
Cost-Optimal Planning with Landmarks

Erez Karpas and Carmel Domshlak
Faculty of Industrial Engineering & Management

Technion, Israel

Abstract
Planning landmarks are facts that must be true at
some point in every solution plan. Previous work
has very successfully exploited planning landmarks
in satisficing (non-optimal) planning. We propose a
methodology for deriving admissible heuristic esti-
mates for cost-optimal planning from a set of plan-
ning landmarks. The resulting heuristics fall into a
novel class of multi-path dependent heuristics, and
we present a simple best-first search procedure ex-
ploiting such heuristics. Our empirical evaluation
shows that this framework favorably competes with
the state-of-the-art of cost-optimal heuristic search.

1 Introduction
Landmarks for deterministic planning are (possibly logically
compound) facts that must take place at some point in ev-
ery plan for a given planning task [Porteous et al., 2001;
Porteous and Cresswell, 2002; Hoffmann et al., 2004]. For
example, if a goal in a Blocksworld task is to have block
A stacked on block B, and initially this does not hold, then
clear(B) must hold at some point for the goal to be achieved,
and thus it is a landmark for that task. Goals are trivially land-
marks, and thus on(A,B) is a landmark as well. We can also
infer that clear(B) must be achieved before stacking A on B,
establishing an ordering between these two landmarks.

The two issues with planning landmarks are how to dis-
cover them, and how to exploit them. Even for propositional
landmarks only, sound and complete discovery of all such
landmarks is known to be PSPACE-complete [Porteous et al.,
2001]. Still, many landmarks can often be efficiently discov-
ered, e.g., by a polynomial time reasoning over relaxed plan-
ning graphs [Hoffmann et al., 2004], and/or domain transition
graphs of multi-valued state variables [Richter et al., 2008].

Once discovered, landmarks can be extremely helpful in
guiding the search for a plan. In particular, Hoffmann et
al. [2004] suggest a local-search procedure that iteratively
searches for sub-plans to landmarks “needed earliest”, and
this instead of searching directly for a plan to the problem’s
goal. An empirical evaluation by the same authors has shown
a substantial speed-up compared to the otherwise identical
planner that does not use landmarks. However, the higher
greediness of this approach typically results in longer plans,

and the iterative search for subgoals may sometimes lead to
incompleteness of otherwise complete planners [Hoffmann et
al., 2004]. Recently, Richter et al. [2008] proposed a novel
way of using a set of landmarks as a pseudo-heuristic within
a satisficing heuristic search. This technique allowed both
reducing the length of the generated plans, as well as im-
proving success rate both with respect to the iterative ap-
proach of Hoffmann et al., and with respect to other state-
of-the-art satisficing planners. In particular, the LAMA plan-
ner by Richter and Westphal utilizing such a landmarks-based
heuristic search was the clear winner of the Sequential Satis-
ficing Track at the 2008 International Planning Competition.

In this work, we depart from satisficing planning, and con-
sider planning landmarks through the lens of cost-optimal
planning needs. We suggest a method for deriving admissible
estimates from a set of planning landmarks, with its instances
varying from easy to compute, to, in some sense, optimally
accurate. The resulting heuristics are what we call multi-path
dependent. We present a simple best-first search that exploits
such heuristics, and finds optimal solutions more efficiently
than standard A∗. Experimentally, we show that our heuris-
tics paired with the suggested best-first search procedure are
at the state-of-the-art of cost-optimal heuristic search plan-
ning, and also offer an unprecedented scalability of the esti-
mate’s accuracy in the size of the planning tasks.

2 Notation and Background
We consider planning in the SAS+ formalism [Bäckström
and Nebel, 1995]; a SAS+ description of a planning task
can be automatically generated from its PDDL descrip-
tion [Helmert, 2009]. A SAS+ task is given by a 5-tuple
Π = 〈V,A, s0, G, C〉. V = {v1, . . . , vn} is a set of state vari-
ables, each associated with a finite domain dom(vi), where
(assuming name uniqueness) the union of the variable do-
mains F =

⋃
i dom(vi) is the set of facts . Each complete

assignment s to V is called a state; s0 is an initial state, and
the goal G is a partial assignment to V . A is a finite set of
actions, where each action a is a pair 〈pre(a), eff(a)〉 of par-
tial assignments to V called preconditions and effects, respec-
tively. Each action a ∈ A has a non-negative cost C(a).

An action a is applicable in a state s ∈ dom(V) iff
pre(a) ⊆ s, and applying such a changes the value of each
state variable v to eff(a)[v] if eff(a)[v] is specified. The re-
sulting state is denoted by s�a�; by s�〈a1, . . . , ak〉� we denote

1728

the state obtained from sequential application of the (respec-
tively applicable) actions a1, . . . , ak starting at state s. Such
an action sequence is a plan if G ⊆ s�〈a1, . . . , ak〉�.

Let Π = 〈V,A, s0, G, C〉 be a planning task, φ be a propo-
sitional logic formula over facts F , π = 〈a1, . . . , ak〉 be an
action sequence applicable in s0, and 0 ≤ i ≤ k. Following
the terminology of Hoffmann et al., we say that φ is true at
time i in π iff s0�〈a1, . . . , ai〉� |= φ, φ is first added at time
i in π iff φ is true in π at time i, but not at any time j < i,
and φ is a landmark of Π iff in each plan for Π, it is true at
some time. In addition to knowing landmarks, it is sometimes
useful to know in which order they should be achieved on the
way to the goal. Hoffmann et al. define different types of
potentially useful orderings. In particular, landmark φ is said
to be greedy-necessarily ordered before landmark ψ iff, for
each action sequence applicable in s0, if ψ is first added in π
at time i, then φ is true in π at time i − 1.

While landmarks can be any formulas over facts, we re-
strict our attention to disjunctions of facts, and use notation
φ ⊆ F to denote “disjunction over the fact subset φ of F ”.
This restriction covers all the landmark discovery procedures
suggested in the literature. Porteous et al. show that deciding
if just a single fact is a landmark, as well as deciding an order-
ing between two fact landmarks, are PSPACE-complete prob-
lems. Therefore, practical methods for finding landmarks are
either incomplete or unsound. In what follows we assume ac-
cess to a sound such procedure; in particular, in our evaluation
we use LAMA’s sound landmark discovery procedure, intro-
duced by Richter et al. [2008]. The actual way of discover-
ing landmarks and orderings is tangential to our contribution.
Hence, in what follows we assume that a planning task Π is
simply given to us with a landmark structure 〈L, Ord〉, where
L is a set of Π’s landmarks, and Ord is a set of typed order-
ings over L, containing, in particular, the greedy-necessary
ordering over L.

3 Admissible Landmark Heuristics
Deriving heuristic estimates from landmarks has been pro-
posed by Richter et al. [2008] who estimate the goal distance
of a state s, reached via a sequence of actions π from the
initial state, by the number of landmarks L(s, π) yet to be
achieved from s onwards. Specifically, if the search starts
with the landmark structure 〈L, Ord〉, then

L(s, π) = L \ (Accepted(s, π) \ ReqAgain(s, π)) (1)

where Accepted(s, π) ⊆ L and ReqAgain(s, π) ⊆
Accepted(s, π) are the sets of accepted and required again
landmarks, respectively. A landmark is accepted if it is true
at some time along π. An accepted landmark is required
again if (i) it does not hold in s, and (ii) it is ordered greedy-
necessarily before some landmark which is not accepted.

The estimate |L(s, π)| is not a proper heuristic in the usual
sense, but rather path-dependent; it is a function of both an
evaluated state s, and a path from s0 to s. However, |L(s, π)|
can still be used like a state-dependent heuristic in best-first
search. In particular, combined with some other helpful tech-
niques, it has been successfully used by the LAMA planner at
the Sequential Satisficing Track of the IPC-2008 competition.

3.1 Action Cost Sharing by Landmarks
It is not hard to verify that the estimate |L(s, π)| is not ad-
missible. For instance, in a Blocksworld task, let L(s, π) =
{crane-empty, on(A,B)}. While |L(s, π)| = 2, it is possible
a single action stack(A,B) reaches the goal from s. However,
below we show that the gap between the estimate |L(s, π)|
and admissibility is not that hard to close.

Considering the landmarks through the actions that can
possibly achieve them, let cost(φ) be a cost assigned to each
landmark φ, and cost(a, φ) be a cost “assigned” by the action
a to φ. Suppose also that these (all non-negative) costs satisfy

∀a ∈ A :
∑

φ∈L(a|s,π)

cost(a, φ) ≤ C(a)

∀φ ∈ L(s, π) : cost(φ) ≤ min
a∈ach(φ|s,π)

cost(a, φ)
(2)

where each action subset ach(φ|s, π) ⊆ A (in particular)
contains all the actions that can possibly be used to directly
achieve landmark φ along a goal-achieving suffix of π, and,
reversely, L(a|s, π) = {φ | φ ∈ L(s, π), a ∈ ach(φ|s, π)}.
Informally, Eq. 2 enforces partitioning of each action cost
among the landmarks this action can possibly establish, and
verifies that the cost of each landmark φ is no greater than the
minimum cost assigned to φ by its possible achievers. The set
ach(φ|s, π) ⊆ A for a disjunctive landmark φ can be simply
estimated by the set of all actions achieving some element
of φ. In our evaluation we use the (initial-state dependent
and efficiently computable) set of “possible”, and its subset
of “first-time possible”, achievers of φ [Porteous and Cress-
well, 2002]. If φ �∈ Accepted(s, π), then we set ach(φ|s, π)
to the first-time possible achievers of φ, and otherwise to the
possible achievers of φ. In any event, action cost sharing is
all we need to derive from L(s, π) an admissible estimate of
the goal distance.

Proposition 1 Given a set of action-to-landmark and land-
mark costs satisfying Eq. 2, hL(s, π) = cost(L(s, π)) =∑

φ∈L(s,π) cost(φ) is an admissible estimate of the goal dis-
tance h∗(s).

The (simple) proof is omitted due to space constraints.
Proposition 1 leaves the choice of the actual action-cost par-
titioning open. The most straightforward choice here is prob-
ably uniform cost sharing in which each action partitions
its costs equally among all the landmarks it can possibly
achieve, that is, cost(a, φ) = C(a)/|L(a|s, π)|. The ad-
vantage of such a uniform cost sharing is the efficiency of
its computation. However, the induced action-cost parti-
tion can be sub-optimal. For instance, consider a planning
task with a landmark set {p1, . . . , pk, q} such that the only
possible achiever of each pi is a unit-cost action ai with
eff(ai) = {pi, q}. For 1 ≤ i ≤ k, the uniform cost sharing
assigns here cost(ai, pi) = cost(ai, q) = 0.5, which gives
cost(pi) = cost(q) = 0.5, and thus hL(s, π) = k/2 + 0.5.
In contrast, the optimal cost sharing would assign, for all
1 ≤ i ≤ k, cost(ai, pi) = 1 and cost(ai, q) = 0, imply-
ing cost(pi) = 1, cost(q) = 0, and thus hL(s, π) = k.

The good news, however, is that such an optimal cost shar-
ing can be computed in poly-time by (i) compiling Eq. 2 into

1729

strictly linear constraints by a trivial elimination of the mini-
mization, and (ii) solving a linear program induced by these
constraints and the objective max

∑
φ∈L(s,π) cost(φ). In ad-

dition, this cost sharing scheme alleviates an annoying short-
coming of ad hoc (e.g., uniform) cost sharing schemes, and
satisfies monotonicity along the inclusion relation of the land-
mark sets L(s, π). It is not hard to verify that, for any two sets
of landmarks L and L′ such that L ⊆ L′, the LP-based cost
sharing ensures cost(L′) ≥ cost(L) by the very virtue of
being optimal, and thus yields at least as informative heuris-
tic estimate with L′ as with L. This property is appealing
as it allows separating landmark discovery and landmark ex-
ploitation without any loss of accuracy, leaving the phase of
discovery with the simple principle of “more landmarks can
never hurt”. In contrast, the simple yet ad hoc uniform cost
sharing cannot guarantee such monotonicity. For instance,
the uniform cost sharing in the example above but without
landmark q yields hL(s, π) = k, while with q it results in
hL(s, π) = k/2 + 0.5.

3.2 Action Landmarks
The LP-based “admissibilization” of the landmark sets
L(s, π) is optimal, but this, of course, only when the land-
mark costs are estimated with respect to solely Eq. 2. Any
additional information about landmarks may help improv-
ing the accuracy of the estimate. One type of such informa-
tion corresponds to action landmarks [Zhu and Givan, 2004;
Vidal and Geffner, 2006]. Similarly to landmarks over facts,
an action a is an action landmark of a planning task Π iff it
is taken along every plan for Π. A sufficient and efficiently
testable condition for a being an action landmark is that a
relaxed planning task without a is not solvable.

Now, let U(s, π) be a set of pre-discovered action landmark
that were not used along the path π to the evaluated state s.
By the definition of landmarks, we know that all these ac-
tions must occur at some time after s, and thus we should
account for their cost in the heuristic estimate of (s, π). A
simple way of incorporating this information into the cost
sharing mechanism as above is what we call action land-
mark covering: First, sum up the cost of all the unused
action landmarks U(s, π), then remove from the landmark
set L(s, π) all the landmarks achievable by the actions in
U(s, π), and only then perform the regular action cost shar-
ing over the remaining landmarks. The resulting heuristic es-
timate is hLA(s, π) = cost(LU (s, π)) +

∑
a∈U(s,π) C(a),

where LU (s, π) = L(s, π) \ ⋃
a∈U(s,π) L(a|s, π), and

cost(LU (s, π)) is computed using a cost sharing as in Eq. 2.

Proposition 2 Given a planning task, a set of its landmarks,
and a set of its action landmarks, for any state s, and any
path π to s, we have hLA(s, π) being an admissible estimate
of the goal distance h∗(s), dominating hL(s, π) under any
admissible cost sharing scheme as in Eq. 2.

The intuition behind the (only technically tedious) proof is
that Eq. 2 implies C(a) ≥ cost(L(a|s, π)), and thus enforcing
a to be the only achiever of L(a|s, π) can only increase the
overall estimate. The admissibility follows from a being an
action landmark.

Action landmark covering of hLA(s, π) is especially help-
ful when practical considerations of reducing per-search-node
computations force us to give up on the more accurate yet
relatively costly LP-based cost sharing, and settle for a low
cost, ad hoc cost sharing scheme such as the uniform one.
In such cases, the main benefit of action landmark covering
may actually happen to be indirect. For instance, consider
our running example with a landmark set {p1, . . . , pk, q} such
that the only achiever of each pi is a unit-cost action ai with
eff(ai) = {pi, q}. In Section 3.1 we show that the uni-
form cost sharing results in hL(s, π) = k/2 + 0.5. How-
ever, if an action ai is known to be an action landmark,
then the cost sharing for hLA(s, π) is performed only over
LU (s, π) = {p1, . . . , pi−1, pi+1, . . . , pk}, providing us with
cost(LU (s, π)) = k − 1, and thus hLA(s, π) = k. In other
words, the action landmark covering may contribute not only
via full accounting for the action landmark costs, but also via
indirect elimination of some “action cost eroders” such as the
landmark q in our example. This example actually is not just
schematic as, e.g., a very much similar picture occurs with
the crane-empty landmark in Blocksworld tasks. Later we
empirically illustrate that the impact of action landmark cov-
ering appears substantial in many domains.

4 From Path to Multi-Path Dependence
Let us now return to the definition of the path-dependent set
L(s, π) in Eq. 1. Both LAMA’s heuristic |L(s, π)|, and the
admissible heuristics hL and hLA, exploit information pro-
vided by the path π to better estimate the goal distance from
s. Suppose now that we are given a set of paths from s0 to
s; such a set of paths can in particular be discovered anyway
by any systematic, forward-search procedure. Proposition 3
shows that such a set of paths can be much more informative
than any of its individual components.

Proposition 3 Let Π be a planning task with a landmark set
L, s be a state of Π, P be a set of paths from s0 to s, and πg

be a goal achieving path from s. For each path π ∈ P:

1. πg achieves all landmarks in L \ Accepted(s, π).

2. πg applies all actions in U(π, s).

The proof is straightforward: Assume a landmark φ is
achieved by a path π ∈ P but not by a path π′ ∈ P . The
latter implies that all the extensions of π′ should still achieve
φ, and the extensions of π′ are exactly the extensions of π.
The same argument applies with unused action landmarks.

Proposition 3 immediately leads to multi-path dependent
versions of hL and hLA. Given a set of landmarks L, and a
set of paths P from s0 to s, let

U(s,P) =
⋃

π∈P
U(s, π)

L(s,P) = L \ (Accepted(s,P) \ ReqAgain(s,P))
(3)

where Accepted(s,P) =
⋂

π∈P Accepted(s, π), and
ReqAgain(s,P) ⊆ Accepted(s,P) is specified as before by
s and the greedy-necessary orderings over L. Given that,

1730

the multi-path dependent versions of hL and hLA straight-
forwardly reflect their path-dependent counterparts as

hL(s,P) = cost(L(s,P))

hLA(s,P) = cost(LU (s,P)) +
∑

a∈U(s,P)

C(a) (4)

The improvement in accuracy in switching to multi-path land-
mark heuristics can be substantial. For instance, if we have
access to two paths to s, each suggesting that half of the
landmarks have been achieved, yet they entirely disagree on
the identity of the achieved landmarks, then the estimate of
the (still admissible) multi-path dependent heuristic might be
twice as high as this of the path-dependent heuristic.

Finally, utilizing multi-path dependent estimates for opti-
mal search requires adapting the standard A∗ search proce-
dure. In fact, a slight adaptation of A∗ is desirable even in
case of such path-dependent heuristics. Designed for state-
dependent estimates, A∗ computes h(s) for each state s only
when s is first generated. This will still guarantee optimality
with path-dependent estimates as well, yet, if π and π′ are the
current and a new discovered paths from s0 to s, respectively,
then we may have h(s, π′) > h(s, π). That is, a new discov-
ered path may better inform us about the goal distance from
s. We can slightly modify A∗ to compute the heuristic value
each time a new path to a state is discovered, and utilize the
highest estimate discovered so far. This, of course, preserves
search admissibility, and potentially reduces the number of
expanded nodes. Note that this does not contradict “optimal
efficiency” of the basic A∗ as the latter holds only for mono-
tonic, state-dependent heuristics [Dechter and Pearl, 1985].

The modification of A∗ for multi-path dependent heuris-
tics is very much similar in spirit. Each time a new path to
state s is discovered, it is stored in the list of such paths P(s),
and h(s,P(s)) is evaluated. Of course, storing all paths to
s is generally infeasible, and the algorithm is usable only in
cases where the relevant information carried by P(s) can be
captured and stored compactly. In fact, the adaptation of A∗

to path-dependent heuristics as above constitutes such a spe-
cial case of all the relevant information of a set of paths be-
ing the maximal value of the heuristic estimates induced by
them individually. Nicely, the multi-path dependent landmark
heuristics hL and hLA also constitute a usable special case as
above. In our variant of A∗, referred later as LM-A∗, we as-
sociate each state s with the landmark sets L(s,P(s)) and
U(s,P(s)) as in Eq. 3. When a new path π to s is discovered
(and extends P(s)), the respective sets are incrementally up-
dated to L(s,P(s)∪{π}) and U(s,P(s)∪{π}) by exploiting
the monotonicity of the union and intersection set operators.

5 Experimental Evaluation
Encouraging results obtained with landmark-based heuristics
in satisficing planning do not necessarily imply that optimal
search with landmark-based heuristics will also work well
in practice. To evaluate the practical usefulness of the con-
structs presented above, we implemented both our admissible
heuristics and the LM-A∗ search procedure on the infrastruc-
ture of the Fast Downward planner [Helmert, 2006], and used
the landmark discovery of LAMA [Richter et al., 2008]. We

conducted an empirical study on a wide sample of planning
domains from the international planning competitions 1998-
2006. All experiments were run on 3GHz Intel E8400 CPU;
the time and memory limits were 30 minutes and 1.5 GB. The
reported times do not include the PDDL to SAS+ translation
as it is common to all planners, and is tangential to the issues
considered in our study.

There are three issues on the agenda of our study. First,
we evaluate the marginal contributions of both action land-
mark covering and using LM-A∗, that is, hLA vs. hL, and
LM-A∗ vs. A∗. Here we focus on the hLA heuristic based on
the uniform cost sharing. While it is potentially less infor-
mative than hLA under the LP-based cost sharing, our imple-
mentation of the latter was too costly to be applied at every
search node under the time limit of 30 minutes. Moreover,
our selective tests indicated that, while LP-based cost sharing
substantially improves the accuracy of hL, its contribution to
action-landmark-covering hLA is typically insignificant. (In
Section 3.2 we discuss the key reason for that.)

The left part of Table 1 (up to and including the shaded col-
umn LM-A∗+hLA) compares LM-A∗ using hLA with both A∗

using the same heuristic, as well as LM-A∗ using hL. Table 1
depicts the results obtained over BLOCKSWORLD, LOGISTICS,
DEPOTS, and SATELLITE, which represent well the picture ob-
tained across all the considered domains. The table lists only
tasks that have been solved by one of the planners. Empty
entries in the table denote tasks that were not solved by the
respective technique. First, note that LM-A∗ with hLA outper-
forms the standard A∗ using the same heuristic both quantita-
tively and qualitatively, solving 15%, 43%, and 53% more
tasks in BLOCKSWORLD, LOGISTICS, and DEPOTS, respec-
tively. Only in SATELLITE LM-A∗ does not depart far from A∗.
The performance gain from switching within LM-A∗ from hL

to the more accurate hLA was also non-negligible: With hLA

we were able to solve two more tasks than with hL, with
savings in time and the number of expanded nodes per task
reaching 70%. Note that there was no difference between hL

and hLA in LOGISTICS, but that is not surprising because the
SAS+ representation of LOGISTICS is unary-effect, and action
landmark covering cannot help in such domains with unit-
cost actions.

Next we check whether a heuristic planner based on LM-A∗

with hLA is competitive with the state of the art of forward-
search cost-optimal planning. To answer this question, we
perform a comparison to two baseline approaches, namely
blind search (A∗ with a heuristic function which is 0 for goal
states and 1 otherwise) and A∗ with the hmax heuristic [Bonet
and Geffner, 2001]. We also compare to A∗ with “flexible
abstraction” (FA) heuristics of Helmert, Haslum, and Hoff-
mann [2007]. We use FA under the linear abstraction strategy
suggested by the same authors, and under two fixed bounds
on the size of the abstraction, 104 and 105. From our literature
survey, FA appears to be one of the best-performing forward-
search planners. To allow a fairly unbiased comparison, all
the heuristics were implemented within the same planning
system, and our LM-A∗ was implemented on top of the same
A∗ implementation.

The right part of Table 1 (from and including the shaded
column LM-A∗ + hLA) compares LM-A∗ with hLA with the

1731

A∗ + hLA LM-A∗ + hL LM-A∗ + hLA FA-104 FA-105 hmax blind
task C∗ time nodes time nodes time nodes time nodes time nodes time nodes time nodes

BLOCKSWORLD
4-0 6 0 15 0 15 0 15 0.03 7 0.03 7 0 25 0.01 95
4-1 10 0.01 13 0 15 0 13 0.04 11 0.03 11 0 23 0.01 66
4-2 6 0.01 7 0.01 8 0 7 0.04 7 0.03 7 0.01 18 0 61
5-0 12 0 31 0.01 41 0 31 0.3 13 0.97 13 0.01 145 0 467
5-1 10 0.01 35 0 45 0 31 0.3 11 0.97 11 0.01 135 0.01 561
5-2 16 0.02 87 0.01 158 0.01 87 0.3 17 0.97 17 0.01 297 0 798
6-0 12 0.01 22 0.01 29 0 22 0.84 13 8.03 13 0.01 276 0.01 1826
6-1 10 0.02 39 0.01 44 0.01 39 0.86 11 8.12 11 0.01 755 0.02 4911
6-2 20 0.15 1146 0.12 943 0.21 933 0.97 733 8.66 68 0.04 2556 0.02 6409
7-0 20 0.06 249 0.06 292 0.08 240 1.92 579 23.04 144 0.11 5943 0.14 36333
7-1 22 1.68 10952 2.09 12224 2.44 9032 1.62 9977 19.47 1887 0.45 33194 0.21 63376
7-2 20 0.38 1941 0.45 2452 0.41 1453 1.56 1855 19.06 611 0.29 18293 0.19 55218
8-0 18 0.22 894 0.41 1762 0.29 827 3.93 5570 38.48 692 2 94671 2.18 519107
8-1 20 1.84 8283 2.63 10810 1.92 5647 4.17 45706 34.82 11880 3.83 199901 2.53 636138
8-2 16 0.03 95 0.12 504 0.08 219 3.55 293 33.56 63 1.28 52717 1.89 434664
9-0 30 175.36 469633 132.87 260857 14.38 1232639 66.73 971416 81.21 3840589 36.58 7983389
9-1 28 6.64 18609 8 22337 7.93 14852 9.41 94991 61.27 58867 30.89 1200345 29.49 5922420
9-2 26 1.63 4712 4.87 12572 3.4 6581 11.19 161653 103.8 20108 31.33 1211463 29.93 5984400
10-0 34 266.2 32869439
10-1 32 919.68 1393515 201.66 23517042 275.71 12063661
10-2 34 271.61 33331658 288.23 18457528
11-0 32 195.71 16219694 138.77 7077045
12-1 34 612.02 901023 250.78 272199

DEPOTS
1 10 0.01 33 0.01 31 0.02 31 0.01 11 0.01 11 0.01 136 0 329
2 15 0.13 668 0.2 790 0.21 614 2.83 875 1.15 16 0.18 3771 0.11 15404
3 27 193.32 810127 121.36 169765 52.43 72979 24.74 348300 235.01 239255 96.47 1204646 27.16 2930398
4 30 1061.04 1041194 50.08 1284029 458.39 1219026
7 21 213.66 890532 69.15 86052 29.72 39348 39.12 212544 163.48 1331701 71.79 6501100
10 24 400.99 447195 193.32 199412 156.91 3240433
13 25 45.07 42808 41.66 27977 122.03 1427824 499.05 1183545

LOGISTICS
4-0 20 0.09 258 0.01 76 0.04 76 0.04 21 0.05 21 0.04 4884 0.06 11246
4-1 19 0.18 1238 0.02 195 0.08 195 0.04 20 0.05 20 0.03 4185 0.05 9249
4-2 15 0.02 111 0.01 53 0.01 53 0.04 16 0.05 16 0.01 1205 0.03 4955
5-0 27 13.19 123081 0.13 936 0.64 936 0.1 28 0.37 28 0.58 74694 0.6 109525
5-1 17 0.16 1012 0.02 181 0.08 181 0.1 18 0.39 18 0.06 6199 0.12 22307
5-2 8 0 9 0.01 9 0.01 9 0.1 9 0.38 9 0.01 280 0 1031
6-0 25 35.49 244606 0.14 934 0.67 934 0.18 26 1.22 26 1.88 202229 3.27 490207
6-1 14 0.02 35 0.01 35 0.02 35 0.19 15 1.25 15 0.04 3604 0.16 24881
6-2 25 34.13 305202 0.07 516 0.37 516 0.19 26 1.24 26 1.89 200012 3.13 476661
6-9 24 33.28 337194 0.07 537 0.31 537 0.18 25 1.22 25 1.27 133521 2.79 422557
7-0 36 2.25 7751 9.84 7751 0.63 525 4.78 37
7-1 44 57.09 155289 220.08 155289 8.94 666324 4.91 49
8-0 31 0.86 3269 3.73 3269 0.92 1042 6.8 32
8-1 44 17.29 43665 71.79 43665 1.14 16708 7.18 45
9-0 36 5.41 14090 21.16 14090 1.53 20950 9.62 37
9-1 30 0.24 707 1.05 707 1.23 31 9.33 31
10-0 45 121.2 194038 416.06 194038 29.92 668834
10-1 42 106.7 166190 356.38 166190 43.57 1456770
12-0 42 87.06 117387 290.77 117387 43.44 775996
12-1 68 88.68 2222340

SATELLITE
1 9 0 10 0 10 0.01 10 0.01 10 0.01 10 0.01 59 0 89
2 13 0 14 0.01 14 0 14 0.02 14 0.01 14 0.01 940 0.01 1728
3 11 0.04 494 0.09 494 0.09 494 0.36 12 0.77 12 0.11 6822 0.16 15185
4 17 0.23 710 0.32 710 0.47 710 0.85 6780 4.35 18 3.34 180815 4.56 344380
5 15 3.91 12013 3.36 12013 7.78 12013 7.62 82393 74.63 134288 600.31 13973721
6 20 10.06 24254 18.14 24200 25.19 24200 73.13 2534223 22.95 124001 368.23 10751017 641.65 25427494
7 21 173.91 157984 291.69 157984 290.03 157984

Table 1: Runtimes of optimal planners across the test domains. Column task denotes problem instance, column C∗ denotes
optimal solution length. Other columns denote run time and number of expanded (nodes) of different cost-optimal heuristics
and search procedures, including the (shaded) combination of LM-A∗ with hLA heuristic, the focus of our evaluation.

four referent planners over the same four domains as above.
It is clear from the table that hLA substantially outperforms
both blind search and hmax, and it is generally competitive
with both FA-104 and FA-105. For a macro picture, Table 2
summarizes our full experimental results for (LM-A∗ with)
hLA and (A∗ with) FA-104 over tasks from 18 domains solved
by at least one of these two planners. The summary is in
terms of the number of solved tasks, as well as the averaged
runtime and number of expanded nodes. On 7 domains hLA

solved more tasks than FA-104, on 5 domains it was the other
way around, and on 6 domains they solved exactly the same
instances. The aggregation of the results in the last line of the
table also shows that hLA solved slightly more tasks in to-

tal, and (on average) expanded fewer nodes and required less
time on tasks solved by both planners. Of course, any em-
pirical results on this or another concrete set of benchmarks
should be taken very carefully, without over-interpretation.
However, we can certainly observe that our landmarks-based
approach favorably competes with the current state of the art
for cost-optimal planning.

In the third part of our study we check the promise of hLA

beyond the currently solvable tasks. Many possible develop-
ments may in the future push the envelope of “what is fea-
sible” in optimal planning, and some of these developments
(in, e.g., reducing the amount of symmetry in optimal search)
will be tangential to the accuracy of the heuristics in use. In

1732

domain N+/N1 solved nodes time
hLA FA hLA FA hLA FA

airport 18/24 24 18 1395 528152 8 123
blocks 19/23 20 22 89179 1319533 56 13
depots 7/7 7 7 197365 930573 196 56
driverlog 13/14 14 13 109611 765930 53 14
freecell 5/7 7 5 8487 1406793 10 232
grid 2/2 2 2 15313 1705511 12 29
gripper 6/8 6 8 403888 406411 71 3
logistics 16/19 19 16 14265 44111 20 0
mystery 13/13 13 13 95800 26684 17 25
pathways 4/4 4 4 43550 31051 5 8
psr 48/50 48 50 14541 3267 3 0
pw-no-tank 16/21 16 21 122455 295857 48 20
pw-tank 9/13 9 13 127383 85165 211 142
rovers 6/6 6 6 796370 652834 122 10
satellite 6/7 7 6 6287 437238 5 13
schedule-strips 23/50 49 24 3932 152 15 713
tpp 6/6 6 6 1008242 157840 108 2
trucks 6/7 7 6 249518 4586761 198 80
zeno-travel 9/11 9 11 6658 36030 9 1

total 232/292 273 251 107701 457336 44 101

Table 2: Comparison of hLA and FA-104 across domains.
N+ and N1 denote the number of tasks within each domain
solved by both and any of the two planners, respectively.
solved denotes the number of tasks solved by the planner,
nodes and time denote average number of expanded nodes
and time averaged over tasks solved by both planners. The
last line summarizes the respective parameters over all the do-
mains, with nodes and time averages being over all the tasks.

Figure 1 we compare the heuristic values provided by hLA

and FA-104 to the initial states of all tasks in BLOCKSWORLD,
LOGISTICS, DEPOTS, and SATELLITE. (For many of these tasks,
the cost of the optimal solution is currently not even known.)
It is not hard to see from the plots that FA-104 is more ac-
curate on the initial states with smaller goal distances; these
typically correspond to smaller tasks, and for these, the ab-
straction of FA-104 usually induces perfect or close to perfect
estimates. However, as the goal distance grows, hLA quickly
takes over, and substantially dominates FA-104 on the larger
tasks. Hence, the scalability of hLA’s accuracy appears to be
excellent, at least in comparison to the (in itself, very accu-
rate) flexible-abstraction heuristic of FA-104.

Acknowledgments
The work of both authors is partly supported by the Israel Sci-
ence Foundation (ISF) grant 890015 and C. Wellner Research
Fund. The authors wish to thank Silvia Richter for her assis-
tance with LAMA, and Shaul Markovitch and Malte Helmert
for many useful discussions.

References
[Bäckström and Nebel, 1995] C. Bäckström and B. Nebel.

Complexity results for SAS+ planning. Comp. Intell.,
11(4):625–655, 1995.

[Bonet and Geffner, 2001] B. Bonet and H. Geffner. Plan-
ning as heuristic search. AIJ, 129(1–2):5–33, 2001.

[Dechter and Pearl, 1985] Rina Dechter and Judea Pearl.
Generalized best-first search strategies and the optimality
of A∗. J. ACM, 32(3):505–536, 1985.

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35

F
A

(s
0)

hLA(s0)

Blocks

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35

F
A

(s
0)

hLA(s0)

Blocks

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 5 10 15 20 25 30 35 40 45
hLA(s0)

Depots

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 5 10 15 20 25 30 35 40 45
hLA(s0)

Depots

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70

F
A

(s
0)

Logistics

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70

F
A

(s
0)

Logistics

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

Satellite

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

Satellite

Figure 1: Estimates of hLA and FA-104 on the initial states of
all tasks from four domains. Each point represents the initial
state s0 of a single task, with its x and y coordinates denoting
the estimates provided to s0 by hLA and FA-104, respectively.

[Helmert et al., 2007] M. Helmert, P. Haslum, and J. Hoff-
mann. Flexible abstraction heuristics for optimal sequen-
tial planning. In ICAPS, pages 176–183, 2007.

[Helmert, 2006] M. Helmert. The Fast Downward planning
system. JAIR, 26:191–246, 2006.

[Helmert, 2009] Malte Helmert. Concise finite-domain rep-
resentations for pddl planning tasks. AIJ, 173(5-6):503–
535, 2009.

[Hoffmann et al., 2004] J. Hoffmann, J. Porteous, and L. Se-
bastia. Ordered landmarks in planning. JAIR, 22:215–278,
2004.

[Porteous and Cresswell, 2002] J. Porteous and S. Cress-
well. Extending landmarks analysis to reason about re-
sources and repetition. In PLANSIG, 2002.

[Porteous et al., 2001] J. Porteous, L. Sebastia, and J. Hoff-
mann. On the extraction, ordering, and usage of landmarks
in planning. In ECP, 2001.

[Richter et al., 2008] S. Richter, M. Helmert, and M. West-
phal. Landmarks revisited. In AAAI, pages 975–982, 2008.

[Vidal and Geffner, 2006] V. Vidal and H. Geffner. Branch-
ing and pruning: An optimal temporal POCL planner
based on constraint programming. AIJ, 170(3):298–335,
2006.

[Zhu and Givan, 2004] L. Zhu and R. Givan. Heuristic plan-
ning via roadmap deduction. In IPC-4, pages 64–66, 2004.

1733

