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Abstract

Alternating-time temporal logic (ATL) is a well-
known logic for reasoning about strategic abilities
of agents. An important feature that distinguishes
variants of ATL for imperfect information scenar-
ios is that the standard fixed point characterizations
of temporal modalities do not hold anymore. In
this paper, we show that adding explicit fixed point
operators to the “next-time” fragment of ATL al-
ready allows to capture abilities that could not be
expressed in ATL. We also illustrate that the new
language allows to specify important kinds of abil-
ities, namely ones where the agents can always re-
compute their strategy while executing it. Thus, the
agents are not assumed to remember their strategy
by definition, like in the existing variants of ATL.
Last but not least, we show that verification of such
abilities can be cheaper than for all the variants of
“ATL with imperfect information” considered so
far.

1 Introduction

Alternating-time temporal logic (ATL) [2] is probably the
most popular logic that allows reasoning about agents’ abili-
ties in strategic encounters. ATL combines features of tem-
poral logic and basic game theory, which are both encap-
sulated in the main language construct of the logic, 〈〈A〉〉γ,
which can be read as “the group of agents A has a strat-
egy to enforce γ”, where γ is a temporal property includ-
ing operators © (“next”), � (“always”) and/or U (“until”).
ATL was originally proposed for reasoning about agents
in perfect information scenarios. Since then, several varia-
tions have been studied for imperfect information [9; 7; 1;
5; 8]. One of the features that distinguishes them from the
perfect information setting is that the fixed point character-
izations of temporal modalities do not hold anymore under
imperfect information. On the conceptual level, this means
that having a strategy to achieve ϕ does not mean that the
agents will be able to recompute the strategy when they are
already executing it. Thus, the semantics of these ATL vari-
ants includes an implicit assumption that agents can remem-
ber the strategy which they are executing even if they forget
everything else.

This can be a good thing or a bad thing, depending on the
notion of ability that one wants to formalize. Nevertheless,
the other kind of ability (enforcing ϕ without resorting to ad-
ditional memory of the strategy) is at least as important. It
captures the idea of agents “persistently knowing how to play
to enforce ϕ”, i.e., so that they can come up with the right
strategy not only at the beginning of the game; they will know
how to recreate the strategy also in any future moment of the
play. Moreover, this kind of ability has a minimalistic fla-
vor regarding epistemic prerequisites: agents are supposed to
achieve ϕ while resorting only to observations that they can
make along the way.

In this paper, we argue that this class of abilities cannot be
expressed in the existing variants of ATL. We also propose
that, instead of considering yet another semantics of strate-
gic operators, it suffices to add explicit fixed point operators
to the “next-time” fragment of ATL. In terms of technical
results, our contribution is threefold: (1) We show that the
new logic is incomparable with “ATL with imperfect infor-
mation” regarding expressive power. (2) We propose specifi-
cations of natural types of strategic abilities. (3) We point out
that verification of such abilities can be cheaper than for all
the variants of “ATL with imperfect information” considered
so far.

Recomputable strategies are ones that do not have to be
remembered by the agents in order to execute them. In a
sense strategies of this kind impose the weakest requirements
on agents’ memory. Moreover, recomputable strategies can
be (by definition) synthesized incrementally, which can make
the synthesis tractable–at least for small coalitions.

2 Agent Logics: Preliminaries

In this section we provide a brief overview of existing vari-
ants of alternating-time temporal logic (ATL) in the way they
were proposed in [2] and later refined in [9]. Finally, we re-
call the definition of alternating μ-calculus (AMC) which was
introduced in [2].

2.1 Concurrent (Epistemic) Game Structures

The semantics for the logics are defined over a variant of
transition systems where transitions are labeled with com-
binations of actions, one per agent. An imperfect informa-
tion concurrent game structure (ICGS) [10; 9] is given by
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M = 〈Agt,Q ,Π, π, Act, d, o, {∼a| a ∈ Agt}〉 which in-
cludes a nonempty finite set of all agents Agt = {1, . . . , k},
a nonempty set of states Q , a set of atomic propositions Π
and their valuation π : Π → P(Q), and a nonempty finite set
of (atomic) actions Act. Function d : Agt × Q → P(Act)
defines nonempty sets of actions available to agents at each
state, and o is a (deterministic) transition function that as-
signs the outcome state q′ = o(q, α1, . . . , αk) to state q and a
tuple of actions 〈α1, . . . , αk〉 for αi ∈ d(i, q) and 1 ≤ i ≤ k,
that can be executed by Agt in q. We write da(q) instead of
d(a, q). Each ∼a⊆ Q × Q is an equivalence relation satis-
fying da(q) = da(q

′) for q ∼a q′. These relations model in-
complete information in the way it is done in epistemic logic.
Note that the perfect information models from [2] (CGS, con-
current game structures) can be modeled by assuming each
∼a to be the minimal reflexive relation.

A strategy of agent a is a conditional plan that specifies
what a is going to do in each situation. A natural taxonomy
of four strategy types was introduced in [9] and labeled as
follows: i (resp. I) stands for imperfect (resp. perfect) in-
formation, and r (resp. R) refers to imperfect (resp. perfect)
recall. The following types of strategies can be used in the
respective semantic variants:

• Ir: sa : Q → Act such that sa(q) ∈ da(q) for all q
(agents have perfect information and base their decisions
on states only);

• IR: sa : Q+ → Act such that sa(q0 . . . qn) ∈ da(qn) for
all q0 . . . qn (agents have perfect information and base
their decisions on the whole history of events happened);

• ir: like Ir, with the additional constraint that q ∼a q′
implies sa(q) = sa(q

′) (agents have to assign the same
choice to states which appear indistinguishable to them);

• iR: like IR, with the additional constraint that h ≈a

h′ implies sa(h) = sa(h
′), where ≈a encodes in-

distinguishability of histories as follows. For h =
q0q1 . . . qn ∈ Q+ and h′ = q′0q

′
1 . . . q

′
n′ ∈ Q+ we have

h ≈a h′ iff n = n′ and qi ∼a q′i for i = 1, . . . , n.
A collective xy-strategy sA is a tuple of xy-strategies, one

per agent from A, for xy = Ir, IR, ir, iR. Additionally, sA|a
denotes agent a’s part of collective strategy sA. The set of A’s
collective xy-strategies is defined as Σxy

A .
A path λ = q0q1q2 . . . is an infinite sequence of states such

that there is a transition between each qi, qi+1. We use λ[i]
to denote the ith position on path λ (starting from i = 0) and
λ[i,∞] to denote the subpath of λ starting from i.

Function outM (q, sA) returns the set of all paths that
can result from the execution of strategy sA from state q
in model M , see [2] for the precise definition. We de-
fine outxyM (q, sA) = outM (q, sA) for xy = Ir, IR, and
outxyM (q, sA) =

⋃
a∈A

⋃
q∼aq′ outM (q′, sA) for xy = ir, iR.

2.2 Alternating Time Temporal Logic

The language LATL(Π,Agt) is given by the following gram-
mar [2]:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉 © ϕ | 〈〈A〉〉�ϕ | 〈〈A〉〉ϕUϕ
where A ⊆ Agt and p ∈ Π. Additionally, we define “some-
time in the future” as �ϕ ≡ �Uϕ.

Using xy-strategies defined above we obtain the logics
ATLxy for x ∈ {i, I} and y ∈ {r,R}. The xy-semantics,
|=xy , is defined by the following clauses where we omit the
standard cases for propositions, negation, and conjunction:

M, q |=xy 〈〈A〉〉©ϕ iff there is a collective xy-strategy sA
such that, for each λ ∈ outxy(q, sA), M,λ[1] |=xy ϕ;

M, q |=xy 〈〈A〉〉�ϕ iff there is an xy-strategy sA s.t., for
each λ ∈ outxy(q, sA) and every i ≥ 0, M,λ[i] |=xy ϕ;

M, q |=xy 〈〈A〉〉ϕUψ iff there is an xy-strategy sA s.t.,
for each λ ∈ outxy(q, sA), there is i ≥ 0 for which
M,λ[i] |=xy ψ, and M,λ[j] |=xy ϕ for each 0 ≤ j < i.

Informally speaking, M, q |= 〈〈A〉〉γ iff, there exists a collec-
tive strategy sA such that γ holds on all outcome paths that
the agents in A consider possible executions of sA. More-
over, in the ir- and iR-semantics, we can define knowledge
operators Kaϕ as 〈〈a〉〉ϕUϕ and we define the “everybody in
A knows” modality EA as

∧
a∈A Ka. It is easy to check that

M, q |=xy Kaϕ iff for all q′ with q ∼a q′, M, q′ |=xy ϕ, for
xy = ir, iR.

Note that M, q |=ix 〈〈A〉〉γ requires A to have a single
strategy that is successful in all states indistinguishable from
q for any member of the coalition.

2.3 Alternating Mu-Calculus

Alternating μ-calculus (AMC) replaces the temporal-
strategic operators 〈〈A〉〉�, 〈〈A〉〉U with the least fixed point
operator μ. Like the basic version of ATL, AMC was pro-
posed in the context of perfect information scenarios. The
language LAMC(Π,Agt,Var) is given by the following gram-
mar [2]:

ϕ ::= p | X | ¬ϕ | ϕ ∨ ϕ | 〈A〉ϕ | μX(ϕ)

where A ⊆ Agt, p ∈ Π, X ∈ Var and each ϕ in μX(ϕ)
is X-positive, i.e. each free occurrence of X in ϕ is under
the scope of an even number of negations in ϕ. We define
νX(ϕ(X)) as ¬μX(¬ϕ(¬X)) where ϕ(¬X) is equivalent
to ϕ(X) but each free occurrence of X in ϕ is replaced by
¬X . We also take [A]ϕ as ¬〈A〉¬ϕ and define conjunction in
the standard way. Var is the set of fixed point variables, i.e.,
second order variables ranging over sets of states.

Here we consider only the alternation-free frag-
ment of AMC. The corresponding language
Laf-AMC(Π,Agt,Var) consists of all alternation-free for-
mulae of LAMC(Π,Agt,Var); i.e. all formulae of which their
positive normal form (i.e. negations occur only in front of
propositions) contains no occurrences of ν (resp. μ) on any
syntactic path from an occurrence of μX (resp. νX) to a
bound occurrence of X (cf. [2]).

A (Var,Q)-valuation V is a mapping V : Var → P(Q).
Given a variable X and a set Z ⊆ Q of states we define

V[X := Z](Y ) =

{
V(Y ) if X �= Y ;

Z else.
That is, the valu-

ation V[X := Z] equals V for all variables different from
X and assigns Z to X . The semantics for LAMC is given
by the denotation function [[·]]MV that maps LAMC-formulae
to sets of states (i.e. [[ϕ]]MV ⊆ Q) where M is a CGS and
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V is a valuation. The denotation function is defined as fol-
lows: [[p]]MV = π(p), [[X]]MV = V(X), [[¬ϕ]]MV = Q\[[ϕ]]MV ,
[[ϕ ∧ ψ]]MV = [[ϕ]]MV ∩ [[ψ]]MV , [[〈A〉ϕ]]MV = {q | ∃αA ∈
dA(q)∀αAgt\A ∈ dAgt\A : o(q, (αA, αAgt\A)) ∈ [[ϕ]]MV }, and
[[μX(ϕ)]]MV =

⋂
{Z ⊆ Q | [[ϕ]]MV[X:=Z] ⊆ Z}.

Finally, we write M, q |=V ϕ for q ∈ [[ϕ]]MV and M, q |= ϕ
if M, q |=V ϕ for all (Var,Q)-valuations V . We omit
“(Var,Q)” if clear from context.

2.4 Known Expressivity Results

Definition 1 (Comparing expressivity) A logic L1 is as ex-
pressive as L2 over a class of models M (written L2 �M L1)
iff there is a translation TR of L2 formulae to L1-formulae
such that for each L2-formula ϕ we have: M |=L2

ϕ iff
M |=L1 TR(ϕ) for all M ∈ M.

We say that L1 is more expressive than L2 (L2 ≺M L1)
iff L2 �M L1 but not L1 �M L2. Finally, we call L1, L2

incomparable if neither L2 �M L1 nor L1 �M L2.

We note, that for two classes of models M and M′ with
M ⊆ M′, if not L2 �M L1 then also not L2 �M′

L1.
The following translation TRATLIR(·) : LATL → Laf-AMC

shows how LATL-formulae can be encoded into Laf-AMC [2]:
TRATLIR(p) = p, TRATLIR(¬ϕ) = ¬TRATLIR(ϕ),
TRATLIR(〈〈A〉〉©ϕ)=〈A〉TRATLIR(ϕ), TRATLIR(〈〈A〉〉�ϕ) =
νX(TRATLIR(ϕ) ∧ 〈A〉X), and TRATLIR(〈〈A〉〉ϕ1Uϕ2) =
μX(TRATLIR(ϕ2) ∨ (TRATLIR(ϕ1) ∧ 〈A〉X)).

Proposition 1 ([2]) For all LATL-formulae ϕ, all CGS M
and all states q ∈ QM we have: M, q |=ATLIR ϕ iff
M, q |=af-AMC TRATLIR(ϕ).

Theorem 2 ([2]) Alternation-free AMCIr is more expressive
than ATLIR.

3 Alternating Epistemic Mu-Calculus

Alternating μ-calculus was introduced for reasoning about
systems in which agents always know the current state of
affairs. To the best of our knowledge, analogous logics
have never been considered for systems with imperfect in-
formation. In this section we propose an imperfect infor-
mation semantics for Laf-AMC in a straightforward way. The
only change concerns the semantic clause for operator 〈A〉.
Now, 〈A〉ϕ is only true if agents A have a collective one-
step strategy which enforces ϕ from all the states that are in-
distinguishable from the current one. Also, since knowledge
operators Ka cannot be expressed anymore when the “until”
operator is missing, we add them explicitly to the language.
This way, we obtain the alternation-free alternating epistemic
μ-calculus, af-AMCi in short.

3.1 Syntax and Semantics

Definition 2 (Laf-AMCi
) The language LAMCi

(Π,Agt,Var)
extends the definition of LAMC by formulae Kaϕ; that is, it
is defined by the grammar:

ϕ ::= p | X | ¬ϕ | ϕ ∨ ϕ | 〈A〉ϕ | μX(ϕ) | Kaϕ

where A ⊆ Agt, a ∈ Agt, p ∈ Π, X ∈ Var and each
ϕ in μX(ϕ) is X-positive, as before. Additionally, to the

M

N

q0 q1 q2

q′1 q′2

p q1 q2

q′1 q′2

p

q0

Figure 1: Models M and N , each with a single agent 1.

macros defined above we define “everybody in A knows” as
EAϕ =

∧
a∈A Ka and K̂aϕ = ¬Ka¬ϕ. Analogously to

the perfect information case, we define the alternation-free
sublanguage Laf-AMCi

(Π,Agt,Var) of LAMCi
(Π,Agt,Var).

Definition 3 (Imperfect information semantics) Let M be
an ICGS and V a valuation of fixed point variables. The i-
semantics for Laf-AMC(Agt,Π,Var)-formulae, denoted [[·]]Mi,V ,
is defined as the semantics [[·]]MV (the modification to ICGSS
is straightforward) extended with the following semantic
clauses:

[[〈A〉ϕ]]Mi,V = {q | ∃sA ∈ Σir
A∀λ ∈ outir(q, sA)(λ[1] ∈

[[ϕ]]Mi,V)},
[[Kaϕ]]

M
i,V = {q | ∀q′(q ∼a q′ implies q′ ∈ [[ϕ]]Mi,V)}.

In other words, q ∈ [[〈A〉ϕ]]Mi,V iff agents A have a collec-
tive ir-strategy such that everybody in the group knows that it
enforces ϕ in the next step.

We write M, q |=i ϕ iff q ∈ [[ϕ]]Mi,V for all valuations V of
fixed point variables from Var.

Example 1 Consider the ICGS M shown in Figure 1. The
story is as follows: A married man is sitting in a pub drinking
with his friends (q0). In order to get back to his wife (q2),
he needs to finish his drinking session first (q1), but that will
result in a temporary lapse of memory. In particular, the man
can have a nagging feeling that something might be wrong
with his marriage, e.g. his wife could have left him because
of his drinking habits (q′1), in which case he can only come
back to an empty house (q′2).

Trivially, we have that M, q0 |=ir 〈〈1〉〉�p, so the man
should rest assured. However, is it really the property he is
after? He knows now that everything will be fine, but he also
know that he will get confused on the way, which may prevent
him from reaching his goal. The stronger kind of ability is
captured by the af-AMCi formula μX(p ∨ 〈1〉X), which is
not true in M, q0.

The example suggests that ATLir and af-AMCi offer
means to refer to different types of strategic ability.

We proceed with this issue in Section 3.2, where we show
that both logics are incomparable, and in Section 4, where we
analyse the new kind of strategic ability.

3.2 Expressivity

We start by showing that, like in the perfect information set-
ting, af-AMCi still allows to capture properties that cannot
be expressed in ATLir.
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Proposition 3 ATLir is not as expressive as af-AMCi over
the class of ICGSS.

Proof. It is known that the alternation-free modal μ-calculus
(af-MC) is strictly more expressive than CTL over the class
MK of Kripke structures. That is, for any translation of
af-MC-formulae to CTL-formulae there is a af-MC-formula
ϕ such that not MK |=af-MC ϕ iff MK |=CTL T RCTL(ϕ).

Now suppose ATLir were af-AMCi-expressive over the
class of ICGSS. Then, ATLir would also be af-AMCi-
expressive over MK as MK can be seen as the class of per-
fect information single agent ICGSS. Thus, CTL would also
be af-MC-expressive over MK . Contradiction. �

Note that we do not use epistemic operators in the proof, so
they are not the reason for the expressivity gap.

The other direction is more surprising. First, we show that
naive ideas for a translation from ATL to af-AMC in the im-
perfect information setting do not work.

Proposition 4 There is an LATL-formula ϕ, an ICGS M , and
a state q ∈ QM such that: M, q |=ATLir ϕ and M, q �|=af-AMCi

TRATLIR(ϕ).

Proof. Consider model M from Figure 1 and the ATL for-
mula ϕ ≡ 〈〈1〉〉�p. Now, TRATLIR(ϕ) = μX(p ∨ 〈1〉X). It
is easy to see that M, q0 |=ir ϕ but M, q0 �|=i TRATLIR(ϕ). �

We may try to repair the translation by use of epistemic
operators that take into account also states indistinguishable
from the current one. Let the epistemic extension TRATLiR(·)
of the standard translation TRATLIR(·) be obtained by mod-
ifying the standard translation as follows. For every LATL-
formula ϕ = 〈〈A〉〉ψ we set TRATLiR(ϕ) = EATR∗

ATLiR
(ϕ)

where TR∗
ATLiR

(·) is defined as TRATLIR(·) but each nested
occurrence of TRATLIR(·) is replaced by TRATLiR(·). We will
refer to TRATLiR(·) as epistemic standard translation.

Proposition 5 There is an LATL-formula ϕ, an ICGS M , and
a state q ∈ QM such that: M, q |=ATLir ϕ and M, q �|=af-AMCi

TRATLiR(ϕ).

Proof. Again, we use the model M from Figure 1 and ϕ ≡
〈〈1〉〉�p. TRATLiR(ϕ) = E1μX(p ∨ 〈1〉X). Now, we have
again that M, q0 |=ir ϕ but M, q0 �|=i TRATLiR(ϕ). �

So, is there another translation that gives us the desired
characterisation? The next results show that such a translation
does not exist. Due to lack of space we omit the full proofs.

Proposition 6 af-AMCi is not as expressive as ATLir over
the class of ICGSS.

Proof. (Idea) The basic idea is that the ATLir-formula 〈〈1〉〉�p
does distinguish the models M and N in state q0 shown in
Fig. 1 but there is no af-AMCi-formulae which can. �

The next theorem follows from Propositions 3 and 6.

Theorem 7 af-AMCi is incomparable to ATLir in expressive
power over the class of ICGSS.

How does the picture change if agents have memory? That
is, we compare ATLiR and af-AMCi. (Note that it does not

q0 q1 q2

p

q3M1

a

α α

α q0 q1 q2 q3

p

q4

q5

M2

a

a

α β α

α

β

βα
α

β

Figure 2: Models M1 and M2 with Agt = {a}. Arrows
represent transitions (labeled by a’s actions). Dotted lines
depict indistinguishability of states.

make sense to consider memory in af-AMCi since the strate-
gic modalities refer only to one-step strategies there.) Clearly,
Proposition 6 holds for ATLiR. But also Proposition 3 holds,
since ATLiR and ATLir are equally expressive over (pure)
CGSS. Hence, if the analogous result were not true ATLiR
would also be at least as expressive as af-AMCi over single-
agent CGSS. As before this yields a contradiction, for af-MC
is known to be strictly more expressive than CTL.

Theorem 8 af-AMCi is incomparable to ATLiR in expressive
power over the class of ICGSS.

4 Specification and Verification of Abilities

In this section we argue that af-AMCi can be useful for speci-
fying and verifying meaningful strategic properties of agents.
We begin with a formalization of the intuitions we tried to
convey in the introduction. To this end, we define fixed point
properties that formally capture those informal intuitions.

4.1 Strategic Fixed Points: Achievement

The main intuition behind our proposal is that we enable ex-
pressing that agents A have a strategy to enforce a temporal
property γ while knowing how to play all along the game.
For achievement properties, we have typically γ ≡ �ϕ. We
note that the ability to eventually achieve ϕ while knowing
how to play all along can have at least two meaningful inter-
pretations:

1. A have a strategy which they know to achieve ϕ, can
be recomputed along the execution, and guarantees that
they will know when ϕ has been achieved;

2. The agents have a recomputable strategy that they know
to achieve ϕ, but they will not necessarily know when ϕ
is achieved.

For a single agent the first achievement ability corresponds
closely to the af-AMCi-formula:

μX(Kaϕ ∨ 〈a〉X).

We observe that this formula (and formulae of af-AMCi in
general) has a strong “constructive” flavor. For example, the
given formula requires not only that a has a uniform strategy
to eventually obtain p, but also that
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• she can recompute the strategy at any future state result-
ing from executing it,

• she knows about this; and furthermore,
• with every step, a knows that the goal is closer, and

hence the part of the strategy that she needs to recom-
pute becomes smaller.

This is a stronger kind of ability than those typically ex-
pressed in ATLir. For illustration, consider model M1 in Fig-
ure 2. Agent a has a uniform strategy to achieve p even-
tually: M1, q0 |= 〈〈a〉〉�p (the strategy is to play α every-
where). It is even the case that a can recompute a successful
strategy on the way (M1, q0 |= 〈〈a〉〉(〈〈a〉〉�p)Up)–which is
trivial as only a single action is available. However, the af-
AMCi-formula does not hold: M1, q0 �|= μX(Kap ∨ 〈a〉X).
This is because a is never certain that the goal state is really
approaching. More precisely, suppose a executes α in state
q0. In the next state, q1, she executes α again. However, as
she considers q3 possible the resulting state could–from her
perspective–also be q0. Applying this reasoning iteratively
a possible execution path could also be q0q3(q0q3)

ω which
does never satisfy p. Hence, the agent does not know to have
a recomputable strategy to achieve p.

Analogously, we can also describe the second interpreta-
tion of the achievement property by

μX(ϕ ∨ 〈a〉X).

We omit the formal characterizations due to lack of space.
We note also that the relationships for proper coalitions are
more sophisticated; the exact study is left for future work.

4.2 Strategic Fixed Points: Maintenance

In this section we turn to maintenance properties. They are
typically expressed by �ϕ. Like for achievement properties,
the ability to maintain ϕ while knowing how to play all along
can have at least two interpretations:

1. A have a strategy to maintain ϕ and keep knowing that
ϕ, that can be recomputed at every step.

2. The agents have a recomputable strategy to maintain ϕ
(but they may be unsure if ϕ is true at some steps).

Similar to the case of achievement properties we can de-
scribe the first property by

νX(Kaϕ ∧ 〈a〉X).

In this his case the difference between ATLir and af-
AMCi specifications is perhaps even clearer. As an exam-
ple we consider model M2 shown in Figure 2. We have
M2, q0 |= 〈〈a〉〉�¬p which expresses that a can avoid p. For
example, take the strategy in which α is played everywhere.
We even have M2, q0 |= 〈〈a〉〉�〈〈a〉〉�¬p (while avoiding p,
she can recompute a successful strategy). However, at q1,
a can only come up with a strategy that is different from
the original strategy (i.e., play β everywhere), and indeed
M2, q0 �|= νX(Ka¬p ∧ 〈a〉X).

Again, the second property can be described in a similar
way by formula

νX(ϕ ∧ 〈a〉X).

Combinations of achievement and maintenance, captured
by the “until” operator U , can be treated analogously.

4.3 Verification

In the previous sections we have shown that af-AMCi allows
to specify interesting properties that cannot be expressed in
the existing variants of ATL for imperfect information. A
natural question arises: How costly is the verification of these
properties? It is known that:

• Model checking of strategic logics of perfect informa-
tion (ATLIr, ATLIR, af-AMC) is in P [2];

• Verification of ATLir (imperfect information and mem-
oryless strategies) is ΔP

2 -complete even for turn-based
systems consisting of a single agent [9; 6];

• Model checking ATLiR (imperfect information, perfect
recall) is undecidable [4].

Here, we show that model checking the alternating μ-
calculus under imperfect information is in P for coalitions
consisting of at most two agents (in a system including arbi-
trarily many agents). Moreover the problem is between NP
and ΔP

2 if larger coalitions are involved. Thus, verification
with af-AMCi can be distinctly cheaper than with ATL for
abilities of small coalitions, and no harder in the general case.

First, we point out that the μ-operator in af-AMCi is a stan-
dard least fixed point operator. Thus, the crucial part of model
checking is the computation of the preimage for 〈A〉 (i.e., the
set of states satisfying 〈A〉p for a given proposition p). Then,
verification of an arbitrary formula can be done through a
polynomial number of calls to preimage computations within
the standard iterative algorithm (cf. e.g. [3]). The complexity
of the preimage computation turns out to be as follows.

Proposition 9 Checking if M, q |= 〈A〉p for |A| ≤ 2 can be
done in linear time wrt the number of transitions in M .

Proof. The algorithm for A = {a1, a2} is given below. It is
easy to see that it never processes the same transition twice.

Let Q = [q]∼A
and D = da1

(q)× da2
(q);

while there is still a collective action (α1, α2) in D do:

• Fix α1 for a1 in [q]∼a1
and α2 for a2 in [q]∼a2

.

• For every state in [q]∼A
there is at most one agent in A

for whom the action has not been fixed. If ai’s action
is not fixed for q′, q′′ such that q′ ∼ai

q′′ then collapse
q′, q′′ into a single state (taking the union of the outgoing
transitions). Repeat iteratively;

• If in the resulting perfect information ICGS A have a
one-step strategy to enforce p in the next state then re-
turn true else remove (α1, α2) from D and revert to the
original model M ;

If the loop ended with no success, there are no more available
actions, so return false. �

Proposition 10 Model checking 〈A〉p in M, q is in NP wrt.
the number of transitions in M .

Proof. (Sketch) Guess a one-step strategy of A, remove from
M the irrelevant transitions and states outside [q]∼A

, and
check if p holds for all the remaining “next” states. �
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Figure 3: Model MΦ for Φ ≡ C1 ∧ C2, C1 ≡ x1 ∨ x2, C2 ≡
¬x1∨x2. Only transitions leading to q⊥ are labeled; the other
combinations of actions lead to q�.

Proposition 11 Model checking 〈A〉p in M, q for |A| ≥ 3 is
NP-hard wrt. the number of transitions in M .

Proof. (Sketch) We use an adaptation of the SAT reduction
from [6]. Given a Boolean formula Φ in CNF, we construct a
3-agent ICGS MΦ as follows. Each literal l from clause ψ in
Φ is associated with a state qψl . At state qψl , player 1 indicates
a literal from ψ, and player 2 decides on the valuation of the
underlying Boolean variable. If 1 indicated a “wrong” literal
l′ �= l then the system proceeds to state q� where proposition
yes holds. The same happens if 1 indicated the “right” literal
(l) and 2 selected the valuation that makes l true. Otherwise
the system proceeds to the “sink” state q⊥.

Player 1 must select literals uniformly within clauses, so
qψl ∼1 qψ

′
l′ iff ψ = ψ′. Player 2 is to select uniform valua-

tions of variables, i.e., qψl ∼2 qψ
′

l′ iff var(l) = var(l′) where
var(l) is the variable contained in l. Finally, all states ex-
cept q�, q⊥ are indistinguishable for 3. An example of the
construction is presented in Figure 3.

Then, Φ is satisfiable iff MΦ, q |= 〈1, 2, 3〉yes where q is
an arbitrary “literal” state. �

The following is a straightforward corollary (We conjec-
ture that it is actually ΔP

2 -complete.).

Theorem 12 Model checking af-AMCi for formulae that in-
clude only operators 〈A〉 with |A| ≤ 2 can be done in poly-
nomial time wrt. the size of the model and the length of the
formula. In general, the problem is NP-hard and in ΔP

2 .

5 Conclusions

In this paper, we have proposed an imperfect information
variant of the alternation-free alternating μ-calculus from [2].
The idea is very simple: af-AMCi is a modification of
af-AMC with imperfect information semantics of one-step
modalities 〈A〉, plus explicit modalities for reasoning about
agents’ knowledge. We show that the new logic allows to
specify properties which cannot be expressed in ATLir nor
ATLiR. Somewhat surprisingly, the converse also holds:
there are properties expressible in ATLir and ATLiR which
have no counterparts in af-AMCi. Thus, unlike af-AMC
which strictly extends ATL in perfect information scenarios,
af-AMCi and ATL variants for imperfect information seem

to have different agendas. ATL allows to reason about prop-
erties that the agents know how to achieve from the current
state of the system. af-AMCi formulae refer to properties
that the agents will know how to achieve all along the play
because they are able to recompute the right strategy at any
moment.

We also point out that model checking af-AMCi specifi-
cations can be done in polynomial time for small coalitions;
for larger groups of agents, the verification complexity is the
same as for ATLir. So, the new logic allows to specify a new
intuitive class of strategic properties, and at the same time
has a tractable model checking problem – albeit in a some-
what limited scope. We consider the result significant. To
our knowledge, af-AMCi is the first strategic logic of imper-
fect information with tractable verification for a relevant sub-
set of formulae. Even solving 2-player extensive form games
with binary payoffs is NP-complete in any reasonable sense
(e.g., for surely winning). Model checking of all existing vari-
ants of ATL with imperfect information is at least ΔP

2 -hard
even for 1-player(!) turn-based ICGS’s. The conceptual and
computational aspects hopefully make af-AMCi appealing in
practical contexts.

A deeper study on specification and verification issues wrt.
the alternating epistemic μ-calculus is left for future research.
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