long. PDDL2.1: An Extension of PDDL for Expressing Tem-

poral Planning Domains. J. Art. Int. Research, 20:61–124, 2003.

[Fox and Long, 2006] M. Fox and D. Long. Modelling mixed discrete-continuous domains for plan-

ning. J. Art. Int. Research, 27:235–297, 2006.

[Frank and Morris, 2007] J. Frank and P.H. Morris. Bounding the resource availability of activities

with linear resource impact. In Proc. Int. Conf. on AI Planning and Scheduling, ICAPS, 2007.

[Garrido et al., 2001] A. Garrido, E. Onaindia, and F. Barber. A temporal planning system for time-

optimal planning. In Progress in AI, volume 2258 of LNCS, 2001.

[Gerevini et al., 2006] A. Gerevini, A. Saetti, and I. Serina. An approach to temporal planning and

scheduling in domains with predictable exogenous events. J. Art. Int. Research, 25:187–231, 2006.

[Hoffmann, 2003] J. Hoffmann. The Metric-FF Planning System: Translating “Ignoring Delete

Lists” to Numeric State Variables. J. Art. Int. Research, 20:291–341, 2003.

[Howey and Long, 2003] R. Howey and D. Long. VAL’s Progress: The Automatic Validation Tool

for PDDL2.1 used in the International Planning Competition. In ICAPS 2003 workshop: ‘The

Competition: Impact, Organization, Evaluation, Benchmarks’, pages 28–37, 2003.

[Léauté and Williams, 2005] T. Léauté and B.C. Williams. Coordinating Agile Systems through the

Model-based Execution of Temporal Plans. In Proc. 20th Nat. Conf. on AI (AAAI), 2005.

[Li and Williams, 2008] H. Li and B.C. Williams. Generative systems for hybrid planning based on

flow tubes. In Proc. 18th Int. Conf. on Aut. Planning and Scheduling (ICAPS), 2008.

[Long and Fox, 2003] D. Long and M. Fox. Exploiting a Graphplan Framework in Temporal Plan-

ning. In Proc. 13th Int. Conf. on Aut. Planning and Scheduling (ICAPS), pages 52–61, 2003.

[McDermott, 2003] D. McDermott. Reasoning about Autonomous Processes in an Estimated Re-

gression Planner. In Proc. 13th Int. Conf. on Aut. Planning and Scheduling (ICAPS), 2003.

[Penberthy and Weld, 1994] S. Penberthy and D. Weld. Temporal Planning with Continuous Change.

In Proc. 12th Nat. Conf. on AI (AAAI), pages 1010–1015. AAAI/MIT Press, 1994.

[Shin and Davis, 2005] Ji-Ae Shin and E. Davis. Processes and Continuous Change in a SAT-based

Planner. Artificial Intelligence, 166:194–253, 2005.

[Smith and Weld, 1999] D. E. Smith and D. S. Weld. Temporal Planning with Mutual Exclusion

Reasoning. In Proc. 16th Int. Joint Conf. on Art. Int. (IJCAI), pages 326–337, 1999.

1676

