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Abstract

The social lending market, with over a billion dol-
lars in loans, is a two-sided matching market where
borrowers specify demands and lenders specify to-
tal budgets and their desired interest rates from each
acceptable borrower. Because different borrowers
correspond to different risk-return profiles, lenders
have preferences over acceptable borrowers; a bor-
rower prefers lenders in order of the interest rates
they offer to her. We investigate the question of
what is a computationally feasible, ‘good’, alloca-
tion to clear this market.

We design a strongly polynomial time algorithm
for computing a Pareto-efficient stable outcome in
a two-sided many-to-many matching market with
indifferences, and use this to compute an allocation
for the social lending market that satisfies the prop-
erties of stability — a standard notion of fairness
in two-sided matching markets — and Pareto ef-
ficiency; and additionally addresses envy-freeness
amongst similar borrowers and risk diversification
for lenders.

1 Introduction

Social lending, or peer-to-peer lending, which allows individ-
uals to lend and borrow money to each other directly without
the participation of banks, is an exploding business on the In-
ternet: the total amount of money borrowed using such peer-
to-peer loans was approximately $650 million in 2007, and is
projected to reach $5.8 billion by 2010.

The social lending market consists of borrowers seeking
some target loan amount (their demand), and lenders seeking
to invest some fixed amount of money in loans (their bud-
get). Lenders usually prefer to invest their budget in multi-
ple borrowers’ loans to spread risk from defaulting borrow-
ers, and each borrower’s loan is also usually funded by mul-
tiple lenders. Borrowers are ‘non-homogeneous’ — different
borrowers have different characteristics such as credit rating
and desired loan length, and command different interest rates
based on their creditworthiness. That is, different borrowers
correspond to investments with different risk-return profiles.
As a result, lenders have preferences over which borrowers

they would like to lend their money to — one lender may pre-
fer high-risk-high-return borrowers, while another may pre-
fer safe borrowers albeit fetching lower interest rates. On
the other hand, borrowers also have implicit preferences over
lenders since different lenders can offer different interest rates
to the same borrower: a borrower simply prefers the lenders
who offer him the lowest rate.

We now have a large two-sided matching market where
agents on both sides have multiunit capacities, and prefer-
ences — lenders have preference rankings (possibly with ties)
over the set of acceptable borrowers they’re willing to lend to,
and borrowers have preferences over lenders based on their
offered interest rates. But the preferences of all these agents
may be conflicting — many lenders may compete to lend to
the same borrower who is their common top choice, while this
borrower’s preference might be an entirely different lender
who offers him a lower interest rate, who in turn has a dif-
ferent top borrower choice. Clearly, it need not be possible
to make all agents simultaneously happy, raising the natural
question of what constitutes a ‘good’ assignment. In this pa-
per, we investigate the social lending market from a compu-
tational social choice perspective: what is a fair and efficient
way to clear this marketplace, and how can it be computed?

Our contributions. We present a model (§2) for the social
lending marketplace based on Zopa (www.zopa.com), which,
with over 400, 000 members and £100 million in its markets
and over £100000 traded each day, is the first and among the
largest social lending sites on the Web.

We first address the question of what is a desirable allo-
cation in the social lending market in §3, and argue that an
allocation that is stable, Pareto efficient, fair amongst ‘equal’
borrowers, and also addresses the need for risk diversification
to reduce default risk is a desirable solution concept in this
market. We then address the question of finding an algorithm
that returns such an allocation in §4.

When preference lists contain ties, as in our social lend-
ing context, not all stable matchings are Pareto efficient.
The question of how to find a Pareto-stable matching when
preferences contain ties has recently been addressed for the
many-to-one matching model in [Erdil and Ergin, 2008;
2009]. A naive adaptation of this algorithm to our many-to-
many market returns a Pareto-stable assignment in time that
scales with the total capacity of all nodes in the graph, i.e.,
the amount of money traded in the market, requiring us to de-
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velop a new algorithmic approach. We design a strongly poly-
nomial time algorithm for computing a Pareto-stable outcome
in a many-to-many matching market with indifferences, and
apply it to a reduced marketplace where ‘identical’ borrowers
are grouped into equivalent classes or ‘categories’; we then
reallocate amongst categories to achieve fairness amongst
borrowers and risk diversification. The overall runtime is
polynomial in the number of lenders and the number of bor-
rower categories, which is a small constant (=10) for the Zopa
marketplace.

Related work. Social lending is a relatively new application
that has only recently begun to be addressed in the research
literature, starting with the work in [Freedman and Jin, 2009]

on default rates. Most of the research on social lending takes
an empirical approach as in [Freedman and Jin, 2009]; [Chen
et al., 2009] analyzes the auction held for a single borrower’s
loan in the Prosper market, but does not address the several
coexisting lenders and borrowers in the marketplace. To the
best of our knowledge, social lending has not been studied
much from a marketplace design or social choice perspective.

There is a very vast literature on two-sided matching mar-
kets and stable matching; for a review of the economics
literature on the subject, see [Roth and Sotomayor, 1992;
Roth, 2008]; for an introduction to the computer science
literature addressing algorithmic and computational ques-
tions, see, e.g., [Gusfield and Irving, 1989; Iwama and
Miyazaki, 2008]. The paper most relevant to our work
from the stable matching literature is [Erdil and Ergin, 2008;
2009], who study the algorithmic question of finding Pareto-
stable matchings for a many-to-one matching market; see §4.
The many-to-many setting is far less well studied in the sta-
ble matching literature, and focuses largely on structural re-
sults in settings without indifferences; see, e.g., [Hatfield and
Kominers, 2010; Echenique and Oviedo, 2006].

2 A Lending Market Model

We model the social lending marketplace M as a bipartite
graph with nodes (A,B) and edges E. The nodes in A repre-
sent the lenders and the nodes in B are the borrowers. Nodes
on both sides have multiunit capacities: a lender i’s capac-
ity ci is her budget, the total amount of money she wants to
lend. A borrower j’s capacity cj is his demand, the total loan
amount he wants to borrow. We will assume that the capac-
ities are integers by expressing them in the smallest unit of
currency. The edge set E of M is the set of pairs (i, j) where
lender i is willing to lend to borrower j.

Each lender specifies the interest rates at which she is will-
ing to lend money to different acceptable borrowers; as in
Zopa, this is the actual interest-rate that she will receive on
any loans to that borrower. Note that each lender can offer
different interest rates to different borrowers, and the same
borrower can be offered different interest rates by different
lenders.

Every acceptable borrower, along with the specified inter-
est rate, represents a possible investment for the lender, with a
particular risk-return profile. Each lender has a preference list
Pi ranking the investments corresponding to these borrower-
interest rate pairs, i.e., its neighbors {j ∈ B : (i, j) ∈ E}.

These preferences need not be strict and the lender can be
indifferent between, i.e., equally prefer, two different invest-
ments; that is, preference lists can have ties. Since the pref-
erence list is restricted to i’s neighbors (i.e., acceptable bor-
rowers), it is naturally incomplete. (As an example, lender i’s
preferences, denoted Pi = ([j1, j2], [j3, j4, j5]), could be as
follows: i is indifferent between j1 and j2, and prefers both
of them to j3, j4, j5 among all of whom i is indifferent; she
finds all other borrowers unacceptable.) In general, a lender
can also have preferences over sets of investments; however,
here we will restrict ourselves to expressing preferences over
individual investments for simplicity1.

Each borrower j has an implicit preference rankingPj over
lenders based on the interest rates they offer him: j prefers
lenders in non-increasing order of offered interest rates, and is
indifferent amongst lenders who offer him the same interest-
rate (so borrowers’ preferences Pj can contain ties as well).

We partition the set of borrowers into equivalence classes,
or categories C = {C1, . . . , Cm}: two borrowers are equiva-
lent, i.e., belong to the same category, if no lender can dis-
tinguish between them based on the information available
about them in the marketplace. Thus, all lenders are indif-
ferent between the borrowers in a category, and offer them
the same interest-rate. This also means that borrowers in a
category all have the same preferences over lenders, and that
a lender’s preference list need only rank categories, not indi-
vidual borrowers. The number of categories can be as large as
the number of borrowers when personal information is pro-
vided by/about each borrower (as in Prosper), or very small
when the only information revealed is the credit-rating and
loan length (as in Zopa, which only allows lenders to specify
interest rates for 10 borrower categories).

Diversification to decrease default risk is a very important
factor in social lending. Instead of modeling this into the pref-
erences of lenders, we deal with it as Zopa— Zopa breaks up
each lender’s budget into small sums each of which is lent
to a different borrower to diversify risk, so we will similarly
ensure that each lender’s budget is uniformly spread amongst
many different borrowers in the final allocation.

We note that we do not model reserve rates, nor the dy-
namic aspect of the social lending market in this work.

Feasible assignments. The output of the market is a multi-
unit pairing, or assignment X = (xij)(i,j)∈E between A and

B, where xij ∈ N∪{0} is the number of units assigned from
i ∈ A to j ∈ B (when ci = cj = 1 for all nodes, an assign-
ment reduces to a matching). An assignment X is feasible
if it simply satisfies capacity constraints on both sides, i.e.,∑

j xij ≤ ci and
∑

i xij ≤ cj . Note that the preferences

Pi, Pj do not matter to the feasibility of an assignment.

3 What Is a Good Outcome?

Having defined the set of feasible assignments, how do we
choose one from amongst the very large number of possible
assignments? An ideal solution concept for the social lending
market would be Pareto efficient, fair — both across lenders

1This is both for technical tractability and to avoid eliciting com-
plex combinatorial preferences from lenders.
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and borrowers, as well as amongst similar borrowers — ex-
ist for every instance of the input, and be efficiently com-
putable (since social lending markets transact huge amounts
of money, it should be implementable in time that depends
only on the number of agents, not on the money being traded
in the marketplace). What assignment has these properties?

A very widely used solution concept in two-sided matching
markets is that of stability [Gale and Shapley, 1962]: there
is no pair of individuals that both strictly prefer each other
to some partner they are currently assigned to (such a pair
would be called a blocking pair). Stability can be interpreted
as a notion of fairness in our context — while it is not pos-
sible to guarantee each lender her most preferred allocation,
a stable allocation is fair in the sense that if a lender indeed
sees a better allocation, that allocation does not also ‘prefer’
her in return. However, when preference lists contain ties as
in our case, it is well-known that stable matchings need not
be Pareto efficient, even when all nodes have unit capacity;
see [Roth and Sotomayor, 1992].

Therefore, we will need to explicitly require that the solu-
tion is both stable and Pareto efficient; such assignments are
called Pareto-stable assignments [Sotomayor, 2009]. How-
ever, as the next example shows, applying the concept of
Pareto stability directly to the marketplace M may not pro-
duce very desirable solutions: a solution may well be Pareto-
stable, but hand out very different interest rates to two identi-
cal borrowers, violating our fairness requirement.

Example 3.1. There are two lenders i1, i2 and two borrowers
j1, j2 with two units of supply/demand each. Both lenders
are indifferent between the two borrowers; the first lender i1
offers 7% to both borrowers, and the second lender i2 offers
15% to both borrowers. The matching where i1 lends both
units to j1 (at 7%), and i2 lends both units to j2 (at 15%) is
stable and also Pareto efficient. However, the matching where
both lenders lend one unit to each borrower is also Pareto-
stable and ‘more fair’ since both j1 and j2 get equal amounts
of the low and high interest rates (note that this matching does
not Pareto-improve the previous matching since it makes j1
strictly worse off). In addition, each lender spreads her loan
across more borrowers, so diversity improves as well.

This example illustrates that we cannot simply apply the
solution concept of Pareto stability directly to the social lend-
ing marketplace M . Instead, we will consider a modified
market, where the lender side is unchanged but borrowers
are aggregated by category into ‘meta-borrowers’, with de-
mand equal to the aggregate demand of that category (re-
call that a category can consist of a single borrower, when
there is plenty of information about borrowers in the market-
place). We will first find a Pareto-stable assignment in this
reduced marketplace— how to find such an assignment is the
key technical problem we need to solve— and then distribute
each lender’s allocation to a meta-borrower amongst all the
borrowers in that category to ensure envy-freeness amongst
them.

We note that another natural solution concept, maximum
size assignment (i.e., the one with the largest trade volume),
is unsuitable here since it ignores all agents’ preferences; it
is also NP-hard to compute [Iwama et al., 1999]. However,

it is easy to show that the size of any stable assignment (and
therefore also our assignment) is at least half the size of the
maximum size assignment.

The assignment we propose to clear the social lending mar-
ket is the following.

MARKET CLEARING ASSIGNMENT: Given a lending market
M = (A,B) with categories C = {C1, . . . , Cm}:

1. Create a meta-borrower for each category Cr with demand∑
j∈Cr

cj , and the same preferences as those of borrow-

ers in Cr . Denote the resulting market by (A,C).

2. Compute a Pareto-stable assignment X∗ = (x∗

iCr
) for

(A,C), where x∗

iCr
is lender i’s total investment in cate-

gory Cr (§4).

3. Assign each lender’s investment x∗

iCr
across all borrow-

ers in category Cr to ensure diversity and envy-freeness;
denote the final assignment by Y = (yij) (§4).

We have the following result about this assignment.

Theorem 3.2 (Main). The final assignment Y = (yij) can

be computed in time O(|A|4 + |A||B|) and has the following
properties:

1. Stability: There are no blocking pairs in the original
marketplace M = (A,B).

2. Pareto efficiency: No agent in M can be made better off
without making some other agent in M strictly worse off.

3. (Weak) envy-freeness: No borrower envies the allocation
of any other borrower in its category.

4. Diversity: Given the allocations X∗ = (x∗
iCr

), each
lender i spreads her budget amongst the maximum num-
ber of distinct borrowers.

4 Algorithm

We will first address the problem of efficiently finding a
Pareto stable assignment in an abstract two-sided many-
to-many matching market with separable responsive prefer-
ences, and then apply the algorithm we develop to the modi-
fied marketplace with lenders and meta-borrowers.

We begin with some formal definitions. Recall that we
have a two-sided matching market M = (A,B) with pref-
erence lists Pk and multi-unit capacities ck for all agents k,
and k’s preference over sets is the natural (partial) order de-
fined by the preferences Pk over individuals as in [Erdil and
Ergin, 2008; 2009]. We can assume without loss of general-
ity that |A| = |B| = n by adding dummy isolated nodes with
ck = 0 to the market.

Definition 4.1 (Level function). We use the function Li(·) to
encode the preference list of a node i ∈ A. For each j ∈ Pi,
let Li(j) ∈ {1, . . . , n} denote the ranking of j in i’s prefer-
ence list. Therefore, for any j, j′ ∈ Pi, if Li(j) < Li(j

′),
then i strictly prefers j to j′; if Li(j) ≤ Li(j

′), then i weakly
prefers j to j′; if Li(j) = Li(j

′), then i is indifferent be-
tween j and j′. The definition of the level function Lj(·) for
each j ∈ B is symmetric.
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Stability. We say that an assignment X = (xij) is stable if
there is no blocking pair (i, j), i ∈ A and j ∈ B, (i, j) ∈
E, such that both i and j have leftover capacity; or i has
leftover capacity and there is i′, xi′j > 0, such that j strictly
prefers i to i′ (or similarly for some j); or there are i′ and j′,
xij′ > 0 and xi′j > 0, such that i strictly prefers j to j′ and j
strictly prefers i to i′. Note that both members of a blocking
pair must strictly prefer to trade with each other. A stable
assignment always exists, and can be found (efficiently) using
a variant of Gale-Shapley algorithm [Gale and Shapley, 1962]

for computing stable matchings.

Pareto efficiency. Given an assignment X = (xij), let
xi(α) =

∑
j: Li(j)≤α xij be the number of units of i’s ca-

pacity that is assigned at levels no worse than α, and xj(β) =∑
i: Lj(i)≤β xij be the number of units of j’s capacity that is

assigned at levels no worse than β. We say that X is Pareto
efficient if there is no other feasible assignment Y = (yij)
such that yi(α) ≥ xi(α) and yj(β) ≥ xj(β), for all i, j and
α, β, and at least one of the inequalities is strict. That is, X is
not Pareto-dominated by any other assignment where at least
one agent is strictly better off and no one is worse off.

Pareto stability. A feasible assignment is called Pareto-
stable if it is both stable and Pareto efficient.

Recall that when preference lists contain ties, a stable
matching need not be Pareto efficient. The following defini-
tion is critical to our algorithm for Pareto-stable assignment.

Definition 4.2 (Augmenting Path and Cycle). Given an as-
signment X = (xij), a sequence [i0, j1, i1, . . . , j�, i�, j�+1]
is an augmenting path if the following conditions hold:

• xi0 < ci0 and xj�+1
< cj�+1

.

• xikjk > 0 for k = 1, . . . , �.

• Lik(jk) ≥ Lik(jk+1) and Ljk(ik−1) ≤ Ljk(ik) for k =
1, . . . , �.

A sequence [i1, j2, i2, . . . , j�, i�, j1, i1] is an augmenting cy-
cle if the following conditions hold:

• xikjk > 0 for k = 1, . . . , �.

• Lik(jk) ≥ Lik(jk+1) and Ljk(ik−1) ≤ Ljk(ik) for k =
1, . . . , �, where i0 = i� and j�+1 = j1.

• At least one of these inequalities is strict. If ik is such a
node, we say the augmenting cycle is associated with ik
at level Lik(jk) (and similarly for jk.)

Since our nodes have preferences in addition to capacities,
augmenting paths and cycles must improve not just the size
of an assignment but also its quality, as given by node prefer-
ences. The first condition in the definition of the augmenting
path says that the capacities of i0 and j�+1 are not exhausted.
The second condition says that there is a positive allocation
from ik to jk in the current assignment X , and the last con-
dition says that ik weakly prefers jk+1 to jk and jk weakly
prefers ik−1 to ik. Thus, we can inject (at least) one unit
of flow from ik−1 to jk and from i� to j�+1 and withdraw
the same amount from ik to jk for each k = 1, . . . , � in the
augmenting path to obtain a Pareto improvement over X . A
similar Pareto improvement can be obtained for augmenting
cycles.

We have the following easy lemma.

Lemma 4.3. Any feasible assignment X that has no aug-
menting paths or cycles is Pareto efficient.

4.1 Computing a Pareto Stable Assignment

We now give a strongly polynomial time algorithm to com-
pute a Pareto stable assignment. Note that if X is a sta-
ble assignment, reassigning according to any augmenting
path or cycle of X preserves stability, i.e., any assignment
Y that Pareto-dominates a stable assignment X is stable as
well [Erdil and Ergin, 2009]. Together with Lemma 4.3, this
suggests that starting with a stable assignment, and then mak-
ing improvements to it using augmenting paths and cycles un-
til no more improvements are possible, will result in a Pareto-
stable assignment.

How do we find such augmenting paths and cycles? First
consider the simplest case with unit capacity, i.e., ci = cj = 1
for all i, j, where an assignment degenerates to a match-
ing. Given an existing matching, define a new directed bi-
partite graph with the same nodes, where all forward edges
are “weak improvement” edges with respect to the existing
matching, and backward edges correspond to the pairings in
current matching. Then we can find augmenting paths by in-
troducing a source s and sink t that link to unmatched nodes
on each side and finding s-t paths in the resulting network.
Augmenting cycles can be found by a similar construction.

For our general case where ci, cj ≥ 1, however, even the
concept of improvement edges for a node is not well defined:
since a node can have multiple partners in an assignment, a
particular edge can be an improvement for some part of that
node’s capacity and not for some others. For instance, sup-
pose that node i (with ci = 2) is matched to nodes j1 and j3,
and suppose that i strictly prefers j1 to j2 to j3. Then, (i, j2)
would only represent an improvement relative to (i, j3), but
not with respect to (i, j1), both of which exist in the current
assignment. An obvious way to fix this problem is to make
copies of each node, one copy for each unit of its capacity, in
which case improvement edges are well-defined — each unit
of capacity is associated with a unique neighbor in any as-
signment. However, this new graph has size

∑
i ci +

∑
j cj ,

leading to a runtime that is polynomial in
∑

i ci +
∑

j cj ,

which is exponential in the size of the input.

Construction of networks. In order to define improvement
edges in this setting with multiunit capacities, we will create
a new augmented bipartite graph G from the original bipar-
tite market M and the preference lists Pk. The vertex set of
G will consist of copies of each node in M , where each copy
represents a level on that node’s preference list. We then de-
fine forward and backward edges between the vertices: for-
ward edges are the (weak) improvement edges, while there
is one backward edge for every edge (i, j) ∈ E correspond-
ing to i and j’s levels in Pj and Pi. This augmented graph,
which is assignment-independent and depends only on the
preference lists of the nodes, is then used to define a sequence
of networks with assignment-dependent capacities which we
will use to find augmenting paths and cycles.

Definition 4.4. Given the market M , construct G as follows.

• Vertices: For each node i ∈ A ∪ B, we introduce n
new vertices T (i) = {i(1), . . . , i(n)}, where i(α) cor-
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responds to the α-th level of the preference list of i. (If
i has k < n levels in his preference list, it suffices to
introduce k vertices i(1), . . . , i(k); here, we use n levels
for uniformity.)

• Edges: For each pair (i, j) ∈ E, let α = Li(j) and
β = Lj(i). We add a backward edge between i(α) and
j(β), i.e., j(β) → i(α). Further, we add a forward edge
i(α′) → j(β′) for every pair of vertices i(α′) and j(β′)
satisfying α′ ≥ α and β′ ≥ β.

Figure 1 gives an example of the construction of graph
G, when M contains two lenders i1, i2 and three borrowers
j1, j2, j3 (node preferences are specified next to each node in
the top figure, e.g., i2 is indifferent between j1 and j2, and
prefers both of them to j3). The figure on the right illustrates
the vertices T (·) of G and the backward edges; the figure
on the bottom left shows the forward edges between the two
groups of vertices T (i2) and T (j3) in G.

T (i2)

T (i1)

T (j3)

T (j2)

T (j1)

i2(3)

i2(2)

i2(1)

i1(3)

i1(2)

i1(1)

j3(2)

j3(1)

j2(2)

j2(1)

j1(2)

j1(1)

Construction of graph G

(j1, j2) : i1

([j1, j2], j3) : i2

j1 : ([i1, i2])

j2 : ([i1, i2])

j3 : (i2)

2

3

1

2

2

Social lending market M

(values on nodes are their capacities)

i2(3)

i2(2)

i2(1)

j3(2)

j3(1)

Figure 1: Construction of graph G.

Note that the construction of G is completely indepen-
dent of any actual assignment X . We next define the net-
works H,Hi,α, Hj,β , whose structure is based on G and is
assignment-independent, but whose edge capacities depend
on the assignment X .

Definition 4.5 (Network H , Hi,α and Hj,β). Given the
graph G and an assignment X = (xij), let G(X) be the
network where all forward edges in G are assigned capacity
∞, and all backward edges are assigned capacity xij . We use
G(X) to define the networks H(X), Hi,α(X) and Hj,β(X)
for each i ∈ A and j ∈ B, and α, β = 1, . . . , n, as follows.

For H(X), include a source s and a sink t; further, for
each i ∈ A and j ∈ B, add an extra vertex hi and hj , respec-
tively. Connect s → hi with capacity ci−xi, and hj → t with
capacity cj − xj , where xi =

∑
j xij and xj =

∑
i xij . Fur-

ther, connect hi → i(α) with capacity ∞ for α = 1, . . . , n,
and connect j(β) → hj with ∞ capacity for β = 1, . . . , n.

For Hi,α(X), we add a source s and a sink t, and connect
s → j(β) with capacity ∞ for each vertex j(β) satisfying
α > Li(j) and β ≥ Lj(i). Further, we connect j(β) → t
with capacity xij for each j(β) satisfying α ≤ Li(j) and
β = Lj(i). The network Hj,β(X) is defined symmetrically.

We will use the network H to find augmenting paths with
respect to an existing stable assignment X . Observe that the

only edges from the source with nonzero capacity are those
that connect to a node i ∈ A with leftover capacity; sim-
ilarly, the only edges to the sink with nonzero capacity are
from a node j ∈ B with leftover capacity. Sending flow from
s to t in H therefore involves increasing the total size of the
assignment while maintaining quality, exactly as in an aug-
menting path for X . Similarly, we will use the networks Hi,α

and Hj,β to find augmenting cycles associated with i and j at
level α and β respectively. Consider any flow from s to t in
Hi,α, say,

[s, j1(β1), i1(α1), . . . , i2(α2), j2(β2), t]

We know that α > Li(j1) (i.e., i strictly prefers j1 to all its
neighbors at level α) and Lj1(i1) = β1 ≥ Lj1(i) (i.e., j1
weakly prefers i to i1). Further, we have α ≤ Li(j2) (this
implies that i strictly prefers j1 to j2) and Lj2(i2) ≤ β2 =
Lj2(i) (i.e., j2 weakly prefers i2 to i). That is, flows from
s to t in Hi,α correspond to augmenting cycles for node i at
levels less than or equal to α in X (and similarly for Hj,β).

Our algorithm, summarized below, finds maximum flows
in all the constructed networks H , Hi,α and Hj,β to eliminate
augmenting paths and cycles.

PARETO STABLE ASSIGNMENT (ALG-PS)

1. Let X be an arbitrary stable assignment

2. Construct networks H(X), Hi,α(X) and Hj,β(X), for
each i ∈ A, j ∈ B, and α, β = 1, . . . , n

3. For H , Hi,α and Hj,β constructed above (H to be exe-
cuted first)

(a) Compute a maximum flow F = (fuv) from s to t
(if there is no flow from vertex u to v, set fuv = 0)

(b) For each forward edge i(α) → j(β),
let xij = xij + fi(α)j(β)

(c) For each backward edge j(β) → i(α),
let xij = xij − fj(β)i(α)

(d) If the graph is Hi,α

• Let xij = xij + fsj(β) for each s → j(β)
• Let xij = xij − fj(β)t for each j(β) → t

(e) If the graph is Hj,β

• Let xij = xij − fsj(β) for each s → i(α)
• Let xij = xij + fj(β)t for each i(α) → t

(f) Update capacities for next graph to be executed ac-
cording to new assignment X

4. Output X (denoted by X∗)

Analysis. To prove that ALG-PS indeed computes a Pareto-
stable assignment, we need to show two things— first, that the
assignment X∗ returned by the algorithm is stable; this fol-
lows easily from stability of the original assignment and that
reassigning according to augmenting paths and cycles pre-
serves stability.

Second, we need to show that X∗ is Pareto efficient, i.e.,
no further Pareto improvements are possible when the algo-
rithm terminates. The difficulty here is that the assignment
X changes through the course of the algorithm, and therefore
we need to show that, for instance, no other augmenting paths
can be found after the network H has been executed, even
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though the assignment X that was used to define the network
H(X) has been changed (and similarly for all augmenting
cycles). That is, while we compute maximum flows in H(X)
to find all augmenting paths for a given assignment X , we
need to show that no new augmenting paths have showed
up in any updated assignments computed by the algorithm.
Similarly, finding (i, α) augmenting cycles via Hi,α(X) for
some assignment X does not automatically imply that no fur-
ther (i, α) augmenting cycles will ever be found in any of
the (different) assignments computed through the course of
the algorithm, since the assignments of all nodes can change
each time when a maximum flow is computed, leading to the
possibility of new valid s-t paths, and therefore possibly new
augmenting cycles. That this does not is due to a careful
choice of the construction of the networks H , Hi,α, Hj,β ;
in fact, it is possible to construct examples showing that this
does not hold for other, perhaps more natural, definitions of
the networks.

Our main claim is stated next. The proof uses the
assignment-independence of the structure of the networks
H,Hi,α, Hj,β to argue that if there is an augmenting path in
any assignment produced after H is executed, we could not
have found the maximum flow in H(X) to begin with, a con-
tradiction; the argument for augmenting cycles uses a similar
idea. All proofs can be found in the full version of the paper2.

Proposition 4.6. There is no augmenting path after graph
H is executed, and no augmenting cycle associated with i
(resp. j) at level α (resp. β) after graph Hi,α (resp. Hj,β) is
executed in ALG-PS.

The above claim, together with Lemma 4.3, implies that
the outcome returned by ALG-PS is indeed a Pareto-efficient
assignment as required.

Running time. Each graph H,Hi,α and Hj,β can be con-

structed in time O(m2n2), where n = |A| and m = |B|, and
there are O(mn) such graphs in all. Each graph has O(mn)
vertices, and is executed exactly once in time O(m3n3),
which is the running time for maximum flow using any clas-
sic network flow algorithm. Therefore, the running time of
the algorithm is in O(m4n4). We summarize this below.

Theorem 4.7. Algorithm ALG-PS computes a Pareto-stable
assignment in strongly polynomial time O(m4n4).

We note that the number of borrower categories in Zopa
is a small constant, so this algorithm computes a Pareto-
stable assignment in our reduced marketplace (A,C) in time
O(n4) where n = |A| is the number of lenders. In fact,
a sharper bound on the running time of the algorithm is
O((

∑
k∈M |Pk|)

4), where |Pk| is the length of k’s prefer-
ence list. This means that even when each category contains
a single borrower as in Prosper (so m is large), the runtime
remains practically feasible: since lenders usually place bids
on only a small number of borrowers in typical social lending
markets,

∑
k∈M |Pk| = O(n) leading to runtime O(n4).

Computing the Market Clearing Assignment. Having
computed allocations X∗ = (x∗

iCr
) between lenders and bor-

rower categories using algorithm ALG-PS, we now need to

2http://www.ntu.edu.sg/home/ningc/paper/ijcai11-z.pdf

allocate the amount x∗
iCr

amongst borrowers in Cr. Note

that by feasibility of X∗ for (A,C), we have
∑

i∈A x∗
iCr

≤∑
j∈Cr

cj . We simply divide x∗
iCr

amongst borrowers in Cr

proportional to their demands:

yi0j0 = x∗
i0Cr

·
cj0∑
j∈Cr

cj
. (∗)

This allocation is feasible since
∑

j∈Cr
yij = x∗

iCr
and

∑
i∈A yij ≤ cj . This assignment Y = (yij) can be proven

to satisfy all the properties claimed in Theorem 3.2 for the
actual marketplace M = (A,B), and is our desired output.
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