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Abstract

The environment is an essential component of
multi-agent systems and is often used to coordi-
nate the behaviour of individual agents. Recently
many languages have been proposed to specify and
implement multi-agent environments in terms of
social and normative concepts. In this paper, we
first introduce a formal setting of multi-agent en-
vironment which abstracts from concrete specifica-
tion languages. We extend this formal setting with
norms and sanctions and show how concepts from
mechanism design can be used to formally analyse
and verify whether specific normative behaviours
can be enforced (or implemented) if agents follow
their subjective preferences. We also consider com-
plexity issues of associated problems.

1 Introduction

The overall objectives of multi-agent systems can be en-
sured by coordinating the behaviors of individual agents and
their interactions. Existing approaches advocate the use of
exogenous normative environments and organisational mod-
els to regulate the agents’ behaviors and interactions [5;
6; 7; 11]. Norm-based environments regulate the behav-
ior of individual agents in terms of norms being enforced
by means of regimentation or sanctioning mechanisms [5;
6]. Generally speaking, the social and normative perspective
is conceived as a way to make the development and mainte-
nance of multi-agent systems easier to manage.

This paper aims at providing a formal analysis of rule-
based normative environments from the mechanism design
perspective. In particular, an environment in a multi-agent
system is modelled as a concurrent game structure (which
is also considered as mechanism) where possible paths in
the game structure denote possible execution traces of the
corresponding multi-agent environment. Adding norms to
the environment may change its set of possible execution
traces which in turn correspond to the set of paths of an up-
date of the concurrent game structure. The correspondence
between (normative) multi-agent environment and (updated)
game structure is an attempt to bridge the gap between nor-
mative environments and mechanism design. This relation

sets the stage for studying formal properties of normative en-
vironments such as whether a set of norms implements spe-
cific choice functions in specific equilibria. This also allows,
for example, to analyse whether groups of agents are will-
ing to obey the rules specified by a normative system. The
formal analysis is closely related to work presented in [1;
16] where norms are modelled by the deactivation of tran-
sitions. Adding norms to environments in our model may,
however, either deactivate transitions or on the contrary
add new transitions. Our work is also motivated by [14;
15] where social laws were proposed to be used in computer
science to control agents’ behaviours.

This paper is motivated by 2OPL (Organisation Oriented
Programming Language), which is a rule-based language to
implement normative environments in terms of norms and
sanctions [5; 6]. In particular, it provides constructs to spec-
ify 1) the (initial) state of an environment, 2) the outcomes of
agents’ actions, and 3) norms and sanctions. The execution
of a normative environment specification, with a sequence of
agents’ synchronized actions as input, determines the norma-
tive outcomes of the action sequence. Although many other,
even more expressive, languages have been proposed to spec-
ify normative environments, 2OPL has the advantage that it
comes with a full operational semantics and computationally
attractive complexity. This allows normative environments to
be studied and analysed as formal mechanisms.

The structure of this paper is as follows. First, we explain
our notion of normative environment for multi-agent systems.
We propose a formal setting for multi-agent environments
and show how they can be related to concurrent game struc-
tures and mechanism design. Then, we introduce a specifi-
cation language for normative multi-agent environments and
extend the formal setting of environments with norms and
sanctions. Finally, we study and analyse formal properties of
normative multi-agent environments using their correspond-
ing concurrent game structure and concepts from mechanism
design. We prove the complexity of two verification prob-
lems.

2 Formal Framework

2.1 Motivation: Multi-Agent Systems

A multi-agent system consists of a set of agents and an en-
vironment in which the agents perform their actions. We as-
sume that agents may or may not be aware of the environ-
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ment specification, perform only synchronous actions in the
environment, and that the outcome of agents’ synchronized
actions is determined by the environment. In this setting, an
environment is specified in terms of an initial state and a set
of synchronized action specifications. Agents can change the
state of the environment by performing synchronized actions.

Following [5; 6], a normative environment is specified in
terms of an initial state, a set of synchronized action spec-
ifications, and two sets of rules that represent norms and
sanctions. A normative environment determines the outcome
of actions by means of action specifications together with
norms and sanctions. Norms are represented by counts-as
rules [10]. A counts-as rule indicates that a specific state
(satisfying the rule’s antecedent) counts as a violated state
(represented by a specific violation proposition). For exam-
ple, a traffic norm can be represented by the counts-as rule
{carParked,¬Pay} ⇒ {violPark} stating that parking
the car without paying (carParked and ¬Pay) counts as a
parking violation (violPark). Sanctions are also represented
by rules [5]. A sanction rule connects violation propositions
(the rule’s antecedent) to state propositions (the rule’s conse-
quent). The state propositions in sanction rules denote sanc-
tions and specify how a violated environment state should be
repaired and turned back to an optimal state. For example, a
sanction rule {violPark} ⇒ {fine50} connects the parking
violation to a state proposition denoting a fine of 50 euro be-
ing issued. A pair consisting of a set of counts-as rules and a
set of sanction rules is called a norm set.

A normative environment is thus an environment together
with a norm set. We assume the sets of counts-as and sanc-
tions rules to be finite.

2.2 Notation: Propositions, States, Actions

We assume that Π is a finite and fixed set of propositional
symbols. For each X ⊆ Π, we use X− to refer to {¬p |
p ∈ X}, Xc = X ∪ (Π \X)− (closed-world assumption for
X), and X l = X ∪ X− (literals). Given a set X ⊆ Π and
a consistent set Y ⊆ Πl we define the update of X by Y as
X⊕Y = {p ∈ Π | p ∈ X∪Y and ¬p �∈ Y }. Note that X⊕Y
consists of all propositional atoms from Y and extends them
with atoms from X as long as they are consistent with (the
negated atoms from) Y . We assume the reader is familiar with
standard propositional inference, e.g. X |=PL ∧

Y means
that formula

∧
Y (

∧
Y stands for

∧
l∈Y l) is a consequence of

theory X using the propositional calculus where X,Y ⊆ Πl.
A set X ⊆ Πl is said to be consistent iff X �|=PL ⊥.

In the following we use Q to denote a set of states. We
assume that states are given by propositional facts, that is
Q ⊆ P(Π). Note, that |Q | ≤ 2|Π|. We chose this repre-
sentation due to the following specific notion of action pro-
file specification. We assume that Agt = {1, 2, . . . , k} is a
finite, fixed and non-empty set of agents. We typically use
i, i1, i2 . . . as variables for agent names. Each agent i ∈ Agt
is assumed to have at its disposal a set of (individual) actions
that it can perform in the environment. A (synchronous) ac-
tion profile consists of an action for each agent i ∈ Agt. The
specification of an action profile �α = (α1, . . . , αk) in an en-
vironment, where αi is the individual action of agent i, is
given by (P, �α,E) where P,E ⊆ Πl are consistent sets. The

precondition P specifies the applicability of action profile �α.
Action profile �α is applicable in a state q iff qc |=PL ∧

P .
The postcondition E specifies the effect of performing �α in a
state, i.e., how a state changes after the action has been per-
formed. Performing �α in state q results in state q ⊕ E. Note
that ⊕ is a simple update operator that adds/removes propo-
sitional atoms to/from states.

2.3 Concurrent Structures and Strategies

In the following we introduce concurrent (game) structures
(CGSS) from [2] (modulo minor modifications). They serve
as models for our formal analysis of the environment in multi-
agent systems. An environment in a multi-agent system is as-
sumed to be specified in terms of a set of states, among which
an initial state, and a set of (synchronized) action specifica-
tions. Informally speaking, a CGS is given by a labelled
transition system where transitions are activated by action
profiles. In our setting we construct a CGS from a given
set Q of states, an initial state qI ∈ Q , and a set ActSpec
of action specifications. A CGS represents possible evolu-
tions of an environment as a consequence of agents perform-
ing (synchronized) action profiles. Formally, we define the
(ActSpec,Q , qI)-generated CGS as the CGS which is ob-
tained by applying all action profiles to the set of states.

Essentially, these models can be seen as mechanisms. They
play the same role as their game theoretic counterparts and
define the rules and the structure of the game. Henceforth,
we will use the terms CGS and mechanism interchangeably.

Definition 1 (Generated CGS, M) Let Π be a set of atomic
propositions, ActSpec be a set of action specifications, Q ⊆
P(Π) be a set of states, and qI ∈ Q . The (ActSpec,Q , qI)-
generated CGS is given by M = 〈Agt,Q , Act, d̂, d, o〉 where

• Agt = {1, . . . , k} is a nonempty finite set of agents (as
before).

• Act = {αi | (P, (α1, . . . , αk), E) ∈ ActSpec, 1 ≤ i ≤
k} is a nonempty finite set of individual actions.

• d̂ : Q → P(Actk) is a function that assigns a set of
applicable action profiles to each state. �α ∈ d̂(q) iff
∃(P, �α,E) ∈ ActSpec : qc |=PL ∧

P and q ⊕ E ∈ Q .
Hence, an action profile is applicable if its precondition
is satisfied and if the resulting state belongs to Q.

• d : Agt × Q → P(Act) is a function that assigns
nonempty sets of applicable individual actions to each
agent at each state, i.e. d(i, q) = {αi | (α1, . . . , αk) ∈
d̂(q), 1 ≤ i ≤ k}. We write di(q) instead of d(i, q).

• o : Q × Actk → Q is a partial (deterministic) tran-
sition function that determines the outcome state of an
action profile performed in a state. It is defined on all
(q, �α) with �α ∈ d̂(q). We have o(q, �α) = q ⊕ E for
(P, �α,E). We assume that other action profiles simply
fail and cannot be executed.

If clear from context we will simply use M to denote the
(ActSpec,Q , qI)-generated CGS. We use XM to refer to el-
ement X contained in M, e.g. QM = Q .
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Figure 1: A simple CGS M0.

Example 1 For a set Π = {start,m1,m2}
of propositions, we define the set ActSpec
of action profiles as follows: ActSpec =
{({start}, (h, h), {¬start}), ({¬start}, (n, n), {start,¬m1,
¬m2}), ({start}, (h, t), {m1,m2,¬start}), ({start}, (t, h),
{m1,m2,¬start}), ({start}, (t, t), {m1},¬start)}. Figure 1
shows the (ActSpec, {q0, q1, q2, q3}, q0)-generated CGS
M0. For convenience, we identify the label of the node with
the set of propositions true in it, e.g. q0 = {start}. Agents
can execute actions t, h, and n, standing for “show tail”,
“show head”, and “no operation”, respectively.

A strategy of agent i is a conditional plan that specifies
what i is going to do in each state. In this paper we focus on
state-based strategies (due to obvious reasons they are also
called memoryless strategies).

Definition 2 (Strategy, valid) A (memoryless) strategy for
agent i is a function si : Q → Act such that si(q) ∈ di(q).
A collective strategy sA for a group A = {i1, . . . , il} ⊆ Agt
of agents is a tuple (si1 , . . . , sil) of individual strategies, one
per agent in A. For A = Agt we obtain a (complete) strategy
profile. Given two collective strategies sA and sB , A∩B = ∅,
we write (sA, sB) to denote the collective strategy of A ∪B.

We say that a complete strategy profile s is valid iff for all
q ∈ Q it holds that s(q) ∈ d̂(q).

A path λ = q0q1q2 . . . is an infinite sequence of states
such that there is a transition between each qm, qm+1. We
use λ[m] to denote the mth position on path λ (starting from
m = 0) and λ[m,∞] to denote the subpath of λ starting from
m.

Definition 3 (Outcome) The outcome outM(q, s) of a valid
strategy profile s from state q in model M is the (unique)
path λ = q0q1q2 . . . such that q0 = q and qm =
o(qm−1, s(qm−1)) for each m = 1, 2, . . ..

2.4 Agent’s Preferences

In the analysis of multi-agent systems preferences of agents
are often of utmost importance. They are the driving force of
agents’ behaviours. In our considered models, the executions
of the environment and thus the corresponding CGS-paths
can be seen as the semantics of preferences. Hence, it is a
natural consequence to assume that agents prefer some exe-
cutions over others. We do not directly consider sets of paths
to denote preferences (they may not be regular), but rather
temporal formulae. They are used to describe sets of paths,
namely all those paths which satisfy them. This idea was
already followed in [1; 16; 4] where CTL and ATL, respec-
tively, have been used to model agents’ preferences.

Here, we use the temporal logic LLTL [13] for modelling
preferences of agents. The logic extends propositional logic

with operators that allow to express temporal patterns over
infinite sequences of states, called paths. The basic temporal
operators are U (until), � (always), � (eventually) and © (in
the next state). The language LLTL(Π) is given by all formu-
lae generated by the following grammar, where p ∈ Π is a
proposition: ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕUϕ | ©ϕ | �ϕ | �ϕ.
Models for this language are defined as ω-sequences (infinite
paths) λ over P(Π), i.e. λ ∈ P(Π)ω . We assume the reader is
familiar with the semantics of LTL. We note that in our setting
we will not make use of the full expressivity of the logic LTL
and its accompanied high computational complexity (cf. Def.
9) which matches the computationally attractive properties of
the (restricted) language used for norms and sanctions.

3 Normative Mechanism Design

Here we introduce normative mechanism design by consider-
ing a mechanism with norms, sanctions and preferences.

3.1 Basic Setting and Definitions

In social choice theory a social choice function assigns out-
comes to given profiles of preferences (see e.g. [12]). Various
natural requirements are imposed on social choice functions
in order to ensure e.g. fairness. Mechanism design is con-
cerned with creating a protocol/a set of rules such that the
outcome agrees with a social choice function f provided that
agents behave rationally–in some sense–according to their
preferences. In game theoretic terms behaving rationally
means to act according to some solution concept S (e.g. the
concept of Nash equilibria). If such a mechanism exists it is
said that it S-implements f .

We define a normative behaviour function as a function
that assigns a set of “desired” environment executions (rep-
resented by LLTL-formulae) to each preference profile (a se-
quence of sequences of LLTL-formulae) of the agents. We
refer to the outcome as the normative outcome wrt a spe-
cific preference profile. In our view, the aim of normative
mechanism design is to come up with a normative mechanism
(i.e., an environment specified in terms of actions, norms and
sanctions) such that the agents–again following some ratio-
nality criterion according to their preferences–behave in such
a way that the environment executions stay within the nor-
mative outcome. The idea is that norms and sanctions will
(de)motivate agents performing specific actions.

We begin with introducing the set of preferences and out-
comes defined over elements used in a CGS and in LLTL.
Definition 4 (Preference) A preference list of an agent
i ∈ Agt is given by a finite sequence γi =
((ϕ1, u1), . . . , (ϕl−1, ul−1), (ϕl, ul)) where each ϕj ∈
LLTL(Π), each uj ∈ N0 for j = 1, . . . , l − 1, ϕl = �, and
ul = 0. Intuitively, a path λ is assigned utility uj if ϕj is the
first formula in the list which is satisfied on λ.

A preference (profile) is given by �γ = (γ1, . . . , γk) con-
taining a preference list for each agent. We typically use
Prefs to denote a non-empty set of such preferences.

The definition of a normative behaviour function is
straightforward given the explanation above.
Definition 5 (Normative behaviour function)
A (M,Prefs)-based normative behaviour function f is a
mapping f : Prefs → LLTL(Π).
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We have argued above that a normative mechanism may
be considered as an environment together with a set of norms
and sanctions that guide agents’ behaviours in certain direc-
tions. Agents are assumed to behave according to their pref-
erences. As the fulfilment of these preferences does only de-
pend on the valuation of states on a path, agents’ behavior
may be effected if imposing norms and sanctions would cause
a modification of states’ valuations.

In this paper, we follow [5] and represent norms as a set
of counts-as rules and sanctions as a set of sanction rules.
The advantages of this approach are the existence of an oper-
ational semantics (already implemented), its simplicity (rule
based representation and computational complexity), and its
expressiveness (p counts-as a violation can be interpreted as
it is obligatory that ¬p or p is forbidden). A counts-as rule
indicates that a state satisfying its antecedent counts as a state
with a specific violation. An example is given in Section 2.1.

Definition 6 (Norm Set M , Rcr, Rsr) A norm set M over
propositions Π is given by M = (Viol, Rcr, Rsr) where Viol
is a set of propositions disjoint with Π indicating norm vio-
lations, Rcr ⊆ P(Πl ∪ Viol) × P(Viol) is a set of count-as
rules, and Rsr ⊆ P(Viol) × P(Πl) a set of sanction rules.
For a rule r = B × H ∈ Rcr ∪ Rsr we also write B ⇒ H
and use body(r) (resp. head(r)) to refer to B (resp. H). The
empty norm set is defined as Mε = (∅, ∅, ∅).

The basic idea is that these norms imposed on a model
change the states’ valuation. The set of counts-as rules appli-
cable wrt a set of propositions X ⊆ Π is defined as follows:

Appcr(X,Rcr) = {r ∈ Rcr | Xc |=PL
∧

body(r)}.
Next, we use function clR

cr

X (Y ) = {head(r) | r ∈ Appcr(X∪
Y,Rcr)} and define clR

cr

X ↑ω as the smallest fixed-point of
clR

cr

X (·), which exists due to Knaster/Tarski’s fixed point the-
orem. This fixed point provides the set of heads of all appli-
cable counts-as rules, i.e. the set of all violation propositions
wrt to a set of propositions X . Finally, we define the result of
applying the norm set M to a state q ∈ Q as follows:

q � M := q⊕{head(r) | (clRcr

q ↑ω)c |=PL body(r) and r ∈ Rsr}.
The resulting state is a state in which all violations are de-
tected and corresponding sanctions are imposed. Note that
imposing sanctions modifies the state. Consequently, we de-
fine the result of applying the norm set M to a set of states Q
as follows: Q � M = {q � M | q ∈ Q}.

That is, we take each state q ∈ Q , determine all applicable
count-as rules to q (until a fixed point is reached) and generate
the violation propositions, derive the sanctions, and update q
with the derived sanctions.

Definition 7 (M � M , normative mechanism ) Let M be
the (ActSpec,Q , qI)-generated CGS. The normative update
of M with the norm set M , denoted M � M , is defined as
the (ActSpec,Q � M, qI � M)-generated CGS. We call the
tuple (M,M) a normative mechanism.

We would like to point out that M � M is a mechanism
whereas (M,M) is a normative mechanism.

Note that after a normative update took place some action
specifications may become inapplicable where others become

applicable, so we remove and create transitions which is an
important difference to [1].

3.2 Implementation of Normative Mechanisms

This section examines the question of whether specific out-
comes of a normative mechanism agree with a normative be-
haviour function. In this setting it is assumed that agents be-
have rationally in some way (they follow some solution con-
cept). In order to use these game theoretic concepts we link
our setting to strategic games.

Definition 8 (CGS � strategic game) Let M be a CGS,
k = |AgtM|, �γ = (γ1, . . . , γk) ∈ Prefs be a preference
profile, and qI be the initial state in M.

We define Γ(M, �γ, qI), the strategic game associated with
M, �γ, as the strategic game 〈AgtM,Σ1, . . . ,Σk, μ〉 (cf. [12])
where AgtM is the set of players, Σi is the set of strategies of
player i, and the payoff function μ = (μ1, . . . , μk) is defined
as follows:

μi(s) =

{
uj if s is a complete valid strategy profile,
−1 else,

where 1 ≤ i ≤ k, γi = ((ϕ1, u1), . . . , (ϕl−1, ul−1), (ϕl, ul))
and j is the minimal index such that outM(qI , s) |=LTL ϕj .
(We note that μ is well-defined as ϕl ≡ �).

A game theoretical solution concept, e.g. Nash equilib-
ria or dominant strategies, can be considered as a function
S whose domain is the set of strategic games and its image
is a set of strategy profiles. That is, for each strategic game
G = (Agt, (Σi), μ) we have that S(G) ⊆ ×i=1,...,|Agt|Σi.

We assume the reader is familiar with the solution concept
of Nash equilibria and dominant strategy equilibria and refer
to [12] for more details. We use NE and DOE to refer to
these concepts, respectively.

We lift the notion of solution concepts to a CGS M by
defining S(M, �γ, q) := S(Γ(M, �γ, q)).

Definition 9 (M S-implements f over M, qI ,Prefs)
We say that a norm set M S-implements normative
behaviour function f over M, qI ,Prefs iff the follow-
ing condition is satisfied for all �γ ∈ Prefs and all
∀s ∈ S(M � M,�γ, qI) : outM�M (qI , s) |=LTL f(�γ). If there
is some M that S-implements f over M, qI ,Prefs , we say
that f is S-implementable over M, qI ,Prefs .

We highlight that our notion of implementation is given
wrt. a norm set and not wrt. a mechanism per se.

Example 2 We consider the CGS M from Example 1 with
qI = q0. By strategy sx for x ∈ {t, h} we denote
the strategy with sx(q0) = x and sx(q) = n for all
other states q �= q0. We define Prefs = {γ1, γ2}
with γ1 = (((�(m1 ∧ m2), 1), (�, 0)), ((�m2, 1), (�, 0)))
and γ2 = (((�¬m1, 1), (�, 0)), (�(m1 ∨ m2 ∧ �¬(m1 ∧
m2, 1), (�, 0)))). Let the following normative behaviour
function f be given: f(γi) = �¬(m1 ∧ m2) for i ∈
{1, 2}. First of all we note that the (empty) norm set
M∅ does not NE-implement f over M, q0,Prefs because
NE(M, γ1, q0) = {(st, sh), (sh, st)} but f(γ1) is false on

106



Γ(M, γ1, q0):
1/2 sh st
sh 0, 0 1,1
st 1,1 0, 0

Γ(M, γ2, q0):
1/2 sh st
sh 1,0 0, 0
st 0, 0 0,1

Γ(M � M,γ1, q0):
1/2 sh st
sh 0,0 −1,−1
st −1,−1 0,0

Γ(M � M,γ2, q0):
1/2 sh st
sh 1,1 0, 0
st 0, 0 0,1

Figure 2: Strategic games for S, γ1, γ2, and M .

both paths resulting from these profiles. (We recall that
M � M∅ = M.)

Now, consider the norm set M =
({v}, {{¬start,m1,m2} ⇒ {v}}, {v} ⇒ {¬m1}}}).
The mechanism M � M is similar to M but state q2 = {m2}.
In particular, both action profiles (h, t) and (t, h) are not
applicable anymore. Then, M NE-implements f over
M, q0,Prefs . In Figure 2 we have shown the strategic games
Γ(M, γi, q0) and Γ(M � M,γi, q0) for i = 1, 2. The Nash
equilibria in each game are highlighted in bold letters. In the
game Γ(M � M,γ2, q0) we have that NE(M � M,γ2, q0) =
{(sh, sh), (st, st)}, outM�M (q, (sh, sh)) = {(q0q1)ω}, and
outM�M (q, (st, st)) = {(q0q3)ω}. For each path λ in the
outcome we have λ |=LTL f(γ1). The same holds for γ2.

4 Verification and Complexity Issues

In this section we consider the complexity of the problem
whether some norm set implements some normative behav-
ior function and the complexity needed to determine whether
such a norm set exists at all. In this paper we focus on Nash
equilibrium implementability. These results are important in
order to check whether a normative environment ensures de-
sired behaviors or whether some norm set can be constructed
to enforce such behaviors. Due to space limitations we can
only present the basic setting and the main results.

Encoding. How do we measure the input? Often, the num-
ber of action specification/transitions is exponential in the
number of states but could be expressed in a more compact
form. A compact action specification is given by (P, ξ, e)
where P is the precondition defined as before, ξ indicates
which actions are applicable (explained below), and e is a
list ((ξ1, S1), . . . , (ξh, Sh)) where each Sk ⊆ Πl is consis-
tent, 1 ≤ k ≤ h. Each formula ψ ∈ {ξ, ξ1, . . . ξh} is a
Boolean formula over propositions execiα where i ∈ Agt and
α ∈ Act. We require that |=PL ξ(�α) → ξk(�α) for some
k where �α = (α1, . . . , αk) is an action profile and ψ(�α) is
used to refer to the Boolean formula over {�,⊥} obtained
by replacing each execiα with � (resp. ⊥) if αi = α (resp.
αi �= α). The semantics of e is defined as [[e(�α)]] := Sj where
j, 1 ≤ j ≤ h, is the minimal index such that |=PL ξj(�α).
Therefore, (P, ξ, e) gives rise to (several) action specifica-
tions (P, �α, [[e(�α)]]) if |=PL ξ(�α). We use ˆActSpec to denote
the set of compact action specifications and ActSpec to refer
to its associated set of (non-compact) action specifications.

Problems. In this chapter we consider the (S,M)-
implementation problem IPSM which is given by all

P = (Π, Q, ˆActSpec, qI , f,Prefs,M) such that the
norm set M S-implements f over M, qI ,Prefs . (Re-
call, that M is the (ActSpec,Q, qI)-generated CGS.)
The S-implementation problem IPS contains all P ′ =

(Π, Q, ˆActSpec, qI , f,Prefs) such that there is a norm set M
with (Π, Q, ˆActSpec, qI , f,Prefs,M) ∈ IPSM. We assume
that f is computable in polynomial deterministic time wrt.
the size of the input. The size of Q and Π is defined as the
number of their elements. The size of a compact action spec-
ification is |(P, ξ, e)| = |P | + |ϕ| +∑h

i=1 |ξi|+ |Si|. Prefs
and M are measured in the canonic way.

The following result holds due to the restricted syntax of
the language used to define norm sets: fixed points can be
calculated in polynomial deterministic time.

Proposition 1 Given ˆActSpec, Q , and qI , we can compute
Q � M , and qI � M in polynomial deterministic time.

Theorem 2 The problem IPNEM is ΠP
2 -complete.

Proof. [Idea] Hardness is shown by a reduction of 2QBF,
a well known ΣP

2 -complete problem [8], to the comple-
ment of IPNEM . In [3] it is shown that a 2QBF-formula
φ ≡ ∃x1, . . . , xm∀xm+1, . . . , xnϕ(x1, . . . , xn) is true iff
a player v (the verifier, controlling variables x1, . . . , xm)
has a winning strategy sv (fixing a valuation for variables
x1 . . . xm) against each strategy sr (fixing a valuation for
variables xm+1 . . . xn) of the refuter r (controlling variables
xm, . . . , xn) to ensure some LTL-formula (in [3] ATL is used
but it can also be formulated in terms of LTL).

The new part in our proof is to construct a preference list, a
normative behaviour function, and a normative mechanism
such that a “witnessing” strategy sv of v (see above) ex-
ists iff there is a Nash equilibrium which falsifies f given
the other ingredients (this is exactly the complement of NE-
implementability). Our proof is also motivated by [9].

Membership is shown by guessing a strategy profile s =
(s1, . . . , sk) and checking whether any agent i can im-
prove its outcome by deviating from si (again, si is non-
deterministically guessed). If this is not the case s is a Nash
equilibrium and all other steps can be done in polynomial de-
terministic time. This shows that the complement of IPNEM

can be solved in ΣP
2 . �

Theorem 3 The problem IPNE is ΣP
3 -complete.

Proof. [Idea] In order to prove this result we extend the idea
from Theorem 2. We reduce a complemented 3QBF formula
φ ≡ ∀y1, . . . , yl∃x1, . . . , xm∀xm+1, . . . , xnϕ(y1, . . . , yl,
x1, . . . , xn) (this problem is well known to be ΠP

3 -
complete [8]) to the complement of an IPNE instance. The
idea is to use a norm set to generate truth valuations of the
universally quantified variables y1, . . . , yl. Once a norm set
is fixed we apply the reduction from Theorem 2. �

5 Conclusions and Future Research

In this paper we have proposed normative mechanism de-
sign as a formal tool for analysing normative environment
programs such as 2OPL programs. We have shown how
to abstract from a particular environment specification lan-
guage and how to apply methods from mechanism design to
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verify whether some norm restrictions imposed on a multi-
agent environment agree with the behaviour the designer ex-
pects. More precisely, we have introduced normative be-
haviour functions for representing the “ideal” behaviour of
multi-agent environments with respect to different sets of
agents’ preferences. The latter has enabled us to apply con-
cepts from game theory to identify agents’ rational behaviour.
These formal ideas can now be used to verify whether a norm
set (a set of norms and sanctions) is sufficient to motivate
agents to act in such a way that the behaviour described by
the normative behaviour function is met.

We have defined a norm set in such a way that is can mod-
ify facts in the environment states (cf. Def. 6 and 7). As
the language used for modelling agents’ preferences and the
facts in norm sets are based on the same set of propositional
symbols, a normative mechanism can steer the behaviour of
each agent in (almost) arbitrary ways. This notion of mecha-
nism is very powerful. A first refinement would be to identify
a subset ΠM ⊆ Π of facts and assume that a norm set can
only modify state valuations with respect to this set. Such a
mechanism can be much weaker but also more natural.

Another direction of future research is to consider robust-
ness against group deviation. Our approach can be extended
such that each agent a has its “own” set Πa of propositional
symbols which is used for its preference formulae. If we now
want that some agents are not sensitive to norms and sanc-
tions we simply define the set ΠNF of facts that are used in
a norm set such that ΠNF ∩ Πa = ∅. Another alternative is
to take on a more game theoretical point of view in the line
with [1; 4]. For example, one may consider partial strategies
which assume that only subgroups of agents play rationally.
Then, the outcome is usually not a single path any more, but
rather a set of paths. This gives rise to a notion of (S, A)-
implementability.

We have investigated the problem, given M as a
(ActSpec,Q , qI)-generated CGS, a set of agents’ prefer-
ences Prefs , and a normative behaviour function f , whether
there is a norm set M which S-implements f over M, qI and
Prefs . In future work it would be interesting to find settings
in which such norm sets can be constructed efficiently, i.e.
“implementing” some norms and sanctions. We also plan to
extend our analysis to other implementability notions apart
from Nash equilibria, e.g. dominant strategy equilibrium im-
plementability.

Again, we like to emphasize that our work is closely related
to [1; 16]. In the former, labelled Kripke structures are con-
sidered as models supposing that each agent controls some
transitions. A norm is then considered as the deactivation of
specific transitions. The main difference to our work is that
the outcome is assumed to be independent of the preferences
where we consider a more general setting captured in terms of
normative behaviour functions. Also, norms in our approach
can either deactivate or create a transition. It is also important
to recall that our focus is of a more practical nature. We try to
implement and to analyse mechanisms from a practical point
of view, i.e., how to specify normative multi-agent environ-
ments. This is best indicated in the way we construct CGSS:
They are generated from action specifications.
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