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Abstract

The classic Gibbard-Satterthwaite Theorem estab-
lishes that only dictatorial voting rules are strategy-
proof; under any other voting rule, players have an
incentive to lie about their true preferences. We
consider a new approach for circumventing this
result: we consider randomized voting rules that
only approximate a deterministic voting rule and
only are approximately strategy-proof. We show
that any deterministic voting rule can be approxi-
mated by an approximately strategy-proof random-
ized voting rule, and we provide asymptotically
tight lower bounds on the parameters required by
such voting rules.

1 Introduction

The classic Gibbard-Satterthwaite Theorem [Gibbard, 1973;
Satterthwaite, 1975] considers the question of when voters
will honestly report their preferences. It shows that if the
voting rule has at least three outcomes, then only dictatorial
functions (i.e., one player determines the output) can be hon-
estly computed by rational agents.

The earliest approach to circumventing this limitation, first
suggested by Gibbard [1977] and later advocated by Conitzer
and Sandholm [2006], consists of using randomized approxi-
mations as a means to bypass the limitations of deterministic
rules. Unfortunately, the potential of this approach is lim-
ited by two negative results. Gibbard showed that the only
strategy-proof randomized voting rules are trivial in that they
consist of simple probability distributions over rules that de-
pend on only one voter (unilateral rules) and rules that have
at most two possible outputs (duple rules). In recent work,
Procaccia [2010] quantified the quality of approximation that
can be achieved by such trivial functions (for certain types
of voting rules): in particular, he constructed a simple ap-
proximation of PLURALITY (the voting rule that returns the
outcome that receives the most first-choice votes). However,
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his approximation only guarantees that the expected number
of votes received by the returned output is 2/3 the number re-
ceived by the true winner, and he proves that his mechanism
is asymptotically optimal.

An alternative approach that consists of restricting the class
of preference functions. Notably, Moulin [1980] considers
voting rules defined over an output set with a natural total
ordering with single-peaked preferences, that is utilities that
have an optimal outcome (the peak) and decrease monoton-
ically with distance from the peak. He constructs rules that
are strategy-proof with respect to this (very restricted) class
of utility functions.

A final intriguing approach to circumventing this limita-
tion, first suggested by Bartholdi et al. [1989], is to con-
struct voting rules that are computationally difficult to ma-
nipulate. However, there are strong impossibility results that
limit the potential of this approach. In their original work,
Bartholdi et al. showed that many standard voting rules can
be efficiently manipulated. Moreover, recent work demon-
strates that for any voting rule, “bad inputs” (preference pro-
files that admit a successful non-honest strategy) are not
rare [Conitzer and Sandholm, 2006; Friedgut et al., 2009;
Isaksson et al., 2010]; these papers develop lower bounds for
the number of preference profiles which admit some kind of
manipulation and show that when the number of outputs is
small it is easy to find successful manipulations.

In this work, we consider a new approach to circumventing
these previous negative results: approximately strategy-proof
voting rules. This approach is motivated by the observation
that previous work assumes that people will deviate from the
honest strategy even if the improvement in their utility is ex-
tremely small. In practice, people often don’t deviate if the
gain is very small; a small gain in utility may be offset by a
psychological cost associated with lying or by the computa-
tional cost of computing an effective deviation [Halpern and
Pass, 2010]. This phenomenon is compounded by the fact
that when risk-averse individual voters are uncertain about
the preferences of the other voters, they may not pursue a
deviation that is only expected to yield a small benefit. In
other contexts, these observations have led to the introduc-
tion of relaxed solution concepts (e.g., ε-Nash equilibria and
ε-dominant strategies). In the context of voting, we thus con-
sider ε-strategy-proof voting rules; that is voting rules for
which no deviating strategy can improve a player’s expected
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utility by more than ε.
Unfortunately, a corollary of the Gibbard-Satterthwaite

theorem shows that the only deterministic voting rules that
are ε-strategy-proof are dictatorial rules. We thus consider
approximate strategy-proofness in the context of randomized
voting rules. As it turns out, the parameter ε quite sharply
determines whether or not there exist non-trivial ε-strategy-
proof voting rules.

For the remainder of this section, let n be the number of
voters and let the number of outcomes be a fixed constant k.

ε = ω(1/n): In this regime, we show that there exist nat-
ural, non-trivial, ε-strategy-proof voting rules. Moreover, we
show that every deterministic voting rule f can be approx-
imated by a non-trivial, ε-strategy-proof voting rule g. To-
wards formalizing this, we require a notion of what it means
for a randomized mechanism to approximate a deterministic
voting rule. Intuitively, we want to capture the idea that with
high probability, the output of g is “close” to that of f . To
define closeness, we consider a specialized distance metric
inspired by the idea of vote corruption, that is the observation
that in real-life elections, votes get miscounted, recounted,
lost, etc. We say that the output y ∈ g(�x) is δ-close to the
right answer if there exists some vector �x′ that differs from �x
in only δ positions, such that f(�x′) = y; in other words, when
the output is δ-correct, it means that we could have reached
this output by flipping only δ votes. Our main theorem can
now be informally stated as follows:
Theorem 1.1 (Upper Bound – Informal Statement). Let
ε = ω(1/n), β > 0, and let f be a deterministic voting
rule over n players. For sufficiently large n, there exists
an ε-strategy-proof randomized voting rule g that is a βn-
approximation of f .
Intuitively speaking, our mechanism guarantees that the out-
come returned by g will be the correct one modulo a change in
a few votes. When dealing with large election (e.g., national
elections) this seems like a reasonable guarantee.

One may ask whether an alternative notion of approxima-
tion can be achieved: For instance, could we hope to get a
mechanism that yields the correct output with high probabil-
ity? In the full version of this paper, we show that this is
impossible unless the underlying voting rule f is dictatorial.
We believe this negative result highlights why our definition
of approximation is both reasonable and minimal for circum-
venting the negative results of Gibbard and Satterthwaite.

ε = o(1/n): In this setting, we show that the Gibbard’s
result characterizing strategy-proof randomized voting rules
[Gibbard, 1977] still applies:
Theorem 1.2 (Lower Bound – Informal Statement). If g
is a o(1/n)-strategy-proof randomized voting rule, then g is
trivial (i.e., a distribution over unilateral and duple rules).

We additionally show that natural voting rules (e.g., PLU-
RALITY) cannot be well approximated by such mechanisms.
This result can be informally stated as follows:
Theorem 1.3 (PLURALITY – Informal Statement). Let g
be a trivial voting rule over n players. There exists β such
that for sufficiently large n, g cannot be a βn-approximation
of PLURALITY.

In fact, in the full version we extend this result to show that
there is no trivial voting rule that approximates PLURALITY
even with high probability.

The two theorems combined bound the approximation pa-
rameters that can be achieved for natural voting rules like
PLURALITY. Note that Theorem 1.3 also implies that the
approximations constructed in Theorem 1.1 are non-trivial.

Additional Properties Finally, we observe that there are
many properties (other than strategy-proofness) that are de-
sirable in a voting rule. We show that in addition to being
ε-strategy-proof, the mechanisms we construct are collusion-
resistant—a group of t players cannot increase their collec-
tive utility by more than a small amount. Moreover, when
we consider a neutral voting rule—one whose outcome is in-
dependent of voter identities—and a constant number of out-
comes, our mechanism is computationally efficient.

2 Definitions and Preliminaries

A voting rule f is a mapping from player “votes” to an out-
come in the set [k] = {1, . . . , k}. Player votes are total pref-
erence orderings over the set of outcomes [k]; these prefer-
ence orderings are represented as a permutation σi ∈ Σk

(here Σk denotes the set of permutations over [k]). We use the
notation σi(j) > σi(j

′) when the preference type σi ∈ Σk

ranks outcome j higher than outcome j′. For convenience, a
preference profile �σ = (σ1, . . . , σn) may also be denoted by
(σi, �σ−i) for any i ∈ [n].

Players are motivated by determinism—that is, they prefer
that outcomes ranked higher in their preference ordering σi

are chosen. More formally, each player i has a preference
ordering σi and a utility function ui ∈ Uσi

, the class of utility
functions ui that satisfy the following two properties: First,
for all �σ−i, ui(�σ, j) ≥ ui(�σ, j

′) if σi(j) > σi(j
′). Second,

for all input-output pairs (�σ, j), ui(�σ, j) ∈ [0, 1].
Observe that although it is traditional to talk exclusively

about the preference relations σi, the underlying utility func-
tion is necessary in order to quantify approximate strategy-
proofness. The restriction to utilities in the range [0, 1] is not
strictly necessary (our results only rely on the fact that the
utilities are bounded), however we believe that utilities in this
range lend themselves to a more intuitive interpretation.

2.1 Approximately Strategy-proof Voting

We say that a voting rule is (approximately) strategy-proof if
for all players, honestly reporting their preferences (approx-
imately) dominates any other reporting strategy. More for-
mally,

Definition 2.1 (ε-strategy-proof). A voting rule g is ε-
strategy-proof if for all players i, all preference profiles �σ, all
alternative preferences σ′i, and all utility functions ui ∈ Uσi

,

E[ui(�σ, g(�σ))] + ε ≥ E[ui(�σ, g(σ
′
i, �σ−i)]

The notion of strategy-proof voting rules can also be ex-
tended to handle collusions between groups of t players.

Definition 2.2. A voting rule g : (Σk)
n → [k] is (t, ε)-

strategy-proof if for all subsets S ⊆ [n] such that |S| ≤ t, all
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preference profiles �σ and �σ′ such that σi = σ′i for all i /∈ S,
and all utility profiles �u ∈ U�σ ,

∑

i∈S
E [ui(�σ, g(�σ))] + ε ≥

∑

i∈S
E [ui(�σ, g(σ

′)] .

Intuitively, we interpret ε-strategy-proofness to mean that
if there is a small cost associated with deviating (e.g., a psy-
chological cost to lying or a computational cost to finding a
successful deviation) then the voters will honestly report their
preferences.

2.2 Voter Max-Influence

We introduce a new concept inspired by the notion of variable
influence [Kahn et al., 1988] which we call max-influence;
max-influence describes the maximum amount by which a
single player can impact the probability that a particular out-
put is returned by a voting rule.
Definition 2.3 (ξ-max-influence). A player i ∈ [n] has ξ-
max-influence over a voting rule g : (Σk)

n → [k] if there ex-
ists a preference profile �σ, an alterative preference σ′i and an
outcome j ∈ [k] such that |Pr[g(�σ) = j] − Pr[g(σ′i, �σ−i) =
j]| > ξ.

We observe that if no player i has ξ-max-influence over a
voting rule g then the rule is approximately strategy-proof.
Lemma 2.4. Let g : (Σk)

n → [k] be a voting rule such that
no player i ∈ [n] has ξ-max-influence over g. Then g is kξ-
strategy-proof.

We also present an analogous result for coalitions.
Lemma 2.5. Let g : (Σk)

n → [k] be a voting rule such
that no player i ∈ [n] has ξ-max-influence over g. Then g is
(t, t2kξ)-strategy-proof.
The proofs of Lemmas 2.4 and 2.5 are omitted due to space
constraints.

Observe that Gibbard and Satterthwaite’s classic result
shows that every non-dictorial voting rule with at least three
outputs has a player with 1-max-influence. By contrast, we
will show that every voting rule can be approximated by a
randomized voting rule over which no player has much max-
influence.

2.3 Approximations

In order to formally define the notion of a randomized ap-
proximation, it is necessary to define a closeness metric d for
voting rules. The appropriate choice of metric in such a con-
text is not immediately clear. Since outcomes are assigned
an arbitrary number j ∈ [k] and votes are permutations σi

over the outcomes (interpreted as a total preference ordering),
standard notions of “closeness” are meaningless. While some
particular voting rules have natural quality scores that can be
used to define an approximation [Procaccia, 2010], such tech-
niques are not fully generalizable.

We instead introduce a pseudometric dv inspired by vote
corruption, that is the observation that in real-life elections,
votes get miscounted, recounted, lost, etc. This pseudometric
dv associates a number 	 with each pair (�σ, j) ∈ (Σk)

n × [k]
defined by

	(�σ, j) = min
�σ′ s.t. f(�σ′)=j

Δ(�σ, �σ′)

where Δ(�σ, �σ′) is the number of components which dif-
fer between �σ and �σ′. We define an induced pseudometric
dv((�σ, j), (�σ

′, j′)) = |	(�σ, j) − 	(�σ′, j′)|. This says that an
output is close to the correct answer if there exists an input
close to the true input which generates that output.

Using this metric, we consider an approximation g to be a
function whose value is close to that of f .
Definition 2.6 (δ-approximation). A (randomized) voting
rule g is a δ-approximation of a voting rule f if for all inputs
�σ and all possible random coins,

dv((�σ, g(�σ)), (�σ, f(�σ))) ≤ δ.

Remark 2.7. In the full version, we relax our definition of an
approximation to consider functions that are close to the cor-
rect outcome with high probability and show that our lower
bounds extend to the relaxed definition.

2.4 Trivial Voting Rules

There are two classes of simple voting rules, collectively re-
ferred to as trivial, that will be used to characterize the set of
strategy-proof voting rules under certain conditions. The first
is the class of rules that depend on only one player’s inputs,
and the second is the class that returns at most two outputs.
Definition 2.8 ([Gibbard, 1977]). A deterministic voting
rule f : (Σk)

n → [k] is unilateral if there exists a player
i such that for all preferences profiles �σ, �σ′ ∈ (Σk)

n satisfy-
ing σi = σ′i, f(�σ) = f(�σ′). A voting rule that is unilateral
and onto is also called dictatorial.
Definition 2.9 ([Gibbard, 1977]). A deterministic voting
rule f : (Σk)

n → [k] is a duple if the range is at most 2,
that is if |{j ∈ [k] : ∃�σ ∈ (Σk)

n such that f(�σ) = j}| ≤ 2.
A voting rule is called trivial if it is a probability distribu-
tion over unilateral and duple rules, otherwise it is called non-
trivial.

3 Previous Work

Randomized voting has been recently explored by Procaccia
[2010] who shows how to define 0-strategy-proof approxi-
mations of certain voting rules that are derived from natural
quality scores. Our work differs from his approach both in
our use of ε-strategy-proof rules and in the way we define
and construct approximations. In particular, Procaccia’s work
relies on a natural quality score to define an approximation,
a technique that prevents discussion of certain types of vot-
ing rules including multi-layered rules like run-off elections
or the electoral college-based system employed in U.S. pres-
idential elections. Furthermore, as Procaccia demonstrates,
the quality-score based approach is inherently limited in the
quality of approximations that can be achieved; for example,
it is impossible to construct a strategy-proof approximation
of PLURALITY that will (in expectation) return an outcome
with quality score greater Ω(1/

√
k) times the optimal. Al-

though he does construct an approximation for PLURALITY,
if his approximation were employed during an election be-
tween four candidates, the expected number of votes received
by the candidate it returns would be 2/3 the number of votes
received by the true winner.
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There are two important negative results in the context of
voting. The first, proven independently by Gibbard [1973]
and Satterthwaite [1975], demonstrates that only a trivial col-
lection of voting rules are strategy-proof. Restated with our
definitions, they show that only dictatorial functions are 0-
strategy-proof.
Theorem 3.1 (Gibbard-Satterthwaite). Let f : (Σk)

n →
[k] be a deterministic, onto voting rule with k ≥ 3. Then f is
0-strategy-proof if and only if it is dictatorial.

This result has been quantitatively extended to give lower
bounds on the number of input profiles which admit manip-
ulations [Friedgut et al., 2009; Isaksson et al., 2010]. Their
work shows that not only are manipulations relatively com-
mon, but they can also be found efficiently.

The Gibbard-Satterthwaite theorem has also been extended
to characterize the class of strategy-proof randomized voting
rules [Gibbard, 1977]. In terms of our definitions, this exten-
sion shows that only trivial voting rules are 0-strategy-proof.
Theorem 3.2 (Gibbard). Let g : (Σk)

n → [k] be a random-
ized voting rule. Then g is 0-strategy-proof if and only if it is
trivial.

4 Approximate Voting

Leveraging our new notion of approximate strategy-
proofness, we now show that every voting rule can be approx-
imated by a randomized voting rule. Intuitively, we construct
an approximation by adding noise to the original determin-
istic voting rule. The probability that these approximations
return a particular outcome decreases linearly with the dis-
tance between the outcome under consideration and the cor-
rect outcome; the slope of this linear function bounds the in-
fluence that a voter can have on the resulting approximation.
If the slope is sufficiently steep, then we can guarantee that
all “bad” outputs (ones that are δ-far from the correct output)
are chosen with probability 0.

Our techniques can be seen as a linear analog of the ex-
ponential mechanism [McSherry and Talwar, 2007] that has
been used to establish differential privacy [Dwork et al.,
2006].
Theorem 4.1. For any deterministic voting rule f : (Σk)

n →
[k], any ε > 0 and any δ ≥ k(k + 1 + ε)/ε − 1, f has a ε-
strategy-proof δ-approximation g.

Proof. We construct an approximation g of the voting rule f
as follows: we assign each input-output pair (�σ, j) a quality
score q(�σ, j) = −dv((�σ, f(�σ)), (�σ, j)). Observe that q(�σ, j)
decreases linearly with the (minimal) number of votes that
must be corrupted before f returns j instead of f(�σ). Let
ξ = ε/k(k + 1 + ε)—this value is chosen to guarantee ε-
strategy-proofness. The mechanism g returns the value j with
probability proportional to max{1+ ξq(�σ, j), 0}. Note that g
never returns an outcome more than 1/ξ-far from f(�σ).

First, we bound the max-influence a voter can have over g.
For any �σ′ that differs from �σ in only one position and any
outcome j ∈ [k], the difference |Pr[g(�σ′) = j]− Pr[g(�σ) =
j]| is equal to
∣
∣
∣
∣
∣

max{1 + ξq(�σ′, j), 0}
∑

ι∈[k] max{1 + ξq(�σ′, ι), 0} − max{1 + ξq(�σ, j), 0}
∑

ι∈[k] max{1 + ξq(�σ, ι), 0}

∣
∣
∣
∣
∣
.

For the purpose of clarity, let A = max{1+ ξq(�σ, j), 0} and
let B =

∑
ι∈[k] max{1+ ξq(�σ, ι), 0}. Using this notation we

observe that the difference can be bounded above by
∣
∣
∣
∣
A+ ξ

B − kξ
− A

B

∣
∣
∣
∣ =

∣
∣
∣
∣
AB + ξB −AB + kξA

B2 − kξB

∣
∣
∣
∣ =

∣
∣
∣
∣
ξ − kξA/B

B − kξ

∣
∣
∣
∣

Where the first expression follows from the definition of g,
the second from cross multiplication, and the third from can-
celing terms.

Since A = max{1 + ξq(�σ, j), 0} ≤ 1 (recall that quality
scores are negative) and B =

∑
ι∈[k] max{1+ξq(�σ, j), 0} ≥

1 (since the correct output, which is included in the sum,
contributes 1 and there are no negative components), we can
maximize this bound by setting A = B = 1 giving

|Pr[g(�σ′) = j]− Pr[g(�σ) = j]| ≤ ξ + kξ

1− kξ
= ε/k

which implies that no player has max-influence greater than
ε/k. Therefore by Lemma 2.4 the constructed approximation
g is ε-strategy-proof.

Second, we claim that g is a good approximation for f ac-
cording to the distance metric dv . Observe that the approx-
imation g returns a outcome with distance greater than 1/ξ
from the correct answer with probability 0. Since we fixed
δ ≥ 1/ξ, all “bad” outputs are sufficiently far from the cor-
rect answer that they are returned with probability zero, there-
fore g always returns an answer that is δ-close to the correct
outcome.

Corollary 4.2. Let ε = ω(1/n), β > 0, and let f : (Σk)
n →

[k] be a deterministic voting rule. For sufficiently large n,
there exists an ε-strategy-proof randomized voting rule g that
is a βn-approximation of f .

Proof. Fix β > 0 and let δ = βn. Let g be defined as in
the proof of Theorem 4.1 and recall that (as shown in the
previous proof) g is an ε-strategy-proof βn-approximation of
f if βn ≥ k(k + 1 + ε)/ε− 1. Since ε = ω(1/n), the result
follows immediately.

Example 4.3. For concreteness, consider an election with
100 million voters and three outputs (about the scale of a
United States presidential election). Fixing ε = .001, we can
construct an approximation g that is guaranteed to always re-
turn an answer within 12,500 votes of the correct answer, in
practice, well within the vote corruption in such an election.
Looked at in another way, this says that in any such elec-
tion in which one outcome wins by at least 12,500 votes, this
mechanism will always return the correct answer.

Observe that if ε < 1/n then all outputs are chosen with
positive probability. For such small values of ε, the approx-
imation g is well-defined, but it is a trivial n-approximation
of f . In Section 5 we show that this ω(1/n) restriction is an
inherent bound on the achievable approximation parameters
and not an artifact of the construction employed in Theorem
4.1. In contrast, when ε = ω(1/n), the approximations both
offer good guarantees and are non-trivial.
Corollary 4.4. Let ε = ω(1/n) and k = O(1). For suffi-
ciently large numbers of voters n, there exist non-trivial ε-
strategy-proof randomized voting rules.
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Proof. Let f be PLURALITY, the voting rule that returns the
outcome j that receives the most first-choice votes (using
some deterministic tie-breaking rule). By Corollary 4.2 we
know that there exist arbitrarily good approximations of f for
ε = ω(1/n). By Theorem 5.5 this implies that for such ε, the
mechanism from Theorem 4.1 is non-trivial.

In addition to being non-trivial and approximately strategy-
proof, the randomized voting rule g constructed in the proof
of Theorem 4.1 has several other nice properties. First, the
voting rule g is collusion-resistant: its guarantees degrade
gracefully if the mechanism is extended to protect against col-
lusion by t players.

Corollary 4.5. For any voting rule f : (Σk)
n → [k], any

t < n, any ε > 0, and any δ ≥ (k(k1)t
2 + kε)/ε− 1, f has

a (t, ε)-strategy-proof δ-approximation.

Proof. The proof is equivalent to that of Theorem 4.1 except
that we use a different parameter ξ = ε/k(k+1)t2+kε. The
proof that the randomized voting rule g—constructed as in
the proof of Theorem 4.1 (except with the new value of ξ)—
is (t, ε)-strategy-proof follows immediately from Lemma 2.5.
The proof that g is a δ-approximation of f is identical to the
proof in Theorem 4.1.

Second, we observe that for neutral voting rules—those
whose outcome is independent of voter identities—our ap-
proximations are computationally efficient.

Corollary 4.6. If f : (Σk)
n → [k] is a neutral, efficiently

computable voting rule with a constant number of outputs k,
then the approximation g defined in the proof of Theorem 4.1
can be computed in polynomial time.

Proof. To compute the output of the approximation g(�σ),
where g is defined as in the proof of Theorem 4.1, we be-
gin by computing the quality score q(�σ, j) for each possible
outcome j ∈ [k]. Since f is neutral, the correct outcome f(�σ)
depends only on the vote configuration—that is the unordered
set of votes that were cast—and not on the full preference
profile �σ per se. We can therefore compute the quality scores
of all outputs j ∈ [k] simply by evaluating the original rule
f on each of the possible vote configurations and setting the
quality score of an output to be equal to the (negative) min-
imum distance between the configuration associated with �σ
and a configuration that returns the outcome j. There are k!
different ways a player could vote and each voting preference
is cast by at most n voters, therefore there are O(nk!) vote
configurations that need to be considered.

Having computed all of the quality scores q(�σ, j), we can
define a distribution D�σ such that the probability that D�σ re-
turns an outcome j ∈ [k] is given by D�σ(j) = max{1 +
ξq(�σ, j), 0}/∑ι∈[k] max{1 + ξq(�σ, ι), 0}. Observe that this
distribution is efficiently samplable, therefore the approxima-
tion g can be computed efficiently computed.

5 Optimality of our Approximations

In this section, we develop lower bounds on the approxi-
mation parameters that can be achieved for approximately
strategy-proof voting rules. In particular, we demonstrate that

only trivial voting rules can be ε-strategy-proof for small val-
ues of ε, and we show that such voting rules cannot provide
good approximations of natural voting rules like PLURALITY.

We begin by showing that for small values of ε, only trivial
voting rules are ε-strategy-proof. The general outline of the
proof is as follows: we define a reduction between ε-strategy-
proof voting rules and 0-strategy-proof voting rules by in-
cluding punishments for players who misreport their pref-
erences. Consider the following modified mechanism: with
probability 1 − p we run the original mechanism and with
probability p we choose a single player i and output his first
choice (according to his reported preferences). This has the
effect that for appropriate values of ε, p, no one wants to mis-
report their first choice. However, they can still successfully
deviate by making more subtle changes further down their
preference profile. We overcome this by modifying our be-
havior slightly: when we choose a player i, we return each
of his choices with probability inversely proportional to their
ranking in his reported preferences. For small values of ε, this
style of punishment is sufficient to offset any benefits yielded
by a deviating strategy under the original mechanism. The
result then follows from Theorem 3.2. More formally:
Theorem 5.1. Let ε < 1/nk3. A randomized voting rule
g : (Σk)

n → [k] is ε-strategy-proof if and only if it is trivial.

Proof. Let ui be uniformly distributed for all i ∈ [n] —
that is the utility assigned to the outcome ranked jth is
(k − j)/(k − 1). Define a new randomized voting rule g′
that for each i ∈ [n], returns i’s jth choice (according to i’s
reported preference) with probability kε(k − j) and other-
wise follows the original mechanism g. That is, we use one
of the unilateral “punishment” mechanisms with probability
p = n

∑
j∈[k] kε(k − j) < nk3ε and we use the original

mechanism with probability 1−p. Observe that both of these
probabilities are in the range [0,1] because ε < 1/nk3.

Let �σ, �σ′ be preference profiles that differ only in the ith
component and let σi,j denote the outcome ranked jth by σi.
We begin by claiming that the expected loss of utility from
deviating (due to the unilateral punishment mechanisms) is at
least ε. This will offset any utility gained under the original
mechanism g.

Claim 5.2.
∑

j kε(k − j)(ui(�σ, σi,j)− ui(�σ, σ
′
i,j)) ≥ ε.

We first show how to prove Theorem 5.1 assuming this claim,
and then we prove the claim itself.

E[ui(�σ, g
′(�σ))]− E[ui(�σ, g

′(�σ′))]

=
∑

j

kε(k − j)(ui(�σ, σi,j)− ui(�σ, σ
′
i,j))

+ (1− p)(E[ui(�σ, g(�σ))]− E[ui(�σ, g(�σ
′))]) (1)

≥ ε+ (1− p)(E[ui(�σ, g(�σ))]− E[ui(�σ, g(�σ
′))]) (2)

≥ ε+ (1− p)(−ε) (3)
≥ 0 (4)

(1) follows by the definition of expectation, (2) follows imme-
diately from Claim 5.2, (3) follows from the fact that the orig-
inal mechanism g is ε-strategy proof, and (4) follows from the
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fact that p ∈ [0, 1]. Since g′ is 0-strategy-proof, by Theorem
3.2 it must be trivial. Since g′ follows mechanism g with
probability 1− p > 0, it follows that g is also trivial.

Proof of Claim 5.2: We begin by considering the simpli-
fied case where σi and σ′i are identical except that the posi-
tions of two outcomes j1, j2 are swapped. Assume without
loss of generality that σi(j1) > σi(j2). In this case, most
of the k unilateral punishment rules cancel (because the pref-
erences only differ in two positions). Let rσ(j) indicate the
rank of j according to preference σ. The expected difference
in utility contributed by the punishment mechanism is

(kε(k − rσi
(j1))ui(j1) + kε(k − rσi

(j2))ui(j2))

− (
kε(k − rσ′

i
(j1))ui(j1) + kε(k − rσ′

i
(j2))ui(j2)

)

Since the difference between σi, σ
′
i is that the two ranks are

switched—rσ′
i
(j1) = rσi

(j2) and rσ′
i
(j2) = rσi

(j1)—the
expected difference in utility can be written as

kε ((k − rσi
(j1))− (k − rσi

(j1))) (ui(j1)− ui(j2))

The difference in rank between j1 and j2 under preference
σi is at least 1. Since ui is uniformly distributed, the dif-
ference in utility ui between j1, j2 is at least 1/k, therefore∑

j kε(k − j)(u(�σ, σi,j)− u(�σ, σ′i,j)) ≥ kε · 1 · (1/k) = ε.
We now consider the general case where σi and σ′i differ

arbitrarily. Define a sequence �σ′ = �σ(1), �σ(2), . . . , �σ(m) = �σ
iteratively as follows: given �σ(ι), let σ

(ι+1)
� = σ

(ι)
� for all

	 	= i. Define the preferences σ
(ι)
i iteratively using bubble

sort [Friend, 1956]: any two adjacent preferences differ only
by flipping two adjacent outcomes, and the two adjacent out-
comes are only flipped if they are in the wrong relative order
(according to the final preference ordering σi). The fact that
this sequence is well defined (and terminates with �σ(m) = �σ)
follows immediately from the correctness of bubble sort. The
proof that the difference in voter i’s expected utility between
two adjacent hybrid preferences is at least ε follows by the
above argument since only two outcomes are flipped and only
if they start in the wrong relative order. Claim 5.2 then fol-
lows by a hybrid argument.

In spite of this limitation, some trivial voting rules still have
good approximation for small values of ε.
Example 5.3. Define a class of voting rules SUBSET-δ :
(Σk)

n → [k] by SUBSET-δ(�σ) = PLURALITY(σ1, . . . , σδ).
The rule g that returns an output j ∈ [k] uniformly at random
is a 0-strategy-proof δ-approximation of SUBSET-δ.
Example 5.4. Define a class of voting rules MODULO-k :
(Σk)

n → [k] that returns the number of first-choice votes
given to the winner (under the voting rule PLURALITY) mod-
ulo k. Again the rule g that returns an output k uniformly at
random is a 0-strategy-proof 
k/2�-approximation.

However, neither of these voting rules satisfy our intuition
concerning what constitutes a “good” voting rule. SUBSET-δ
is not neutral—that is the outcome depends on the order of
the players—and MODULO-k is not monotonic.

We focus instead on a common, natural voting rule: PLU-
RALITY. We show that under our definition of an approxima-
tion, no trivial voting rule is a good approximation of PLU-
RALITY.

Theorem 5.5. Let n ≥ k, let β > 0. For sufficiently large n,
PLURALITY does not have a trivial βn-approximation.

The proof closely follows that of Procaccia [2010] and is
omitted due to space constraints. Observe that this result im-
plies that for the voting rule PLURALITY, the approximation
constructed in Theorem 4.1 is asymptotically optimal.
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