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Abstract

We study the existence and computational com-
plexity of coalitional stability concepts based on so-
cial networks. Our concepts represent a natural and
rich combinatorial generalization of a recent notion
termed partition equilibrium [5]. We assume that
players in a strategic game are embedded in a social
(or, communication) network, and there are coordi-
nation constraints defining the set of coalitions that
can jointly deviate in the game. A main feature of
our approach is that players act in a “considerate”
fashion to ignore potentially profitable (group) de-
viations if the change in their strategy may cause a
decrease of utility to their neighbors in the network.
We explore the properties of such considerate equi-
libria in application to the celebrated class of re-
source selection games (RSGs). Our main result
proves existence of a super-strong considerate equi-
librium in all symmetric RSGs with strictly increas-
ing delays, for any social network among the play-
ers and feasible coalitions represented by the set
of cliques. The existence proof is constructive and
yields an efficient algorithm. In fact, the computed
considerate equilibrium is a Nash equilibrium for
a standard RSG, thus showing that there exists a
state that is stable against selfish and considerate
behavior simultaneously. Furthermore, we provide
results on convergence of considerate dynamics.

1 Introduction

Multi-agent scenarios, in which self-motivated, rational ac-
tors share resources, allocate tasks or compete for production
or communication lines, are central to AI. Natural tools for
the analysis of such interactions include the well-studied so-
lution concepts developed for strategic games. Rationality is
usually captured in a way that agents are acting autonomously
in order to maximize their own utility function. This leads
to much interest in the study of stable outcomes, making
it the central topic in game theory. In strategic games, the
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standard concept of stability is the Nash equilibrium (NE)—
a state resilient to unilateral changes of players’ strategies.
While every finite game possesses a mixed Nash equilibrium,
a pure strategy Nash equilibrium is not guaranteed in general,
though has been proven to exist in several interesting classes
such as congestion (or, potential) games [12, 15]. A draw-
back of Nash equilibrium is that it neglects coalitional devi-
ations by groups of players; these are captured most promi-
nently by the notion of strong equilibrium (SE) [3], where no
coalition can strictly improve the utility of all participants.
A slightly stronger variant, termed super-strong equilibrium
(SSE) [5,16], guarantees that no coalition can strictly improve
any participant without deteriorating at least one other mem-
ber. SSE postulates the natural and widely considered con-
dition of (strong) Pareto efficiency [13] for every coalition.
However, while stability against deviations by coalitions of
players is a most natural desideratum, it is well-known that
there are only very few strategic games with SE, and SSE are
even harder to guarantee.

However, in contrast to the assumptions underlying SE and
SSE, many real-life scenarios allow only certain subsets of
players to cooperate and apply joint deviations. Indeed, to
deviate collectively, a group of players has to find a deviation,
agree on it, and coordinate individual actions. This is impos-
sible for a subset of players that are completely unrelated to
each other. To this end, a promising recent approach for lim-
ited coalitional deviations was proposed in [5], where there is
a given partition of the set of players such that only sets of
the partition can implement joint actions. A partition equilib-
rium is a SSE subject to feasible coalitions being restricted to
player sets in the partition only. In contrast to standard SSE,
partition equilibrium was shown to always exist in resource
selection games (RSGs) [1]; moreover, corresponding strat-
egy profiles are also NE—that is, coalitional and unilateral
stability are obtained simultaneously.

In this paper, we significantly strengthen the partition equi-
librium concept by considering coalitional deviations and sta-
ble outcomes based on a rich combinatorial structure derived
from a social network among the players rather than just parti-
tions. We assume that players in a strategic game correspond
to the set of nodes in a graph, where edges represent social
relations (or, communication links) among the players. In ad-
dition, there are coordination constraints that prescribe what
coalitions can potentially emerge and jointly deviate in the
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game. In particular, we focus on the natural case where po-
tential coalitions of players are fully connected—that is, the
set of feasible coalitions corresponds to the set of all possible
cliques in the graph.

Crucially, besides the ability of cooperation, the presence
of social links may also affect the strategic interests of players
in the game. In this spirit, social context games [2] were pro-
posed to model scenarios where a player’s utility can depend
on the payoffs of other players. For example, a player may be
interested in ranking his payoff as high as possible compar-
ing to the others’ payoffs [4], or a player may care about the
total payoff of a subset of his “friends”, as in coalitional con-
gestion games [8, 11]. A social context game is then defined
by some underlying game, the social context given by some
topological or graph-theoretic structure of neighborhood, and
aggregation functions capturing the effects of utility changes
in the underlying game on player incentives. In [2], RSGs are
considered as the underlying games, and four natural social
contexts are studied. However, unlike for partition equilib-
rium, this work deals only with unilateral deviations.

This paper studies the interplay between social structure
and the outcome of multi-agent interaction in yet another way.
Instead of relating a player’s utility to the payoffs of other par-
ticipants, we consider the effects their actions may have on it.
In presence of social connections, these effects introduce ad-
ditional incentives for the players and may have crucial influ-
ence on the decisions they make in the game. For example, in
social networks such as FaceBook or LinkedIn, links among
the agents represent friendships, professional partnerships, or
even family relations. In other contexts of interest, agents
may be tied by business contracts, technological dependen-
cies or communication lines. In such scenarios, it is natural
to expect that an agent will behave in a “considerate” manner
and avoid taking actions that may harm his neighbors in the
network. This motivates the study of consideration in strate-
gic games, which is in the main focus of our work. As far as
we are aware, this paper is the first to address this issue.

The solution concepts naturally corresponding to consider-
ate behavior extend the notions of NE, SE and SSE to con-
sider decisions (either group or individual) that do not deteri-
orate any neighboring players. Focusing on the natural case
where coalitions of players that execute a strategy change
must be fully connected, we define the considerate equilib-
rium to be a state in which (1) no coaliton formed by a clique
in the social network can deviate so that the utility of at least
one member of the coalition strictly improves and (2) none of
the players neighboring the clique gets worse.

We observe that partition equilibrium evolves as a special
case of considerate equilibrium when the social network is
composed of a set of disjoint cliques. Indeed, one may find
that the restriction of coalitional deviations in partition equi-
librium essentially postulates two structural properties: (1)
coalitions of players that execute a strategy change have to be
“close” to each other, and (2) their decision must strictly ben-
efit at least one of them but not strictly deteriorate any other
player close to them. The notion of closeness is defined in
both cases simply as being in the same partition set. However,
while [2, 5] are initial steps in relating the social structure to
the outcome of a game, they are quite restrictive in that only

particular social contexts and fixed coalitional structures (par-
titions) are considered. In addition, they generally ignore the
phenomenon of considerate behavior which is present in our
work. Similar arguments apply w.r.t. [7], where fixed coali-
tion structures in load balancing and congestion games are
studied. Here coalitions act as single “splittable” players that
strive to minimize the makespan or the sum of costs of the
agents in the coalition.

We explore the concept of considerate behavior in the
prominent class of resource selection games. In an RSG, each
player chooses one of a finite set of resources, and its cost is
given by a delay function depending on the number of players
choosing the same resource. RSGs are a fundamental setting
in computer science, operations research and economics, due
to their practical applicability (e.g., in electronic commerce
and communication networks) and plausible analytical prop-
erties. In particular, for strictly increasing delay functions, SE
always exist [9, 10], but SSE is not guaranteed [5]. The latter
fact has been prominently utilized to demonstrate the power
of limited coalitional deviations [1, 5].

1.1 Our Results

We show that regardless of the social network topology, all
RSGs with strictly increasing delay functions possess a con-
siderate equilibrium. Our proof in Section 3 is constructive
and yields an efficient algorithm for computing such an equi-
librium. Importantly, the computed considerate equilibrium
is also a standard NE for a given RSG, thus showing that
there exists a state that is stable against selfish and consid-
erate behavior simultaneously. Observe that the number of
cliques might be exponential in the number of players, which
makes non-trivial even the computation of a single improv-
ing move. We solve this problem by showing that, in an NE,
every profitable deviation of a clique is witnessed by a move
of a single player that decreases a suitably defined potential
function. In addition, our proof is fundamentally different and
significantly simpler than the existence proof for the special
case of partition equilibrium in [1].

In Section 4, we study convergence properties of consid-
erate dynamics. Let us remark that the potential function
argument used in our existence proof does not imply that
the sequential dynamics defined by deviations of cliques is
acyclic, since the single player moves considered in the exis-
tence proof do not necessarily correspond to allowed improv-
ing moves. Indeed, we show that even for identical, strictly
increasing delays there are infinite sequences of improving
moves of cliques. This is in contrast to the dynamics cor-
responding to partition equilibrium, for which we show the
finite improvement property in this setting.

2 Preliminaries and Initial Results

A strategic game is a tuple (N, (Si)i∈N , (ui)i∈N ), where N
is the set of n players, ans Si is a strategy space of player i.
A state s of the game is a vector of strategies (s1, . . . , sn),
where si ∈ Si. For convenience, we use s−i to denote
(s1, . . . , si−1, si+1, . . . , sn), i.e., s reduced by the single en-
try of player i. Similarly, for a state s we use sC to denote
the strategy choices of a coalition C ⊆ N and s−C for the
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complement, and we write s = (sC , s−C). The utility of
player i in state s is ui(s) ∈ R. For a state s a coalition
C ⊆ N is said to have an improving move if there is s′C
such that ui(s

′
C , s−C) > ui(s) for every player i ∈ C. In

particular, the improving move is unilateral if |C| = 1. A
state has a weak improving move if there is C ⊆ N and
s′C such that ui(s

′
C , s−C) ≥ ui(s) for every i ∈ C and

ui(s
′
C , s−C) > ui(s) for at least one i ∈ C. A (pure strat-

egy) Nash equilibrium (NE) [14] is a state that has no unilat-
eral improving moves, a strong equilibrium (SE) [3] is a state
that has no improving moves, and a super-strong equilibrium
(SSE) [5] is a state that has no weak improving moves.

To model considerate behavior, we adjust the definition of
improving moves. In particular, there is an undirected, un-
weighted graph G = (N,E) over the set of players. For a
subset C ⊆ N , consider the neighborhood of C as N (C) =
{j ∈ N | ∃i ∈ C, {i, j} ∈ E}.
Definition 1 (Considerate Improving Moves) A state s has
a considerate improving move for a coalition C if there is
s′C such that ui(s

′
C , s−C) > ui(s) for all i ∈ C and

uj(s
′
C , s−C) ≥ uj(s) for all j ∈ N (C). For a unilateral

considerate improving move we have |C| = 1. A state s has
a weak considerate improving move for a coalition C if there
is s′C such that ui(s

′
C , s−C) ≥ ui(s) for all i ∈ C ∪ N (C)

and ui(s
′
C , s−C) > ui(s) for at least one i ∈ C.

Note that every (weak/unilateral) considerate improving
move is also a (weak/unilateral) improving move but not vice
versa. To define coalitional equilibria, let us, for the time
being, also assume that there is a set system of feasible coali-
tions C ⊆ 2N . A considerate Nash equilibrium (CNE) is a
state s that has no unilateral considerate improving moves. A
(super) strong considerate equilibrium ((S)SCE) is a state s
that has no (weak) considerate improving move for a coali-
tion C ∈ C. Note that for CNE we implicitly assume C is
the set of all singleton sets {i} for all i ∈ N . Every NE is a
CNE, and every (S)SE is a (S)SCE. The converse only holds
for CNE and NE if E = ∅. In general, (S)SCE are (S)SE
only if E = ∅ and C = 2N . In this way, the presence of so-
cial ties and a non-trivial set of feasible coalitions weaken the
structural requirements for the existence of equilibrium.

In the rest of the paper, we make the natural assumption
that the set of feasible coalitions corresponds to the set of
cliques in G. In our analysis, we focus on weak improving
moves and study super strong considerate equilibria as we
believe that this solution concept is most interesting not only
from a technical point of view but also a natural and convinc-
ing model for the interaction of coalitional structures in the
presence of a social network.
Definition 2 (Considerate Equilibria) A considerate equi-
librium (CE) is a state s that has no weak considerate im-
proving move for a coalition corresponding to a clique in G.
The notion of CE nicely generalizes partition equilibrium. In
particular, a partition equilibrium is a CE if the social network
G is partitioned into isolated cliques. Note that we do not ex-
plicitely assume that the set of feasible coalitions is restricted
to maximal cliques. If the graph is partitioned into isolated
cliques, however, this rather technical assumption made in the
definition of partition equilibrium is a natural consequence of

the assumption that the coalitions behave considerately to-
wards their neighbors. In this way, since weak improving
moves do not decrease the utility of neighboring players, one
can assume w.l.o.g. that all members of a partition set partic-
ipate in a coalition.

We apply the concept of consideration to resource selection
games (RSG)1—a basic class of potential games [12, 15]. In
an RSG, there is a set of resources R, and Si = R for every
player i ∈ N . For a state s we denote by �r(s) the number of
players that pick r ∈ R in s. For each resource r ∈ R, there
is a delay function dr(x) ∈ R. Throughout the paper we
assume that all delay functions are non-negative and strictly
increasing. In a state with si = r, player i has cost ci(s) =
−ui(s) = dr(�r(s)).

In this paper, we focus on RSGs with strictly increasing
delays. In this case, it is known that NE exist [15], can
be computed in polynomial time [6], and are equivalent to
SE [9]. Moreover, the games possess a (strong) potential
function [9, 12], i.e., every sequence of unilateral improv-
ing moves has finite length and ends in a NE/SE. Trivially,
by restriction of improving moves, the same holds also for
CNE and SCE. Interestingly, however, SSE are not guaran-
teed to exist even in simplest games.2 In contrast, we prove
below that all RSGs with strictly increasing delays possess
considerate equilibria. However, even for identical resources,
we show that there are infinite sequences of weak considerate
improving moves of coalitions being cliques in G. This is in
contrast to a special case where G is a disjoint set of cliques
and CE reduces to partition equilibrium; in this case, there
exists a potential function for weak (considerate) improving
moves in games with identical resources.

3 Existence and Computation

This section contains our main theorem showing the existence
of CE in RSGs with strictly increasing delay functions. The
existence proof is constructive and yields a polynomial time
algorithm computing a state that is both a CE and a standard
NE, thus showing that the two equilibrium concepts intersect.

Theorem 1 For any RSG with strictly increasing delay func-
tions and any associated social network G, there exists at
least one state that is an NE and a CE. Moreover, there is a
polynomial time algorithm computing such a state.

Proof : We describe a process that starts in a Nash equilib-
rium and converges to a CE. This process consists of move-
ments of single players. Every strategy profile in this se-
quence is a standard Nash equilibrium.

Consider a state s. Let dmax denote the maximal delay of
a player in s. Note that in a Nash equilibrium, each used
resource r has either delay dr(�r) = dmax or dr(�r) < dmax

and dr(�r + 1) ≥ dmax. In the former case, we call resource
r a high resource, in the latter case, we call it a low resource
if additionally dr(�r +1) = dmax. Let Ni,r(s) denote the set
of neighbors of player i in G that are on resource r in s.

1Also being referred to as simple congestion games , singleton
congestion games or parallel link games

2Consider a game with N = {1, 2, 3}, R = {r1, r2}, and
dr1(x) = dr2(x) = x.
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We are now ready to describe the process:
1. Compute a Nash equilibrium s.
2. If there is a player i placed on a high resource r and there

is a low resource r′ with |Ni,r(s)| > |Ni,r′(s)| then set
s = (s−i, r

′), and repeat this step.
3. If there is a player i placed on a high resource r and

there is a low resource r′ with |Ni,r(s)| = |Ni,r′(s)|
and dr(�r(s) − 1) < dr′(�r′(s)) then set s = (s−i, r

′),
and continue with step 2.

4. Output s.
Note that each state produced by this process is a Nash equi-
librium. During this process, the following potential function

φ(s) =
∑

i∈N
M |Ni(s)|+

∑

r∈R
dr(�r(s))

decreases strictly from step to step, where we use Ni(s) =
Ni,si(s) as a shorthand for the neighbors of i on the same re-
source and assume M >

∑
r∈R dr(n). One can easily mod-

ify the delay functions such that M = n|R|2 without chang-
ing the players’ preferences which implies that the process
terminates after polynomially many steps.

To prove that this process results in a CE, we show that if
a state s is a NE and there exists weak considerate improving
move s′C , then there is also a move of a single player i ∈ C
as described above.

Let H and L denote the set of high and low resources in
s, respectively. Let Rh be the set of resources that are high
in s but no longer high in (s′C , s−C), and let Rl be the set of
resources that are low in s and become high in (s′C , s−C). By
definition, Rh ⊆ H and Rl ⊆ L. Let Nh be the set of players
of C on resources of Rh in s, and let Nl be the set of players
of C on resources of Rl in s.
Lemma 2 During the move s′C , all players in Nl are mov-
ing from resources in Rl to resources outside of Rl. In turn,
|Nl|+ |Rl| players are moving from resources in H to the re-
sources in Rl. Finally, at least |Nl|+ |Rl| players are leaving
Rh towards resources outside of Rh.
Proof : Since s′C is a weak considerate improving move,
all players in Nl must move from resources in Rl to resources
outside of Rl as their delay would increase, otherwise. These
players can only be replaced by players from H as other play-
ers would have an increased delay after the move, otherwise.
In turn, altogether |Nl| + |Rl| players need to move from H
to Rl so that the resources of Rl become high resources af-
ter the move. Furthermore, we observe that the number of
players on resources in H \ Rh does not change during the
considered move, and there are no players entering H \ Rh

from outside of H as such players would have an increased
delay, otherwise. As a consequence, there must be at least
|Nl|+ |Rl| players that are leaving Rh towards H \Rh or Rl

in order to have |Nl|+ |Rl| players that move from H to Rl.
This proves Lemma 2. � The lemma implies

|Nh| ≥ |Nl|+ |Rl| (1)

Let maxh = maxi∈Nh
Ni(s) denote the maximum number

of neighbors that a player of Nh has on his resource. The

definition maxh implies

|Nh| ≤ (maxh + 1) · |Rh| (2)

Note that no player of C has a neighbor that has chosen a
resource from Rl and is not in C. Otherwise, this neigh-
bor’s delay would increase during the move so that s′C would
not be a considerate move. Therefore, we can set minl =
mini∈Nh,r∈Rl

Ni,r(s), where the choice of i is irrelevant.
The definition of minl immediately implies

|Nl| ≥ minl · |Rl| (3)

Let us derive some more helpful equations regarding the dif-
ferent kinds of resources. For each resource that decreases its
load during the improving move, there is at least one resource
that increases its load by one because the number of players
on each low resource can only increase by one. This gives

|Rh| ≤ |Rl| (4)

Combining the Equations (2), (1), and (3) gives

(maxh + 1) · |Rh| ≥ |Nh| ≥ |Nl|+ |Rl| ≥ (minl + 1) · |Rl| (5)

Now, we distinguish between the following two cases.

Case 1: maxh > minl. In this case, we can set i =
argmaxj∈Nh

Nj(s) and r′ = argminr∈Rl
Ni,r(s), which

satisfies the conditions of step 2 of the process.

Case 2: maxh ≤ minl. In this case, Equation 5 yields
|Rh| ≥ |Rl|, which, coupled with Equation 4, implies |Rh| =
|Rl|. Substituting this equality back into the Equation 5
gives maxh ≥ minl which implies maxh = minl. Define
q = |Rh| = |Rl| and k = maxh = minl. Now Equations 2
and 3 yield |Nh| ≤ |Nl|+q, which in combination with Equa-
tion 1 gives |Nh| = |Nl|+ q.

On average, the resources in Rl hold |Nl|/q players from
C in state s and the resources Rh hold |Nh|/q players from
C. We claim that this implies that each resource in Rl holds
exactly |Nl|/q players from C; and each resource in Rh holds
exactly |Nh|/q players from C and no additonal neighbor of
one of them. To see this, let rh denote a resource from Rh

holding a maximum number of players from C and let rl de-
note a resource from Rl holding a minimum number of play-
ers from C. Let i ∈ Nh be a player assigned to rh. As s′C
is a considerate move, i does not have neighbors outside of
C on rl. Thus, if the claim above would not hold, i would
have either at least |Nh|/q neighbors on rh or strictly less
than |Nh|/q − 1 = |Nl|/q neighbors on rl, which would im-
ply maxh > minl and thus contradict our assumption. As a
consequence, |Ni,r(s)| = k = Ni,r′(s)|, for every i ∈ Nh,
r ∈ Rh, and r′ ∈ Rl.

Now, Lemma 2 implies that each of the q resources in Rl

is left by its k players from C and each of the q resources in
Rh is left by its k + 1 players from C.

We make a few further observations: The definition of Rh

implies that the number of players on a resource from H \Rh

does not decrease during the considered move. Besides, this
number cannot increase due to a weak improving move. Next
consider a resource r 
∈ H ∪Rl. The definition of Rl implies
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that the number of players on r cannot increase during a weak
improving move. Now suppose the number of players on r
would decrease. Then there is a leaving player i, who moves
to either Rh or another resource in L \Rl, as its delay would
increase, otherwise. In the latter case, a different player must
make room for i. By following this player, we can iteratively
construct a chain of moving players until finally there is a
player that moves to a resource in Rh. Thus, together with the
players leaving the resources in Rl there are at least qk + 1
that need to migrate to a resource with a delay of less than
dmax (after the move). However, the resources in Rh have
only a capacity for taking qk many of such players. Hence,
the number of players on any resource outside of Rl or Rh

does not change during this move.
Now, take one of the players from Nl. During the consid-

ered move, this player migrates to another resource having a
delay strictly less than dmax (after the move). If this resource
does not belong to Rh then another player needs to leave this
resource in order to compensate for the arriving player. Fol-
lowing that player, we iteratively construct a chain of moving
players, leading from a resource in Rl to a resource in Rh.
In this manner, we can decompose the set of moving players
into a collection of qk many chains each of which leads from
Rl to Rh. As we are considering a weak improving move, the
delays in each of these chains does not increase and there is at
least one such chain leading from a resource r′ ∈ Rl to a re-
source r ∈ Rh with dr(�r(s)− 1) < dr′(�r′(s)). We choose
an arbitrary player i ∈ Nh assigned to resource r in s. We
have shown above that for this player |Ni,r(s)| = Ni,r′(s)|
holds. Thus, player i satisfies the condition in step 3 of our
process, which completes our analysis for Case 2.

This shows that, when the process terminates, there are no
weak considerate improving moves. Therefore, the resulting
state is a CE. �

4 Convergence

Next we show that the dynamics of weak considerate im-
proving moves by general cliques does not have the finite
improvement property, i.e., the dynamics corresponding to
CE might cycle (Theorem 3). Our construction works even
for resources with identical delays. This separates consid-
erate equilibrium from partition equilibrium as, in the same
setting, the dynamics corresponding to partition equilibrium
admits the finite improvement property (Proposition 4).
Theorem 3 There are symmetric RSGs with strictly increas-
ing and identical delays, for which there are infinite se-
quences of weak considerate improving moves by coalitions
that are cliques in G.
Proof : For the proof we construct a game with a modular
structure. Our game consists of a number of smaller games,
referred to as blocks. Each block consists of 14 players and
5 resources, and by itself it is acyclic. However, by creating
social ties across blocks, we create larger cliques that are able
to perform “resets” in one block while making improvements
in other blocks. By a careful scheduling of such reset moves
we construct an infinite sequence of moves.

More formally, we have 19 blocks, and in each
block i, we have 14 players. There are 8 players

Bi, Ci, Di, Ei, F i, Gi, P i, Qi involved in our sequence,
while 6 additional “dummy” players never move. The
dummy players are singleton nodes in the social network and
are only required to, in essence, simulate non-identical re-
sources by increasing some of the delays to larger values. The
social graph consists of internal links within each block and
inter-block connections as follows. For each block, there are
edges {Bi, F i}, {Ci, Ei} and {Di, Gi}. In addition, for each
i = 1, ..., 19 there are two inter-block cliques,

• {Di, P i, P i+1, Bi+1, Di+2, P i+2, Ci+6, Ei+6} and
• {Di, Qi, Qi+1, Ci+1, Di+2, Qi+2, Bi+9, F i+9},

where the exponent is meant to cycle through the numbers 1
to 19, i.e., above P j means P ((j−1) mod 19)+1.

The 95 resources are denoted by rij with i = 1, . . . , 19,
j = 1, . . . , 5. The delay functions are identical dr(x) = x for
all r ∈ R. Note that in general, our example does not require
linear delays, it suffices to ensure dr(3) > dr(2).

Let us consider a single block i and a sequence of six states
within this block depicted in Fig. 1. Note that α → β rep-

ri1 ri2 ri3 ri4 ri5
Ci Bi P i Qi

α Ei Di F i x x
x Gi x x x
Ci Di P i Qi

β Ei Bi F i x x
x Gi x x x

Ci Di P i Qi

γ Ei Bi F i x x
x Gi x x x

Ci Bi P i Qi

δ Ei Di F i x x
x Gi x x x
Di Bi P i Qi

ε Ei Ci F i x x
x Gi x x x
Di Bi P i Qi

ζ Ei Ci F i x x
x Gi x x x
Ci Bi P i Qi

α Ei Di F i x x
x Gi x x x

Figure 1: Sequence of six states within a block i that are at-
tained during an infinite sequence of weak considerate im-
proving moves.

resents a weak considerate improving move for {Di, Gi},
where Di performs the move, and Gi strictly improves. Sim-
ilarly, β → γ is a weak considerate improving move for
{Ci, Ei}, δ → ε for {Di, Gi}, and ε → ζ for {Bi, F i}. The
steps γ → δ and ζ → α are resets, in which a cyclic switch is
performed and no player within the block strictly improves.
It suffices to show that these steps can be implemented with
improving moves by inter-block cliques.
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Consider the first reset γ → δ, in which Di and Bi

swap places, and for simplicity assume w.l.o.g. that i = 5.
This swap is executed in three moves, where we first swap
in P 5 for D5, then swap P 5 and B5 and finally swap out
P 5 to bring D5 back in. This cyclic switch is the result
of the following sequence of weak considerate improving
moves: (1) coalition {D3, P 3, P 4, B4, D5, P 5, C9, E9} ap-
plies a deviation where D5 and P 5 exchange their places,
and C9 moves away from E9 in block 9 as β → γ pre-
scribes; (2) coalition {D4, P 4, P 5, B5, D6, P 6, C10, E10}
improves by swapping P 5 and B5, and moving C10 away
from E10 in block 10; (3) finally, D5 and P 5 swap with coali-
tion {D5, P 5, P 6, B6, D7, P 7, C11, E11} where C11 moves
away from E11 in block 11. In the final dynamics, we will
use these moves also to simultaneously perform swaps in the
other blocks 3, 4, 6, and 7.

The second reset swap ζ → α by D5 and C5 can be done
in similar fashion by a circular swap involving Q5 and us-
ing the Bi and F i players of blocks i = 12, 13, 14. Note
that our edges are carefully designed not to generate any un-
desired connections. In particular, D5, P 5, B5 rely on the
movement of C9, C10 and C11 to execute their swaps. Dur-
ing these swaps, B9, B10 and B11 are deteriorated. None of
the deteriorated players are attached to players in the respec-
tive improving coalitions, i.e., none of D3, P 3, P 4, B4, D5

or P 5 are neighbors with B9, none of D4, P 4, P 5, B5, D6

or P 6 are neighbors with B10, and none of D5, P 5, P 6, B6,
D7 or P 7 are neighbors with B11. In addition, for making
the switch between D5, Q5 and C5 we use the movement of
B12, B13 and B14. Note that none of the players required
to execute the switches are neighbors with C12, C13 or C14,
respectively.

An infinite sequence of weak considerate improving moves
can now, for example, be obtained from a starting state as
follows. We indicate for each block in which state α to ζ it is
initialized. Here γ1, γ2, ζ1, and ζ2 indicate the intermediate
states of the corresponding circular resetting swaps.

1 2 3 4 5 6 7 8 9
ζ2 ζ1 ζ ζ ζ ζ ζ ζ ζ

10 11 12 13 14 15 16 17 18 19
ε δ γ2 γ1 γ γ γ γ β α

In the first step, we can simultaneously advance blocks 1-3
from (ζ2, ζ1, ζ) to (α, ζ2, ζ1) using movement of B10, which
advances block 10 to ζ. In the next step we advance blocks
12-14 from (γ2, γ1, γ) to (δ, γ2, γ1) using movement of C18,
which advances block 18 to γ. Next, we make two internal
switches in blocks 11 from δ to ε and 19 from α to β. In this
way, we have shifted the state sequence by one block, which
implies that we can repeat this sequence endlessly. � In
contrast, observe that if the graph is a set of disjoint cliques,
then for games with identical and strictly increasing delay
functions we can easily construct a potential function that im-
plies acyclicity with respect to weak (considerate) improving
moves.
Proposition 4 In every symmetric RSG with strictly increas-
ing, identical delays functions, every sequence of weak im-
proving moves of allowed partition sets is finite and ends in a
partition equilibrium.

Note that in this case we can assume w.l.o.g. that dr(x) = x
for all r ∈ R. Also, each weak improving move decreases
the sum of costs of all players in the partition set. Thereby,
the results of [7] for linear delays directly imply the finite
improvement property.
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