Greedy Algorithms for Sequential Sensing Decisions

Hannaneh Hajishirzi

Afsaneh Shirazi

Jaesik Choi Eyal Amir

Computer Science Department
University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA
{hajishir, hajiamin, jaesik, eyal} @illinois.edu

Abstract

In many real-world situations we are charged with
detecting change as soon as possible. Important
examples include detecting medical conditions, de-
tecting security breaches, and updating caches of
distributed databases. In those situations, sensing
can be expensive, but it is also important to detect
change in a timely manner.

In this paper we present tractable greedy algorithms
and prove that they solve this decision problem ei-
ther optimally or approximate the optimal solution
in many cases. Our problem model is a POMDP
that includes a cost for sensing, a cost for delayed
detection, a reward for successful detection, and
no-cost partial observations. Making optimal de-
cisions is difficult in general. We show that our
tractable greedy approach finds optimal policies for
sensing both a single variable and multiple corre-
lated variables. Further, we provide approxima-
tions for the optimal solution to multiple hidden or
observed variables per step. Our algorithms outper-
form previous algorithms in experiments over sim-
ulated data and live Wikipedia WWW pages.

1 Introduction

Humans and software systems may need to detect change as
soon as it occurs. Often timely detection is critical in dy-
namic, uncertain environments because it enables focused
and timely action. Unfortunately, many times information
comes with a cost, so sensing (testing, checking, or retrieving
information) at every step is not feasible. They must decide
what information to sense and when. An example that mo-
tivates this research is the problem of detecting the changes
of web pages. For example, some pages include information
about a group of companies. This information may affect the
stock value of the corresponding companies.

In this paper we formalize the problem of deciding when
and what to sense and provide efficient greedy solutions for
it. We assume that we are given a dynamic model formu-
lated as a Dynamic Bayesian Network (DBN) [Jensen et al.,
1990]or an HMM [Rabiner, 1989], and also a cost model for
sensing variables. We show that this problem can be mod-
eled with Partially Observable Markov Decision Processes

1908

(POMDPs) [Littman, 1996]. POMDPs model partially ob-
servable stochastic systems, and include cost and rewards for
actions and states. Unfortunately, finding optimal policies
in POMDPs is difficult [Kaelbling ef al., 1998]. Exact al-
gorithms for solving POMDPs take exponential time in the
number of time steps considered by the system [Kearns et
al., 2000; Littman, 1996; Even-Dar et al., 2005], or super-
exponential time in the size of the space [Jaakkola er al.,
1994]. Approximate algorithms [Murphy, 2000] are also usu-
ally intractable for large state spaces (but see point-based al-
gorithms [Spaan and Vlassis, 2005]). In this paper we provide
constant time (after some offline precomputation) greedy al-
gorithms to find the optimal policy for single variable and an
approximation to the optimal policy for multiple hidden or
observable variables per step.

The main contribution of this paper is to show that our de-
cision problem is solvable by a greedy approach in important
cases. We provide tractable algorithms (that find optimal or
near-optimal solutions to such POMDPs) and an empirical
evaluation of their speed and accuracy. First (Section 3), we
present tractable optimal algorithms for the single-variable
sensing problem. Second (Section 4), we generalize this to
having multiple hidden or observed variables in each state.
Finally (Section 5), we generalize these scenarios to mul-
tiple sensing-decision variables (e.g., this includes factorial
HMMSs in which we can sense part of the hidden state for a
cost). There, we show that a more general greedy approach is
optimal among policy chains which are a subclass of all poli-
cies. We then show our algorithm has a better performance
than two leading POMDP algorithms for both simulated and
real world data (Wikipedia WWW pages).

Variants of our problem were discussed before. In the
WWW literature, efficient scheduling for search engine
crawlers has received considerable attention (e.g. [Cho, 2001;
Pandey er al., 2004; Cho and Garcia-Molina, 2003]). They
assume that web page changes are independent, and do not
take observations into account.

In monitoring anytime algorithms [Hansen and Zilberstein,
2001; Finkelstein and Markovitch, 2001], the goal is to deter-
mine an optimal sensing schedule that minimizes execution
time and there is a cost associated with the time it takes to in-
terrupt the algorithm and check whether the solution quality
is acceptable. Again, these approaches do not allow addi-
tional observations, and it is assumed that only one variable

is monitored at all times.

Finally, the multi-armed bandit problem [Robbins, 1952;
Auer et al., 2000] is used to model exploration decisions in
stateless domains. There, an agent tries to maximize its over-
all reward by playing one of n different slot machines at ev-
ery time step, with the initial payoffs unknown. The prob-
lem is learning the payoffs vs. trying to maximize rewards
for machines where the payoffs have been estimated already.
In our setting, we assume that dynamics (reward and transi-
tion model) are known and focus on devising optimal sensing
schedules in a partially observed dynamic domain.

2 Sequential Sensing Decisions

In this section, we model a general sensing decision problem
using a POMDP. Details of the formulation for specific sce-
narios are given in later sections. In general, we assume a
discrete-time environment which evolves stochastically with
time. At each time step ¢ the agent decides to sense (or not)
a sensing object and receives a reward that depends on the
agent’s action and the current state of the world. We model
this decision problem with a POMDP because it allows mod-
eling the effect of sensing on knowledge and the effect of
knowledge on decisions. We use this specialized POMDP
because it emphasizes our problem’s special structure and
makes change explicit. Later, we take advantage of the fea-
tures of this POMDP and introduce efficient algorithms to
find optimal solutions. Thus, part of our contribution here is
the POMDP structure introduced for this type of problems.

In general, every POMDP is a tuple M = (X, A, T, O, R),
which includes a state space, X, a set of actions, A, a prob-
abilistic transition model, 7', an observation model, O, and
a reward function, R. At time step ¢ — 1, the agent exe-
cutes a chosen action, a’~!, and goes from state s*~! to s
according to the transition model. Then, it receives an ob-
servation o and a reward R(s'~1, a’~!). The agent cannot
observe s' directly, but can maintain a belief state b*(s') =
P(sto%t at*=1 bY), where b is the belief state at time 0.
The agent’s goal is to devise a policy that maximizes the dis-
counted sum of expected rewards.

We define POMDP components that model our problem.
The environment of interest is represented by a state space X
which is the union of a set of random variables. The vari-
ables defining the state space are factored into four disjoint
sets Xy, X,, X, where

e Xy, is a set of completely hidden variables whose true
values can never be observed by the agent. They can
represent some properties of the system.

e X, is a set of completely observable variables whose
true values are always observed by the agent.

e X is a set of sensing variables whose true value can be
observed depending on the action. Every sensing vari-
able C' is boolean, representing whether or not a certain
property changed since the last time we observed it.

The full set of possible deterministic actions is A = A, U
{idle} in which A, includes all sensing actions. Action idle
does nothing. Each a; € A; is associated with a set of vari-
ables X; C X, that are sensed by a; (observed in the result
of performing a;).

The state of the environment evolves by a stationary
Markovian transition model P(X!|X!~1 a‘~1). The obser-
vation model is deterministic, i.e., for action idle the agent
always observes X,, and for sensing action a; it observes
X; UXo,.

The reward function, R, enforces our goal to detect change
as quickly as possible with a minimal number of costly sens-
ing actions. If the agent executes a sensing action, it receives
a positive reward when change has occurred and a negative
reward otherwise. The agent also receives a penalty (negative
reward) for staying idle while the change has occurred.

Usually, a policy is represented indirectly in terms of a
value function V (b) which represents how desirable it is for
the agent to be in a particular belief state. The optimal action
in belief state b(s) is then chosen as the one that maximizes
V' (b) which is the sum of immediate rewards plus expected
future rewards.

Given this formulation, we can solve the sensing deci-
sion problem using general POMDP algorithms, e.g., [Cas-
sandra et al., 1994; Spaan and Vlassis, 2005]. Unfortu-
nately, POMDP algorithms are intractable for environments
larger than a few dozen states and a large time horizon
(see [Littman, 1996] for a summary of complexity results,
and [Murphy, 2000] for an overview of approximate solu-
tions). Recently, point-based methods (e.g., [Spaan and Vlas-
sis, 20051, [Poupart, 2005]) provide good approximation for
POMDPs optimal policy using sampling. In this paper, we
look for efficient algorithms that take advantage of the special
structure of our problem. In what follows, we present greedy
algorithms to find either the optimal policy or an approxima-
tion to the optimal policy and list some cases for which these
greedy algorithms work.

3 Sequential Decisions for a Single Object

In this section we provide an efficient algorithm for detect-
ing change of a single sensing object. Our algorithm uses a
greedy method to determine whether to sense the object or not
at each time step. Every sensing action on the sensing object
determines whether a change occurs in the value of the ob-
ject. We prove that the greedy algorithm provides an optimal
policy in our POMDP.

The POMDP model constructed for a single sensing object
has two variables in its state space X. (1) A binary variable
G € X, (completely hidden variable) whose value indicates
whether a change has occurred at that time or not. (2) A bi-
nary sensing variable C' € X (sensing with a cost) whose
value indicates whether a change has occurred since the last
sensing action. The graphical structure of our POMDP model
for a single variable is represented with a Dynamic Decision
Network (DDN) [Russell and Norvig, 2003] in Figure 1, left.
The probability of change of the sensing object is modeled
with P(G?). G is independent and identically distributed for
t > 0. The value of C'is a deterministic function of the value
of GG and the set of actions performed up to time ¢ (the value
of C becomes 1 the first time the change occurs and it be-
comes 0 when we sense the object). P(C?) is calculated as

P(C" = v|a"™! = sense,C*™ ' =v/,G' =v) =1
follows: P(C* =1|a’* =idle,C*"™' =1,G"' =v) =1
P(C* =v|a"™! =idle,C"™' =0,G" =v) =1

1909

where, v and v’ are either O or 1.

The reward function R(s, a) of executing action a in state
s = (C = ¢,G = g) is defined as follows. Note that r > 0
represents the reward of sensing the change, e < 0 repre-
sents the cost of sensing while there is no change and p < 0
represents the penalty of sensing late while there is a change.

r c¢=1,a = sense;
_ _ B e c=0,a=sense;
R({C=cG=9)a)=4 | (-1 a=ide M
0 c=0,a=1idle.

We calculate the value function of a belief state b by using
the Bellman equation in an infinite horizon with discounted
rewards. Note that a belief state b(C' = ¢, G = g) is defined
as the probability of being in state s = (C' = ¢, G = g).

b) = max <Z b(s)R(s,a) + v Z T(b,a, b')V(b')) ()

seS b

where 0 < v < 1 is the discount factor and T'(b, a, b’) is the
transition between belief states after executing action a. In
this paper, V' always refers to the optimal value function.

We use an equivalent formulation for the value function
suitable to our problem. We unwind the recursive term of
Formula (2) until the first action sense is executed, i.e., we
compute the rewards iteratively up to the first action sense
(time x). For simplicity of representation, we define an
auxiliary variable ch, where P(ch = t + z) = P(C' =
0,...,C"*=1 =, C"* = 1) (i.e. ch denotes the time at
which C' switches from O to 1). Also, we define P, of any
belief state b and any event F as: Py(E) =) P(E|s)b(s).

Proposition 3.1 The value function is as follows:

vb) = mgX[Pb(Ct =1) (Y"r+Q+v...+7" " Hp)

+Py(t <ch <t+xz)(v'r+

E(y" ™+ 4Tt < ch < t+2)p)
+P(t+x < ch) (v"e)
+" V")) = max fx) 3)

where b* is the belief state of the system after executing action
sense i.e., b*(C =v,G =) isequalto P(G =) ifv =0’
and O otherwise.

We interpret the formula in Proposition 3.1 as follows: The
first term of this formula states that a change has occurred
before current time and we get a penalty for sensing it late in
addition to positive reward r. The second term is the expected
reward when the change occurs after the current time but be-
fore sensing. The third term corresponds to when change oc-
curs after sensing so we have to pay the cost for making a
sensing action in error. Finally the last term is the recursive
value for actions that we perform after time ¢ + x.

The algorithm (Multiple Sense Multiple Change (MSMC))
for finding the optimal policy is sketched in Figure 1. The
algorithm checks at each time step if there is a decrease in f
function by evaluating d = f(1) — f(0). It then senses the
object if d < 0. Notice that the algorithm replaces expen-
sive evaluation of V'(b) with a much cheaper evaluation of d.

PROCEDURE MSMC(P,(C*))
Py(C*) part of the current belief
state, P, (C**1) computed by prediction.
1. d— f(1) — f(0) (Formula (4))
2. if d < 0 then return sense
3. else return idle

Figure 1: (left) DDN representing the transition model for one sens-
ing variable C. GG indicates whether a change occurs at this time. C'
represents whether a change has occurred since the last sensing ac-
tions. a is an action node, and R is the reward. (right) Algorithm for
deciding when to sense in case of a single sensing object.

PROCEDURE FPBSTAR()
1. vo « 0,v1 « VALUE(vo)
2. while (v — vo| > €)
(a) vo < vl, v1 «+ VALUE(vp)
3. return v

PROCEDURE VALUE(v)
. f —o0,xz+0
2. do
(a) prevF « f
®) f—PG=1)("r+0+7...+7" p)
+ZJ L P(G=0)P(G=1)(v"r+
(7 7" Dp)
+(1 =327 P(G
) x—zxz+1
while (f > prevF)
3. return prevF

=0)P(G=1h1"e++""

Figure 2: Algorithm for computing V' (b*), the fixed point of
the value function for belief b*.

Computing V' (b) requires an z-step progression while com-
puting d just requires a 1-step progression as shown in the
following:

f(A) = f(0) = P(C" =1) (v = 1)r +p)
+ Py(Ct'=0,C" = 1) (yr —e)
+ Py(Ct'=0,C" =0) (y - 1)e
+y(y =1V (b¥) “)

We compute V' (b*) of Formula (4) as a preprocessing step us-
ing a simple value iteration algorithm (Figure 2). This way,
we compute V' (b*) once and use it in making decision for ev-
ery time step. Note that b* is a very special belief state (sens-
ing action has just occurred), the sensing object changes with
prior probability P(G = 1). Essentially, computing V' (b*)
is like performing value iteration in MDPs as we do not con-
sider the effect of observations here. Moreover, the inner loop
of computing V' (b*) in Figure 2 is polynomial.

The rest of this section verifies the correctness of proce-
dure MSMC (Figure 1, right). First, we show that the proba-
bility of ch = t + x is a decreasing function of z. Using this
we prove that f(z) has just one local maximum. Finally we
prove that, to obtain the optimal policy, we decide whether to
sense or not at each time step based on just one comparison.

1910

Lemma 3.2 Ler Py(ch =t + x) be the probability of change
at time t + x, while the current time step is t. Then, P,(ch =
t+x) < P(ch=t+vy)forz>y.

PROOF
tively.
Py(ch =t+2a) = Py(~c, ..., ~Tot 1)
= Py(~c') P(~g")"~" P(g")

¢t and —¢! stand for C* = 1 and C* = 0 respec-

Sincez >y, Po(ch=t+x) < P(ch=t+y). N

Theorem 3.3 Let V(b) = max, f(x) be the value function

for the optimal policy. If f(1) < f(0) then f(x) < f(0) for
x> 0.

PROOF See appendix for the proof. M

Corollary 3.4 Let V(b) = max, f(x) be the value function
of the optimal policy. The optimal policy is to sense now, if
and only if (0) > f(1).

PROOF

1. Forward direction: if f(0) < f(1), we just postpone
sensing until the next time step.

2. Backward direction: if f(0) > f(1), by Theorem 3.3,
sensing at ¢ has the greatest value. H

4 Single Object with Observed and Hidden
Variables

In this section we provide a similar greedy algorithm when
there is a single sensing object and many hidden or com-
pletely observed variables in the domain. For example, there
are multiple web pages that include finance-related informa-
tion about companies. Updates to the information about one
company may affect other companies (e.g., an article about
Blockbuster may indicate that there might be a change in the
page about Netflix as well). Later, we show the application in
Wikipedia where the update in the “Democratic party” page
indicates a potential update in the “Barak Obama” page. We
assume that observing “Democratic party” page has no cost
while “Barak Obama” page is a sensing object and sensing
that page is costly.

In this model, there is a single sensing variable C' € X and
an arbitrary number of completely observed (X,) and hidden
(X,) variables. The only constraint is that C' in X4 does not
have any parents in X, and X, except G as in Figure 3, left.
A simple example of this model is an HMM.

A policy tree of a POMDRP is a tree of depth ¢ that speci-
fies a complete ¢-step policy. Nodes are actions, the top node
determines the immediate action to be taken. Edges are the
resulting observation. We restrict our search to policy trees
in which all the actions at the same depth level are the same
regardless of the observations of that time step and call them
restricted policy trees. In restricted policy trees the selection
of the immediate action is independent of the effect of future
observations and just depends on the current belief state. Note
that the belief state is being updated at each time step based

1911

O<O =

@)
Y
t t+1 t+2 O

QRS
< OhOPg @ OO0

“ OO0 ° 0O O O
Figure 3: (left) Transition model for one sensing variable, C, with
the existence of observations. K is a vector of both observed and

hidden nodes. (right) Transition model for two sensing variables.
C'1 and C5 are sensing variables. O is the observation node.

<O O<0O -

on the previous observations. Therefore, the selection of im-
mediate actions at time ¢ depends on the belief state given the
observations up to time .

The formulation for computing the value function V' (b)
and f(1)— f(0) are the same as in the previous section except
that all the probabilities are posteriors given the observations
up to time ¢. Belief state b is also the probability distribution
over different assignments to state variables conditioned on
the observations 0% € X,,.The optimal policy is the one that
maximizes the value function (among restricted policy trees).
Optimal restricted policy tree is a good approximation for the
optimal policy as we show in our experiments (Section 6).

The following theorem shows that the probability of ch de-
creases as time passes. Therefore, just one comparison at
each time is required to find the optimal restricted policy tree.

Theorem 4.1 Let P,(ch = t + x|0%?) be the probability of
change at time t + x, while the current time step is t. Then,
Py(ch =t + z|0"t) < Py(ch =t + y|o%?) forxz > y.

PROOF See appendix for the proof. N

Same theorems as in the previous section exist for this case.
Note that all the probabilities in this section are conditioned
on the observations 0% € X,,.

S5 Multiple Sensing Objects

This section provides a greedy algorithm for multiple sensing
objects. There is one sensing variable C; (can be observed by
cost) and one hidden variable G; for each sensing object (as in
Section 3). There is no restriction on the number of observed
variables in X,, (observed by no cost). The only constraint
on the transition model is that each variable C! has only two
parents, C' ™! and G%. The belief state is a distribution over
different assignments to sensing variables C; and G; for i €
{0...n} given the observations up to time ¢. Figure 3, right
shows a graphical representation of this model.

One application of this model is checking the stock prices
in the stock market to get information about participating
companies. A sudden increase or decrease in the value of
a stock of a company indicates the release of an important
piece of information about the company. The stock value is
used as an observation for the change in the web pages about
the companies.

Our experiment is on Wikipedia (Section 6.2). We consider
“Democratic party” page as the observation (sensing with no

PROCEDURE MOCHA(P; (c*|0%?))
Py(c'|0”") part of current belief state, n number of objects,
1. forall0 <i<n

(@) di — fi(1) = fi(0)

(b) if d; < 0 then return sense variable &

Figure 4: Algorithm for detecting change of multiple objects

cost) and two pages ‘“Barak Obama” and “Hillary Clinton” as
sensing objects (sensing with cost).

At each time step, the agent can choose a subset of ob-
jects to sense. We refer to this kind of actions as composite
actions. Each composite action ay.y, is a vector which repre-
sents that action a; € {sense,idle} has been performed on
the i*" object. We assume that the reward function of a com-
posite action ag.n, R({Co:n, go:n); @o:n), is the sum of the re-
wards of executing single actions on the corresponding sens-
ing variables: R({co:n, go:n); ao:n) = >_; Ri((ci, gi), ai)s
where R;({(c;, g:), a;) is the reward function for single sens-
ing variable with parameters r;, e; and p;, as in Formula (1).

Again, the optimal restricted policy tree is the one that
has the highest value among different restricted policy trees.
Still, our algorithm finds the optimal restricted policy tree for
each of the sensing variables, and then merges the results to
find the optimal restricted composite policy. The algorithm
is sketched in Figure 4. The rest of the section verifies the
correctness of this algorithm.

The following development is presented with two sensing
variables Cjy and C; for simplicity and clarity, but we can
extend the results to more sensing variables easily. We use
auxiliary variables chg and ch; to show the time of the change
for sensing variables Cjy and C; respectively.

Proposition 5.1 The value function for belief state b is:

V(b) = H;aix[

Py(CT =110"") (¥ ri+ (1+7... +7" " ")pi) ©)

+Py(t < chi < t+z|o”) (" r:i + (6)
E(™ 44" (< chi < t+)0"") pi)

+Py(t+ x < chilo™) (v7e:) ©)

+P,(Cl_i = 100™") (1 + 7.+ 7)p1—s ®)

+Py(t < chi—i < t+ z[o”))
E(VCh“Ft +o < chii <t + x|001t)) P1_i

V()] (10)

where bz+1,i(cé+w+17 G6+1+17 Cllf-l-w-i-l’ Gli—l—m-i—l

ttatl ttztl ttatbl ~ttodl) tto i
Py(Cy ,Go ,Cy NEH la; ™ = sense, o”?).

In this formula only one sensing object can be sensed at
each time, but optimal policy may enforce sensing more than
one object at a time. We can sense both objects (or any num-
ber of objects) by replacing (8), (9) with (5), (6), and (7) over
variable chy_;. Then, in the recursive part the belief state is
V (b**+1:0:1) All the results remain the same.

Below we show that the value function for composite poli-
cies is the sum of value functions for single policies.

Theorem 5.2 Let b be a probability distribution over
Co, Go, C1,G1; let b; (i € {0,1}) be a probability distribu-

tion over C;, G;; and let V;(b;) be the value function for sin-
gle optimal policy given belief b;; also let V (b) be the value
function for the optimal composite policy (Proposition 5.1).
Then, V(b) = %(bo) + Vl(b1).

PROOF See appendix for the proof. M

Like in previous sections, if we prove that P,(ch;) is de-
creasing, then the value function for single policies has just
one maximum which can be found by the greedy algorithm.

Lemma 5.3 Let Py(ch; =t + x[0%!) be the probability that
object i has changed for the first time after previous sensing
at time t+ x, while all the observations up to time t have been
perceived. Then, Py(ch; = t+x]0%) < Py(ch; = t+y|o?)
forx > .

PROOF See appendix for the proof. W

Theorem 5.4 Let V;(b;) = max, fi(x)be the value function
for single policy in the case of multiple objects. The best
policy is to sense variable i at time t iff f;(0) > fi(1).

PROOF By Theorem 5.2: V(b) = Vy(bo) + Vi (b1). This
value function achieves its maximum when both of its terms
are at their maximum. Therefore, the best policy is to sense
them at their unique maximum. Previous results show that if
the value function for single sensing variable decreases, the
function is at its maximum. Consequently, the best policy is
to sense that variable at that time. W

Like before, to avoid the direct computation of the value
function, we calculate f;(1) — f;(0) in Formula 11.

fi(1) = fi(0) = Py(Cf = 1]o"") (v = Dr +p) (A1)
+ B(C! =0, Cerl = 1|00:t)('y7’ —e)
+ Py (C = 0,C = 0[0") (y — 1)e
+y(y = 1) V(b))

where b} (C;, G;) = Py(Ct,Gt|al™! = sense). The func-
tion Multiple Objects CHAnge detection (MOCHA, Figure
4) greedily compares f;(1) with f;(0) and decides whether to
sense the object or not.

6 Empirical Results

We evaluate our final algorithm (MOCHA) and compare it
with two POMDP algorithms, Witness [Littman, 1996] and
a point-based algorithm, Perseus' [Spaan and Vlassis, 2005].
We compare the efficiency and accuracy of these algorithms
using simulated data in Section 6.1. We apply MOCHA to
Wikipedia WWW pages and compare its accuracy to the other
algorithms to illustrate their behavior on real-world data.

6.1 Simulation

We implement MOCHA (Figure 4) and test it on several ran-
domly generated examples for each number of sensing ob-
jects. We also randomly generate an observation model, re-
ward functions and a prior distribution, and build a DDN (Fig-
ure 3, left) for each example. We generate a sequence of size

"http://staff.science.uva.nl/ mtjspaan/software/approx/

1912

450 4500 4
400 EMOCHA 40004
350 OPerseus(10000) 3500 4

O Perseus(30000) ~-MOCHA
300 B Witness 3000 1 = Perseus(10000)

B2s0 S 2500 - =+ Witness

>"~‘200 .= 2000
150 1500 -

100 1000 4
o i |1} { im0
0 0

3 9 27 81 243 729 2187 6561 3 9 27 81 243 729 2187 6561 19863
Number of States Number of States

Figure 5: (left) Value (discounted sum of rewards) of the optimal
policy vs. number of states. (right) Running time vs. number of
states. conclusion: Our algorithm, MOCHA, returns higher value
and is faster than Perseus (10000, 30000 samples), and Witness.

10° time steps for each experiment and calculate the value of
the policy returned by MOCHA. We have 1 to 8 boolean vari-
ables (3 to 6561 states), 1 to 8 sensing actions, 1 idle action
per time step.

We compare MOCHA with Witness and Perseus on this
simulated data (transforming input DDNs into POMDPs).
Witness is a classic POMDP algorithm and does not scale
up to large state spaces. Perseus is a point-based algorithm
which provides a good approximation for the optimal policy
using sampling.

We report the accuracy and running time of our experi-
ments over random examples in Figure 5. This figure shows
that in all the experiments with more than 9 states the returned
value for our method is always higher than values returned
by Witness and Perseus. For each experiment we compute
the value (discounted sum of rewards) of the policy returned
(Perseus has experiments with 10000 and 30000 samples).
Each bar in Figure 5, left displays the average value over all
examples with the same number of states.

Notice that Witness is optimal for our problem when al-
lowed an infinite tree depth. However, in practice we must
limit Witness to a tractable number of steps so it is natural
that the outcome is sub-optimal. In our case, we developed
better formulas for our specific scenario so computation of
those formulas is more precise and easier to estimate given
the same time horizon. Also, in our experiments we run Wit-
ness only once per problem, not re-computing the policy tree
after observations are presented. For that reason, in effect
Witness’s policy tree is shorter than ours after making an ob-
servation. This is a caveat in our evaluation method, and we
can re-run the evaluation with a deeper tree for Witness, re-
peating the run of Witness after every observation. We limited
the number of executions of witness for obvious reasons be-
cause it took a very long time to execute witness even for few
states (1000 sec for 9 states).

Perseus returns the same value as ours for small problems
with 3 and 9 states but it runs out of memory (uses more than
1Gb of memory) for state spaces larger than 243 states and
crashes. MOCHA, on the other hand, requires less than 1Mb
even for the largest state space (19863 states).

Figure 5, right shows the running time for computing the
optimal policy for 10° time steps. It shows that MOCHA is
faster than Witness and Perseus. Our preprocessing (com-
puting V' (b*)) takes 0.01 seconds. Our algorithm takes less
time than Witness for the same tree depth because our tree

1913

is pruned very aggressively on one side. Many subtrees are
merged because they are all rooted in either b* = (G =
1,C = 1)ord* = (C = 0,G = 0). This way we save
computation time whereas witness explores the entire tree.

This suggests that our approximation is better and faster
than the state of the art POMDP algorithms.

6.2 Monitoring Wikipedia Pages

We use our algorithm to detect changes of Wikipedia pages
while minimizing sensing effort and the penalty of delayed
updates. Our approach is general and can be applied to any
set of WWW pages. We compare our algorithm with both
Witness and Perseus. Moreover, we compare the accuracy of
these algorithms with the ground truth of changes of WWW
pages.

In general, we build a set of factored-HMMs from a graph
of nodes (e.g., WWW pages), if the graph satisfies the fol-
lowing three conditions: (1) a set of nodes (V' C') are always
sensible with no additional cost; (2) V' C'is a vertex cover of
the graph (vertex cover of a graph: a subset S of vertices such
that each edge has at least one endpoint in 5); and (3) the con-
ditional probability of each node in V' C' can be represented by
its adjacent nodes which are not in VC. Once the conditions
are satisfied, each node in V' C becomes a child node, and its
adjacent nodes become parents of the node in the factored-
HMM as shown in Figure 6, left. Thus, we can still solve the
detect-change problem of the set of factored-HMMs obtained
from a generic graph of WWW pages.

We gathered log data of 700 days for three Wikipedia
pages (‘Barack Obama’, 2, ‘Hilary Clinton’ 3 and ‘Demo-
cratic party’ #). Since each page may change at any point of
time, we need to discretize time first. We choose a one hour
time step. We use the Democratic party page as an observa-
tion to estimate changes of the Obama page and the Clinton
page. In this case, the Democratic party page is a vertex cover
of the graph of three pages. We build a conditional probabil-
ity table for the Democratic party page given the other two
pages. The priors and conditionals for the Wikipedia pages
are trained by counting of events.

Figure 6, right compares the value of MOCHA, Witness
and Perseus for this domain. We evaluate the discounted
sum of exact rewards achieved by these algorithms (7, p, e are
62, —4, —10). We used these parameters for training to test
in both cases. However, we believe that changing the param-
eters does not affect the result much.

Our algorithm outperforms both Witness and Perseus. In
addition, we display the discounted sum of rewards of the
ground truth of changes of WWW pages which knows the
change of each page (call it oracle). The reward achieved by
oracle is the maximum possible reward for the data set. Note
that the results are not sensitive to input parameters (r, p, e). If
we give different rewards, the overall rewards easily become
negative numbers where our algorithm gave higher number
than the others, though.

Zhttp://en.wikipedia.org/wiki/Barack_Obama
3http://en.wikipedia.org/wiki/HillaryRodhamClinton
*http://en.wikipedia.org/wiki/Democratic_Party_United_States

300000

—Oracle
Hidden pages ~—MOCHA

g Observed pages @ 200000 -~ Witness

\@ \@/ g — Perseus

-~ M <
@ N f |:'|> >1ooooo
\ »
N
o

factored HMMs 0

100 200 300 400 500 600
Time step (days)

connectivity graph

Figure 6: (left) Transforming the graph between WWW pages to
factored HMMs for our algorithm. (right) Value vs. time of Obama
and Clinton pages. MOCHA outperforms POMDP algorithms.

7 Conclusion & Future Work

We formalized the problem of detecting change in dynamic
systems and showed how it can be cast as a POMDP. We sug-
gested greedy algorithms for sensing decision in one or more
variables. These algorithms use the structure of the problem
to their advantage to compute a solution in time polynomial
in the time horizon.

Our model that includes 0-cost sensing in addition to costly
sensing is suitable for WWW sensing where there are WWW
pages that are sensed automatically by designer decision.
Such pages are, for example, news pages (NY Times, e.g.)
and streaming media from websites and newsgroups. Other
examples include pages with RSS feeds whose changes are
detectable with very low cost. Our assumption about perfect
sensing, while restrictive, is not far from many real-world sys-
tems. WWW pages and images captured by stationary cam-
eras are good examples of those. In other cases, the perfect
change-observation assumption is a good approximation, e.g.
CT imaging (for detecting growth of tumors or pneumonia
condition) outputs a 3D image which can be easily compared
to previous images with only little noise.

There are two important limitation in our current approach.
First, we do not know how far an approximation our method
is from the oracle (sense at the exact same time that change
occurs). Second, we cannot include actions that change the
world (e.g., moving actions) in the model yet. The imme-
diate direction for the future work is to fix these two limita-
tions. Solving the problem of multiple objects when there is
not any constraint on the transition relation between sensing
variables can also be a future work. Another direction is to
learn the model. The update frequencies (i.e. P(G)) and the
observation model need to be learned. Choosing a relevant
observation node is also an important part of the learning.

Acknowledgements

We would like to thank Anhai Doan and Benjamin Liebald
for the insightful discussions and their help throughout the
progress of this project. We also thank David Forsyth and the
anonymous reviewers for their helpful comments. This work
was supported by DARPA SRI 27-001253 (PLATO project),
NSF CAREER 05-46663, and UIUC/NCSA AESIS 251024
grants.

References

[Auer et al., 2000] P. Auer, N. Cesa-Bianchi, Y. Freund, and
R. E. Schapire. Gambling in a rigged casino: The adver-
sarial multi-armed bandit problem. ECCC, 7(68), 2000.

1914

[Cassandra er al., 1994] A. R. Cassandra, L. P. Kaelbling,
and M. L. Littman. Acting optimally in partially observ-
able stochastic domains. In AAAJ, pages 1023-1028, 1994.

[Cho and Garcia-Molina, 2003] J. Cho and H. Garcia-
Molina. Effective page refresh policies for web crawlers.
ACM Trans. Database Syst., 28(4), 2003.

[Cho, 2001] J. Cho. Crawling the Web: Discovery and Main-
tenance of Large-Scale Web Data. PhD thesis, 2001.

[Even-Dar et al., 2005] E. Even-Dar, S. M. Kakade, and
Y. Mansour. Reinforcement learning in POMDPs. In 1J-
CAI 05, 2005.

[Finkelstein and Markovitch, 2001] L. Finkelstein and
S. Markovitch. Optimal schedules for monitoring anytime
algorithms. Artif. Intell., 126(1-2):63-108, 2001.

[Hansen and Zilberstein, 2001] E. A. Hansen and S. Zilber-
stein. Monitoring and control of anytime algorithms: A
dynamic programming approach. Artificial Intelligence,
126:139-157,2001.

[Jaakkola et al., 1994] T.Jaakkola, S. P. Singh, and M. I. Jor-
dan. Reinforcement learning algorithm for partially ob-
servable Markov decision problems. In NIPS, volume 7,
1994,

[Jensen et al., 1990] F. V. Jensen, S. L. Lauritzen, and K. G.
Olesen. Bayesian updating in recursive graphical models

by local computation. Computational Statistics Quarterly,
4:269-282, 1990.

[Kaelbling et al., 1998] L. P. Kaelbling, M. L. Littman, and
A. R. Cassandra. Planning and acting in partially observ-
able stochastic domains. ALJ, 101:99-134, 1998.

[Kearns et al., 2000] M. Kearns, Y. Mansour, and A. Y. Ng.
Approximate planning in large pomdps via reusable tra-
jectories. In Proc. NIPS’99, 2000.

[Littman, 1996] M. L. Littman. Algorithms for sequential
decision making. PhD thesis, Brown U., 1996.

[Murphy, 2000] K. Murphy. A Survey of POMDP Solution
Techniques. Unpublished Work, 2000.

[Pandey et al., 2004] S. Pandey, K. Dhamdhere, and C. Ol-
ston. Wic: A general-purpose algorithm for monitoring
web information sources. In VLDB, pages 360-371, 2004.

[Poupart, 2005] Pascal Poupart. Exploiting Structure to Effi-
ciently Solve Large Scale POMDPs. PhD thesis, Univer-
sity of Toronto, 2005.

[Rabiner, 1989] L. R. Rabiner. A tutorial on hidden Markov
models and selected applications in speech recognition.
Proceedings of the IEEE, 77(2):257-285, 1989.

[Robbins, 1952] H. Robbins. Some aspects of the sequential
design of experiments. Bulletin of the American Mathe-
matical Society, 55, 1952.

[Russell and Norvig, 2003] S. Russell and P. Norvig. Artifi-
cial Intelligence: Modern Approach Second Edition. Pren-
tice Hall, 2003.

[Spaan and Vlassis, 2005] Matthijs T. J. Spaan and Nikos

Vlassis. Perseus: Randomized point based value iteration
for pomdps. JAIR, 24:195-220, 2005.

8 Appendix

Proof of Theorem 3.3

We prove by induction over 2: Inductive assumption: f (i) <
f(0) fori <z — 1. So once we prove f(z) < f(x — 1), we
are done.

fl@) = flz=1) = Py(ch <t+az—1) 7" ((y = D +)
+ Py(ch =t+2)y* (v — a)
+ Pyt +x < ch) vy - 1Da
+7 (=D V()
By the assumption we know: f(1) — f(0) < 0.
F) = F0) = B(C" = 1) (7~ s+)

+ Py(ch=t+1)(yk — @)
+P(t+1<ch)(y -1
+y(y =D V() <0
By Lemma 3.2, Py(ch =t + 1) > Py(ch =t + x). Also
Py(t+x <ch) < P(t+1<ch). vk —aand (y— 1)a are
positive. So, the following inequivalency holds.
fl@) = fle—1)
<Pt<ch<t+z—1)~y""Y(y—1)k+p)
+Py(ch <)y (v = 1)i + B)
+ Py(ch =t + 1)y (yk — @)
+ Pyt +1<ch)y" 1y —1)a
+7 (=D V()
= P(t<ch<t+z—1)7y"(y—-1r+23)
+y"H () = £(0) <0
Because both the first term and f(1)
bers, and the proof is done. |

Proof of Theorem 4.1

We use ¢! and ¢! as C* = 1 and C* = 0 respectively. In the
following formulas k? is the vector of all variables in X}, and
X, except G*. According to Figure 3:

Pb(Ch =t LL‘,OO:t) _ Pb(ﬁct ”7jct+x717ct+x,00:t)

_ Z (kt\o —|Ct OOt)
kt\ot kt+1lit+e
Pb(kt+1 |‘|Ct+1
Pb(kt+m|ct+w, .

— f(0) are negative num-

, et BN\ of o) P(—gt) .

(el ey gt

After a sequence of variable eliminations on k!+1:+%:

Py(ch =t + x,0"") = P(¢g"™")P(=g"T*~1) ... P(=g'™)
Z Py(k*\ of, =, 0%")

kt\ot
So Py(ch = t+xz[0%) < Py(ch = t+ylo®)forz >y. m

Proof of Theorem 5.2
Define V*(b) as the expected sum of future rewards of the op-
timal k-step policy (i.e., one in which we stop after & steps).

V¥ (bo) and V{¥(b1) can be defined in the same way. Now we
prove by induction that

VE(b) = Vg (bo) + Vi (bn)

Induction basis: for k& = 0 the formula holds because the
expected sum of future rewards of the optimal O-step policy
is 0.

Now, assume by induction that V*(b) = Vi (bo) + VF(b1)
for k < m. Without loss of generality assume that V" (b) is
maximized when we have to sense object O first. Using the
induction hypothesis (k —x —1 < n) we rewrite the recursive
term as the sum of value functions of single policies:

kazfl(berl,O) _ ‘/Okfxfl(ngrl,O) + ‘kazfl(berl,O)

Replacing the belief states as following yields to the proof:

bg"rl,O(S) Pb(Cé-i—m-‘,-l _ U7G6+1+1 _ ’U/|
ap™ = sense, ")
= by(s)
bTJrl.,O(S) _ F)b(cﬂlererl7 G§+z+l|a6+x = sense, OO:t)
_ Pb(Cnlererl G§+z+1|00:t)
V*(b) = max(expected sum of rewards of k-step policies).
V(b) = max(expected sum of rewards of k-step policies +
YV ().

There exists an M s.t.|[V(0')| < M,soforany 0 < ¢ < 1
there is a k s.t. y*M < . With the same argument there
isakst V() —VFED)| < e |Vo(b) — ng(b)| < g, and
[Vi(b) — VE(B)| < e. Proof of VE(b) = V¥ (bo) + Vi¥(b1)
yields to the proof of the theorem by showing that:
V(5) — [Volbo) + Va(ba)]| < 3. m

Proof of Lemma 5.3
We use ¢! and —¢! in place of C* = 1 and C* = 0 respec-
tively. According to Figure 3,

Py(chg =t + x,0"%)

- ¥

citte Qirlite sttlitte
P(t+1|Gt+1 gé-i-l) (Gli-i-l)
P(=gg™)P(CTHCL GTHY) ..
PG) P(GY)
P(géJrz) (Of+x|cllf+zfl’Gii+x)

_ t t+x— 1 t+w 0:t
= Py(—cp, ..., ey ey ¥, 00

Pb(cla _'COa OO:t)

After performing a sequence of variable eliminations:
Py(chg =t + x,0") =
P(g5)P (g5) 9" Z Py(C1,~ch, 0

So Py(chg = t + |0"t) < Py(cho =t + y|00’t)for T >y
u

1915

