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Abstract

An important problem in voting is that agents may
misrepresent their preferences in order to obtain a
more preferred outcome. Unfortunately, this phe-
nomenon has been shown to be inevitable in the
case of resolute, i.e., single-valued, social choice
functions. In this paper, we introduce a variant
of Maskin-monotonicity that completely character-
izes the class of pairwise irresolute social choice
functions that are group-strategyproof according to
Kelly’s preference extension. The class is narrow
but contains a number of appealing Condorcet ex-
tensions such as the minimal covering set and the
bipartisan set, thereby answering a question raised
independently by Barberà (1977) and Kelly (1977).
These functions furthermore encourage participa-
tion and thus do not suffer from the no-show para-
dox (under Kelly’s extension).

1 Introduction

One of the central results in social choice theory states that
every non-trivial social choice function (SCF)—a function
mapping individual preferences to a collective choice—is
susceptible to strategic manipulation (Gibbard, 1973; Sat-
terthwaite, 1975). However, the classic result by Gibbard
and Satterthwaite only applies to resolute, i.e., single-valued,
SCFs. The notion of a resolute SCF is rather restricted and
artificial.1 For example, consider a situation with two voters
and two alternatives such that each voter prefers a different
alternative. The problem is not that a resolute SCF has to
pick a single alternative (which is a well-motivated practical
requirement), but that it has to pick a single alternative based
on the individual preferences alone (see, e.g., Kelly, 1977).
As a consequence, resoluteness is at variance with elemen-
tary notions of fairness such as neutrality and anonymity.

In order to remedy this shortcoming, Gibbard (1977) went
on to characterize the class of strategyproof decision schemes,
i.e., aggregation functions that yield probability distributions

1For instance, Gärdenfors (1976) claims that “[resoluteness] is a
rather restrictive and unnatural assumption.” In a similar vein, Kelly
(1977) writes that “the Gibbard-Satterthwaite theorem [. . . ] uses an
assumption of singlevaluedness which is unreasonable.”

over the set of alternatives rather than single alternatives (see
also Barberà, 1979). This class consists of rather degenerate
decision schemes and Gibbard’s characterization is therefore
commonly interpreted as another impossibility result. How-
ever, Gibbard’s theorem rests on unusually strong assump-
tions with respect to the voters’ preferences. In contrast to
the traditional setup in social choice theory, which typically
only involves ordinal preferences, his result relies on the ax-
ioms of von Neumann and Morgenstern (or an equivalent set
of axioms) in order to compare lotteries over alternatives.

The gap between Gibbard and Satterthwaite’s theorem for
resolute SCFs and Gibbard’s theorem for decision schemes
has been filled by a number of impossibility results with vary-
ing underlying notions of how to compare sets of alterna-
tives with each other (e.g., Gärdenfors, 1976; Barberà, 1977;
Kelly, 1977; Duggan and Schwartz, 2000; Ching and Zhou,
2002; Sato, 2008), many of which are surveyed by Taylor
(2005) and Barberà (2010). In this paper, we will be con-
cerned with the weakest (and therefore least controversial)
preference extension from alternatives to sets due to Kelly
(1977). According to this definition, a set of alternatives
is weakly preferred to another set of alternatives if all ele-
ments of the former are weakly preferred to all elements of
the latter. Barberà (1977) and Kelly (1977) have shown in-
dependently that all non-trivial SCFs that are rationalizable
via a quasi-transitive relation are manipulable in this model.
However, as witnessed by various other (non-strategic) im-
possibility results that involve quasi-transitive rationalizabil-
ity (e.g., Mas-Colell and Sonnenschein, 1972), it appears as
if this property itself is unduly restrictive. As a consequence,
Kelly (1977) concludes his paper by contemplating that “one
plausible interpretation of such a theorem is that, rather than
demonstrating the impossibility of reasonable strategy-proof
social choice functions, it is part of a critique of the regular-
ity [rationalizability] conditions” and Barberà (1977) states
that “whether a nonrationalizable collective choice rule ex-
ists which is not manipulable and always leads to nonempty
choices for nonempty finite issues is an open question.” Also
referring to nonrationalizable choice functions, Kelly (1977)
writes: “it is an open question how far nondictatorship can be
strengthened in this sort of direction and still avoid impossi-
bility results.”

The first result of this paper is negative and shows that
no Condorcet extension is strategyproof. The proof, how-
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ever, crucially depends on strategic tie-breaking and hence
does not work for strict preferences. We therefore turn to
SCFs that cannot be manipulated by voters who misrepre-
sent the strict part of their preference relation and show that
all SCFs that satisfy a new variant of Maskin-monotonicity
called set-monotonicity are strategyproof in this sense. Set-
monotonicity requires the invariance of choice sets under the
weakening of unchosen alternatives and is only satisfied by a
handful of SCFs such as the top cycle, the minimal covering
set, and the bipartisan set. Strategyproofness (according to
Kelly’s preference extension) thus draws a sharp line within
the space of SCFs as many established SCFs (such as plu-
rality, Borda’s rule, and all weak Condorcet extensions like
Llull’s rule or Young’s rule) are known to be manipulable
for strict preferences (see, e.g., Taylor, 2005). We further-
more show that our characterization is complete for pairwise
SCFs, i.e., SCFs whose outcome only depends on the compar-
isons between pairs of alternatives. Since set-monotonicity
coincides with Maskin-monotonicity in the context of reso-
lute SCFs, our characterization can thus be seen as a gen-
eralization of the Muller and Satterthwaite (1977) theorem
within the setting of pairwise SCFs. We conclude the paper
by pointing out that voters can never benefit from abstaining
strategyproof pairwise SCFs. This does not hold for resolute
Condorcet extensions, which is commonly known as the no-
show paradox (Moulin, 1988).

Kelly’s conservative preference extension has previously
been primarily invoked in impossibility theorems because it
is independent of the voters’ attitude towards risk and the
mechanism that eventually picks a single alternative from the
choice set. Its interpretation in positive results, such as in
this paper, is more debatable. Gärdenfors (1979) has shown
that Kelly’s extension is appropriate in a probabilistic con-
text when voters are unaware of the lottery that will be used
to pick the winning alternative. (Whether they are able to
attach utilities to alternatives or not does not matter.) Al-
ternatively, one can think of an independent chairman or a
black-box that picks alternatives from choice sets in a way
that prohibits a meaningful prior distribution. Whether these
assumptions can reasonably be justified or such a device can
actually be built is open to discussion. In particular, the study
of distributed protocols or computational selection devices
that justify Kelly’s extension appears to be promising. In-
spired by early work by Bartholdi, III et al. (1989), recent
research in computer science investigated how to use compu-
tational hardness—namely NP-hardness—as a barrier against
manipulation. However, NP-hardness is a worst-case mea-
sure and it would be much preferred if manipulation is hard
on average. Recent negative results on the hardness of typi-
cal cases have cast doubt on this strand of research (see, e.g.,
Conitzer and Sandholm, 2006; Walsh, 2009; Isaksson et al.,
2010), but more work remains to be done to settle the ques-
tion completely. The current state of affairs is surveyed by
Faliszewski and Procaccia (2010). If computational protocols
or devices can be used to justify Kelly’s extension by making
“unpredictable” random selections, this might be an interest-
ing alternative application of computational techniques to ob-
tain strategyproofness.

2 Preliminaries

In this section, we provide the terminology and notation re-
quired for our results. We use the standard model of social
choice functions with a variable agenda (see, e.g., Taylor,
2005).

2.1 Social Choice Functions

Let U be a universe of alternatives over which voters entertain
preferences. The preferences of voter i are represented by a
complete preference relation Ri ⊆ U × U.2 We have a Ri b
denote that voter i values alternative a at least as much as
alternative b. In compliance with conventional notation, we
write Pi for the strict part of Ri, i.e., a Pi b if a Ri b but
not b Ri a. Similarly, Ii denotes i’s indifference relation, i.e.,
a Ii b if both a Ri b and b Ri a. We denote the set of all
preference relations over the universal set of alternatives U
by R(U) and the set of preference profiles, i.e., finite vec-
tors of preference relations, by R∗(U). The typical element
of R∗(U) is R = (R1, . . . ,Rn) and the typical set of voters is
N = {1, . . . , n}. The set of feasible sets from which alterna-
tives are to be chosen is the set of finite and non-empty sub-
sets of U, denoted by F(U). Our central object of study are
social choice functions, i.e., functions that map the individual
preferences of the voters and a feasible set to a set of socially
preferred alternatives.
Definition 1. A social choice function (SCF) is a function f :
R∗(U) × F(U) → F(U) such that f (R, A) ⊆ A and f (R, A) =
f (R′, A) for all feasible sets A and preference profiles R,R′
such that R|A = R′|A.

A Condorcet winner is an alternative a that, when com-
pared with every other alternative b, is preferred by more vot-
ers, i.e., |{i ∈ N | a Ri b}| > |{i ∈ N | b Ri a}| for all
alternatives b � a. An SCF is called a Condorcet extension
if it uniquely selects the Condorcet winner whenever one ex-
ists. The following notational convention will be very helpful
throughout the paper. For a given preference relation Ri and
alternatives a and b,

R(a,b)
i = {Ri} ∪ {Ri ∪ {(a, b)}} ∪ {Ri \ {(b, a)} ∪ {(a, b)}}.

That is, R(a,b)
i is the set of all preference relations in which

alternative a is weakly strengthened with respect to b.
A standard property of SCFs that is often considered is

monotonicity. An SCF is monotonic if a chosen alternative
remains in the choice set when it is strengthened in individual
preference relations while leaving everything else unchanged.
Definition 2. An SCF f is monotonic if for all feasible sets
A, voters i, and preference profiles R and R′ such that R j =

R′j for all j � i, a ∈ f (R, A) and R′i ∈ R(a,b)
i for some b ∈

A implies a ∈ f (R′, A).
Two other properties that will turn out to be useful in the

context of this paper are the strong superset property and in-
dependence of unchosen alternatives. The strong superset

2Transitivity of individual preferences is not necessary for our
results to hold. In fact, Theorem 3 is easier to prove for general—
possibly intransitive—preferences. Theorem 4, on the other hand,
would require a more cumbersome case analysis for transitive pref-
erences.
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property goes back to early work by Chernoff (1954) (see also
Laslier, 1997) and requires that choice sets are invariant under
the removal of unchosen alternatives.

Definition 3. An SCF f satisfies the strong superset property
(SSP) if for all feasible sets A, B and preference profiles R
such that f (R, A) ⊆ B ⊆ A, f (R, A) = f (R, B).

Independence of unchosen alternatives was introduced by
Laslier (1997) in the context of tournament solutions and re-
quires that the choice set is invariant under modifications of
the preference profile with respect to unchosen alternatives.

Definition 4. An SCF f satisfies independence of unchosen
alternatives (IUA) if for all feasible sets A and preference pro-
files R and R′ such that Ri|{a,b} = R′i |{a,b} for all a ∈ f (R, A),
b ∈ A, and i ∈ N, f (R, A) = f (R′, A).

2.2 Strategyproofness

An SCF is manipulable if one or more voters can misrep-
resent their preferences in order to obtain a more preferred
outcome. Whether one choice set is preferred to another de-
pends on how the preferences over individual alternatives are
to be extended to sets of alternatives. In the absence of in-
formation about the mechanism that eventually picks a single
alternative from any choice set, preferences over choice sets
are typically obtained by the conservative extension R̂i (Bar-
berà, 1977; Kelly, 1977), where for any pair of feasible sets
A and B and preference relation Ri,

A R̂i B if and only if a Ri b for all a ∈ A and b ∈ B.

Clearly, in all but the simplest cases, R̂i is incomplete, i.e.,
many pairs of choice sets are incomparable. The strict part
of R̂i is denoted by P̂i, i.e., A P̂i B if and only if A R̂i B and
a Pi b for at least one pair of a ∈ A and b ∈ B.

Definition 5. An SCF f is R̂-manipulable by a group of voters
G ⊆ N if there exists a feasible set A and preference profiles
R,R′ with Ri = R′i for all i � G and f (R, A) � f (R′, A) such
that

f (R′, A) R̂i f (R, A) for all i ∈ G.

An SCF is R̂-strategyproof if it is not R̂-manipulable by sin-
gle voters, i.e., groups of size one. An SCF is R̂-group-
strategyproof if it is not R̂-manipulable by any group of vot-
ers. P̂-strategyproofness and P̂-group-strategyproofness can
be defined analogously.

R̂-group-strategyproofness is particularly strong in the
sense that none of the manipulating voters has to be strictly
better off in the new preference profile. Obviously, every SCF
that is R̂-group-strategyproof is also P̂-group-strategyproof.

It will turn out that SCFs that fail to be R̂-strategyproof can
only be manipulated by breaking ties strategically, i.e., voters
can obtain a more preferred outcome by only misrepresent-
ing their indifference relation. In many settings, for instance
when the choice infrastructure requires a strict ranking of the
alternatives, this may be deemed acceptable. Accordingly, we
obtain the following definition.

Definition 6. An SCF is strongly R̂-manipulable by a group
of voters G ⊆ N if there exists a feasible set A and preference
profiles R,R′ with Ri = R′i for all i � G, Ii ⊆ I′i for all i ∈ G,
and f (R, A) � f (R′, A) such that

f (R′, A) R̂i f (R, A) for all i ∈ G.

An SCF is weakly R̂-group-strategyproof if it is not strongly
manipulable by any group of voters. Weak P̂-group-
strategyproofness can be defined analogously.

In other words, every strongly manipulable SCF admits a
manipulation in which voters only misrepresent their strict
preferences. Clearly, weak R̂-group-strategyproofness and
R̂-group-strategyproofness coincide when voters have strict
preferences.

Strategyproofness has been shown to be tightly connected
to a strong version of monotonicity, which derives its name
from a characterization of Nash-implementable SCFs due
to Maskin (1999). An SCF satisfies Maskin-monotonicity
if a chosen alternative remains in the choice set when it is
(weakly) strengthened in individual preference relations and
the relationships between other unrelated alternatives may be
modified arbitrarily. Alternatively, it can be defined by requir-
ing that an alternative remains in the choice set when weak-
ening other alternatives.

Definition 7. An SCF f satisfies Maskin-monotonicity if for
all feasible sets A, voters i, and preference profiles R and R′
such that R j = R′j for all j � i, x ∈ f (R, A) and R′i ∈
R(a,b)

i for some a ∈ A, b ∈ A \ {x} implies x ∈ f (R′, A).

For strict individual preferences, Maskin-monotonicity
precisely characterizes strategyproof resolute SCFs.

Theorem 1 (Muller and Satterthwaite, 1977). If voters
have strict preferences, a resolute SCF is group-strategyproof
if and only if it satisfies Maskin-monotonicity.

Unfortunately, as famously shown by Gibbard (1973)
and Satterthwaite (1975), only trivial resolute SCFs satisfy
Maskin-monotonicity. In Section 3.2, we will introduce
a syntactically very similar condition that characterizes R̂-
group-strategyproof irresolute SCFs.

3 Results

This section contains four results. First, we show that no Con-
dorcet extension is P̂-strategyproof (Theorem 2). The proof
of this claim, however, crucially depends on breaking ties
strategically. We therefore study weak R̂-strategyproofness
and obtain a much more positive characterization (Theo-
rem 3) and show that the condition used for this characteriza-
tion is necessary and sufficient in the case of pairwise SCFs
(Theorem 4). Finally, we briefly examine the consequences
of our results on strategic abstention (Proposition 2).

3.1 Manipulation of Condorcet Extensions

We begin by showing that all Condorcet extensions are
weakly P̂-manipulable, which strengthens previous results by
Gärdenfors (1976) and Taylor (2005) who showed the same
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2 . . . 2 1 . . . 1 1

a2, . . . , am . . . a1, . . . , am−1 a3, . . . , am . . . a1, . . . , am−2 a2, . . . , am−1
a1 . . . am−1 am

a1 . . . am a2 . . . am a1

Table 1: Preference profile R for 3m voters where A = {a1, . . . , am}. Voters are numbered from left to right.

statement for a weaker notion of manipulability and weak
Condorcet extensions, respectively.3

Theorem 2. Every Condorcet extension is P̂-manipulable
when there are more than two alternatives.

Proof. Let A = {a1, . . . , am} with m ≥ 3 and consider the
preference profile R given in Table 1. For every alternative ai,
there are two voters who prefer every alternative to ai and are
otherwise indifferent. Moreover, there is one voter for every
alternative ai who prefers every alternative except ai+1 to ai,
ranks ai+1 below ai, and is otherwise indifferent.

Since f (R, A) yields a non-empty choice set, there has to
be some ai ∈ f (R, A). Due to the symmetry of the preference
profile, we may assume without loss of generality that a2 ∈
f (R, A). Now, let

R′ = (R1,R2,R3 \ {(ai, a1) | 3 ≤ i ≤ m},R4, . . . ,R3m) and
R′′ = (R′1,R

′
2,R

′
3,R

′
4 \ {(ai, a1) | 3 ≤ i ≤ m},R′5, . . . ,R′3m).

That is, R′ is identical to R, except that voter 3 lifted a1 on
top and R′′ is identical to R′, except that voter 4 lifted a1 on
top. Observe that f (R′′, A) = {a1} because a1 is the Condorcet
winner in R′′.

In case that a2 � f (R′, A), voter 3 can manipulate as fol-
lows. Suppose R is the true preference profile. Then, the least
favorable alternative of voter 3 is chosen (possibly among
other alternatives). He can misstate his preferences as in R′
such that a2 is not chosen. Since he is indifferent between all
other alternatives, f (R′, A) P̂3 f (R, A).

If a2 ∈ f (R′, A), voter 4 can manipulate similarly. Sup-
pose R′ is the true preference profile. Again, the least fa-
vorable alternative of voter 4 is chosen. By misstating his
preferences as in R′′, he can assure that one of his preferred
alternatives, namely a1, is selected exclusively because it is
the Condorcet winner in R′′. Hence, f (R′′, A) P̂′4 f (R′, A).

�

3.2 Weakly Group-Strategyproof SCFs

The previous statement showed that no Condorcet extension
is P̂-strategyproof, let alone R̂-group-strategyproof. For our
characterization of weakly R̂-group-strategyproof SCFs, we

3A weak Condorcet winner is an alternative that is preferred by
at least as many voters than any other alternative in pairwise com-
parisons. In contrast to Condorcet winners, weak Condorcet winners
need not be unique. An SCF is called a weak Condorcet extension
if it chooses the set of weak Condorcet winners whenever this set
is non-empty. A large number of reasonable Condorcet extensions
(including the minimal covering set and the bipartisan set) are not
weak Condorcet extensions. Taylor (2005) calls the definition of
weak Condorcet extensions “really quite strong” and refers to Con-
dorcet extensions as “much more reasonable.”

introduce the following variant of Maskin-monotonicity (cf.
Definition 7).

Definition 8. An SCF f satisfies set-monotonicity if for all
feasible sets A, voters i, and preference profiles R and R′
such that R j = R′j for all j � i, X = f (R, A) and R′i ∈
R(a,b)

i for some a ∈ A, b ∈ A \ X implies X = f (R′, A).

In other words, an SCF satisfies set-monotonicity if the
choice set is invariant under the weakening of unchosen al-
ternatives.

Despite the similar appearance, set-monotonicity is logi-
cally independent of Maskin-monotonicity. However, set-
monotonicity coincides with Maskin-monotonicity in the
context of resolute SCFs and, in the presence of IUA, it is
weaker than Maskin-monotonicity and stronger than mono-
tonicity. The proof of the following proposition is omitted
due to space restrictions.

Proposition 1. Maskin-monotonicity and IUA imply set-
monotonicity. Set-monotonicity implies monotonicity and
IUA.

We are now ready to state the main result of this section.4

Theorem 3. Every SCF that satisfies set-monotonicity is
weakly R̂-group-strategyproof.

Proof. Let f be an SCF that satisfies set-monotonicity and
assume for contradiction that f is not weakly R̂-group-
strategyproof. Then, there has to be a feasible set A, a
group of voters G ⊆ N, and two preference profiles R and
R′ with Ri = R′i for all i � G and Ii ⊆ I′i for all i ∈ G
such that f (R′, A) � f (R, A) and f (R′, A) R̂i f (R, A) for
all i ∈ G. We choose R and R′ such that the size of the
union of the symmetric differences of individual preferences
R 
 R′ =

⋃
i∈N(Ri \ R′i) ∪ (R′i \ Ri) is minimal, i.e., we look at

a “smallest” counterexample in the sense that R and R′ coin-
cide as much as possible. Let f (R, A) = X and f (R′, A) = Y .
We may assume R 
 R′ � ∅ as otherwise R = R′ and X = Y .
Now, consider a pair of alternatives a, b ∈ A such that, for
some i ∈ G, a Pi b and b R′i a, i.e., voter i misrepresents his
strict preference relation by strengthening b. The following
case analysis will show that no such a and b exist, which im-
plies that R and R′ and consequently X and Y are identical, a

4Besides characterizing a class of SCFs that does not admit
a strong manipulation, the proof of Theorem 3 shows something
stronger about this class: In every manipulation where voters mis-
represent strict preferences as well as indifferences, modifying the
strict preferences is not necessary. The same outcome could have
been obtained by only misrepresenting the indifference relation.
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contradiction. To this end, let
S = (R1, . . . ,Ri−1,Ri \ {(a, b)} ∪ R′i |{a,b},Ri+1, . . . ,Rn) and

S ′ = (R′1, . . . ,R
′
i−1,R

′
i \ {{(a, b)}, {b, a}} ∪ Ri|{a,b},R′i+1, . . . ,R

′
n).

In other words, S is identical to R, except that voter i’s prefer-
ences over {a, b} are as in R′. Similarly, S ′ is identical to R′,
except that voter i’s preferences over {a, b} are as in R.

Case 1 (a ∈ X and b ∈ Y): Y R̂i X implies that b Ri a, a
contradiction.

Case 2 (a � X): It follows from set-monotonicity that
f (S , A) = f (R, A) = X. Thus, S and R′ constitute a
smaller counterexample since |S 
 R′| < |R 
 R′|.

Case 3 (b � Y): It follows from set-monotonicity that
f (S ′, A) = f (R′, A) = Y . Thus, R and S ′ constitute a
smaller counterexample since |R 
 S ′| < |R 
 R′|.

Hence, R and R′ have to be identical, which concludes the
proof. �

As mentioned before, when assuming that voters have strict
preferences, weak strategyproofness and strategyproofness
are equivalent. By showing that every monotonic SCF that
satisfies SSP also satisfies set-monotonicity, we obtain the
following useful corollary, the proof of which is omitted due
to space restrictions.
Corollary 1. Every monotonic SCF that satisfies SSP is
weakly R̂-group-strategyproof.

As mentioned in the introduction, there are few—but nev-
ertheless quite attractive—SCFs that satisfy monotonicity and
SSP, namely the top cycle (also known as weak closure max-
imality, GETCHA, or the Smith set), the minimal covering
set, the bipartisan set, and their generalizations (see Bor-
des, 1976; Laslier, 1997; Dutta and Laslier, 1999). SSP
and monotonicity do not completely characterize weak R̂-
strategyproofness. SCFs that satisfy set-monotonicity but fail
to satisfy SSP can easily be constructed.

Remarkably, the robustness of the minimal covering set
and the bipartisan set with respect to strategic manipulation
also extends to agenda manipulation. The strong superset
property precisely states that an SCF is resistant to adding
and deleting losing alternatives. Moreover, both SCFs are
composition-consistent, i.e., they are strongly resistant to the
introduction of clones (Laffond et al., 1996).5 Scoring rules
like plurality and Borda’s rule are prone to both types of
agenda manipulation as well as to strategic manipulation.

3.3 Weakly Group-Strategyproof Pairwise SCFs

In this section, we identify a natural and well-known class
of SCFs for which the characterization given in the previous
section is complete. An SCF f is said to be based on pairwise
comparisons (or simply pairwise) if, for all preference pro-
files R, R′ and feasible sets A, f (R, A) = f (R′, A) if and only
if for all a, b ∈ A,

|{i ∈ N | a Pi b}| − |{i ∈ N | b Pi a}| =
|{i ∈ N | a P′i b}| − |{i ∈ N | b P′i a}|.

5In addition to these attractive properties, the minimal covering
set and the bipartisan set can be computed efficiently (Brandt and
Fischer, 2008).

In other words, the outcome of a pairwise SCF only de-
pends on the comparisons between pairs of alternatives (see,
e.g., Young, 1974). The class of pairwise SCFs is quite nat-
ural and contains a large number of well-known voting rules
such as Kemeny’s rule, Borda’s rule, maximin, ranked pairs,
and all rules based on simple majorities (e.g., Copeland’s
rule, the Slater set, the top cycle, the uncovered set, the
Banks set, the minimal covering set, and the bipartisan set).
We now show that set-monotonicity is necessary for the R̂-
strategyproofness of pairwise SCFs.

Theorem 4. Every weakly R̂-strategyproof pairwise SCF sat-
isfies set-monotonicity.

Proof. We need to show that every pairwise SCF that fails to
satisfy set-monotonicity is strongly R̂-manipulable. Suppose
SCF f does not satisfy set-monotonicity. Then, there exists
a feasible set A, a preference profile R, a voter i, and two
alternatives a, b ∈ A with b Ri a and b � f (R, A) = X such
that f (R′, A) = Y � X where R′ is a preference profile such
that Rj = R′j for all j � i and R′i = R(a,b)

i \ Ri.
First, define Rn+1 and R′n+1 by letting

Rn+1 = (U × U) \ {(a, b)} ∪ (Ri ∩ {(a, b)}) and
R′n+1 = (U × U) \ {(b, a)} ∪ (R′i ∩ {(b, a)}).

We now define two preference profiles with n+1 voters where
voter i is indifferent between a and b and the crucial change
in preference between a and b has been moved to voter n+ 1.
Let

S = (R1, . . . ,Ri−1,Ri ∪ {(a, b)},Ri+1, . . . ,Rn,Rn+1) and
S ′ = (R′1, . . . ,R

′
i−1,R

′
i ∪ {(b, a)},R′i+1, . . . ,R

′
n,R

′
n+1).

It follows from the definition of pairwise SCFs that f (S , A) =
f (R, A) = X and f (S ′, A) = f (R′, A) = Y . If b Pi a, we have
Y R̂n+1 X and f can be manipulated by voter n + 1 at pref-
erence profile S by misstating his strict preference b Pn+1 a
as b I′n+1 a. If, on the other hand, b Ii a, we have X R̂′n+1 Y and
f can be manipulated by voter n + 1 at preference profile S ′
(by misstating his strict preference a P′n+1 b as a In+1 b).
Hence, f is strongly R̂-manipulable. �

Proposition 1 entails the following useful corollary of The-
orem 4.

Corollary 2. Every weakly R̂-strategyproof pairwise SCF
satisfies IUA.

As a consequence, a large number of Condorcet extensions
(e.g., Copeland’s rule, the uncovered set, the Banks set, and
the Slater set) are not weakly R̂-group-strategyproof because
they are known to fail IUA (Laslier, 1997).

Theorem 3 and Theorem 4 establish that set-monotonicity
is necessary and sufficient for the weak R̂-group-
strategyproofness of pairwise SCFs, which can be seen
as a generalization of Theorem 1 to irresolute SCFs within
the setting of pairwise SCFs.

Theorem 5. A pairwise SCF is weakly R̂-group-strategyproof
if and only if it satisfies set-monotonicity.
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3.4 Weak Strategyproofness and Participation

Brams and Fishburn (1983) introduced a particularly natural
variant of strategic manipulation where voters obtain a more
preferred outcome by abstaining the election. An SCF is said
to satisfy participation if voters are never better off by ab-
staining. A common criticism of Condorcet extensions is that
they do not satisfy participation and thus suffer from the so-
called no-show paradox (Moulin, 1988). However, Moulin’s
proof strongly relies on resoluteness. Irresolute Condorcet
extensions that satisfy P̂-participation, which is defined in
analogy to P̂-strategyproofness, do exist and, in the case of
pairwise SCFs, there is a close connection between (weak)
strategyproofness and participation as shown by the follow-
ing proposition, the proof of which is omitted due to space
restrictions.
Proposition 2. Every weakly P̂-strategyproof pairwise SCF
satisfies P̂-participation.

Consequently, according to Kelly’s preference extension,
all SCFs satisfying set-monotonicity are immune to strategic
abstention, which adds to the appeal of this compelling class
of functions.
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