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Abstract

Computational complexity of voting manipulation
is one of the most actively studied topics in the area
of computational social choice, starting with the
groundbreaking work of [Bartholdi et al., 1989].
Most of the existing work in this area, includ-
ing that of [Bartholdi et al., 1989], implicitly as-
sumes that whenever several candidates receive the
top score with respect to the given voting rule,
the resulting tie is broken according to a lexico-
graphic ordering over the candidates. However,
till recently, an equally appealing method of tie-
breaking, namely, selecting the winner uniformly
at random among all tied candidates, has not been
considered in the computational social choice lit-
erature. The first paper to analyze the complex-
ity of voting manipulation under randomized tie-
breaking is [Obraztsova et al., 2011], where the au-
thors provide polynomial-time algorithms for this
problem under scoring rules and—under an addi-
tional assumption on the manipulator’s utilities—
for Maximin. In this paper, we extend the results
of [Obraztsova et al., 2011] by showing that find-
ing an optimal vote under randomized tie-breaking
is computationally hard for Copeland and Max-
imin (with general utilities), as well as for STV and
Ranked Pairs, but easy for the Bucklin rule and Plu-
rality with Runoff.

1 Introduction

Whenever a group of agents with heterogeneous preferences
have to make a joint decision, the agents’ opinions need to
be aggregated in order to identify a suitable course of ac-
tion. This applies both to human societies, and to groups
of autonomous agents, and the entities that the agents need
to select from can vary from political leaders to song con-
test winners and joint plans. The standard way to aggregate
the preferences is by asking the agents to vote over the avail-
able candidates: each agent ranks the candidates, and a voting
rule, i.e., a mapping from collective rankings to candidates,
is used to select the winner.

In most preference aggregation settings, each agent wants
his most favorite alternative to win, irrespective of other

agents’ preferences. Thus, he may try to manipulate the vot-
ing rule, i.e., to misrepresent his preferences in order to obtain
an outcome that he ranks higher than the outcome of the truth-
ful voting. Indeed, the famous Gibbard–Satterthwaite theo-
rem [Gibbard, 1973; Satterthwaite, 1975] shows that when-
ever the agents have to choose from 3 or more alternatives,
every reasonable voting rule is manipulable, i.e., for some
collection of voter’s preferences some voter can benefit from
lying about his ranking. This is bad news, as the manipulator
may exercise undue influence over the election outcome, and
a lot of research effort has been invested in identifying vot-
ing rules that are more resistant to manipulation than others,
as measured by the fraction of manipulable profiles or the al-
gorithmic complexity of manipulation (see [Faliszewski and
Procaccia, 2010] for an overview).

Many common voting rules operate by assigning scores to
candidates, so that the winner is the candidate with the high-
est score. Now, in elections with a large number of voters
and a small number of candidates there is usually only one
candidate that obtains the top score. However, this does not
necessarily hold when the alternative space is large, as may be
the case when, e.g., agents in a multiagent system use voting
to decide on a joint plan of action [Ephrati and Rosenschein,
1997]. If, nevertheless, a single outcome needs to be selected,
such ties have to be broken. In the context of manipulation,
this means that the manipulator should take the tie-breaking
rule into account when choosing his actions. Much of the
existing literature on voting manipulation circumvents the is-
sue by assuming that the manipulator’s goal is to make some
distinguished candidate p one of the election winners, or, al-
ternatively, the unique winner. The former assumption can
be interpreted as a tie-breaking rule that is favorable to the
manipulator, i.e., given a tie that involves p, always selects p
as the winner; similarly, the latter assumption corresponds to
a tie-breaking rule that is adversarial to the manipulator. In
fact, most of the existing algorithms for finding a manipula-
tive vote work for any tie-breaking rule that selects the winner
according to a given ordering on the candidates; the two cases
considered above correspond to this order being, respectively,
the manipulator’s preference order or its inverse.

However, till recently, an equally appealing approach to
tie-breaking, namely, selecting the winner among all tied can-
didates uniformly at random, has been rarely studied in the
computational social choice literature (two exceptions to this

319

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence



pattern that we are aware of are [Hazon et al., 2008] and
[Desmedt and Elkind, 2010]; however, [Hazon et al., 2008]
does not deal with manipulation at all and [Desmedt and
Elkind, 2010] considers a very different model of manipu-
lation). Perhaps one of the reasons for this is that under ran-
domized tie-breaking the outcome of the election is a random
variable, so it is not immediately clear how to compare two
outcomes: is having your second-best alternative as the only
winner preferable to the lottery in which your top and bottom
alternatives have equal chances of winning? A very recent
paper [Obraztsova et al., 2011] deals with this issue by aug-
menting the manipulator’s preference model: it assumes that
the manipulator assigns a numeric utility to all candidates,
and his goal is to vote so as to maximize his expected utility,
where the expectation is computed over the random choices
of the tie-breaking procedure; this approach is standard in the
social choice literature ( see, e.g.,[Gibbard, 1977]) and has
also been used in [Desmedt and Elkind, 2010]. [Obraztsova
et al., 2011] show that in this setting any scoring rule is easy
to manipulate, and so is the Maximin rule (see Section 2 for
the definitions), assuming that the manipulator assigns 1 unit
of utility to one candidate and utility 0 to all other candi-
dates. However, [Obraztsova et al., 2011] provides no results
on the complexity of manipulating Maximin for general utili-
ties, nor does it analyze the complexity of manipulation under
randomized tie-breaking for any other voting rules.

In this paper, we pursue the line of enquiry initiated by
[Obraztsova et al., 2011]. We answer the open question posed
in that paper by showing that for general utilities Maximin is
hard to manipulate (Section 3). We then show that this is
also the case for the Copeland rule (Section 4). In contrast,
for the Bucklin rule the manipulator has a polynomial-time
algorithm (Section 5); this is true both for the classic Buck-
lin rule considered by the social choice theorists and for its
simplified version that is sometimes used in the computa-
tional social choice literature (see, e.g., [Xia et al., 2009]).
In Section 6, we analyze the complexity of our problem for
three voting rules that compute the winners using a multi-step
procedure, namely, Plurality with Runoff, STV, and Ranked
Pairs. Thus, together with the results of [Obraztsova et al.,
2011], we obtain an essentially complete picture of the com-
plexity of manipulating common voting rules under random-
ized tie-breaking (see Table 1 in the end of the paper).

2 Preliminaries

An election is given by a set of candidates C, |C| = m, and
a set of voters V = {v1, . . . , vn}. Let L(C) denote the space
of all linear orders over C. Each voter vi is described by an
order Ri ∈ L(C), also denoted by �i; this order is called
vi’s preference order. The vector R = (R1, . . . , Rn), where
Ri ∈ L(C) for all i = 1, . . . , n, is called a preference profile.
When a �i b for some a, b ∈ C, we say that voter vi prefers
a to b.

A voting correspondence F is a mapping that, given a pref-
erence profile R over C outputs a non-empty subset S ⊆ C;
we write S = F(R). If |F(R)| = 1, the mapping F is called
a voting rule; if this is the case, we abuse notation and write
F(R) = c instead of F(R) = {c}. To transform a voting

correspondence into a voting rule, one needs a tie-breaking
rule, i.e., a mapping T that given a non-empty set of candi-
dates S ⊆ C outputs a candidate c ∈ S: clearly, if F is a
voting correspondence and T is a tie-breaking rule, then the
mapping T ◦ F given by T ◦ F(R) = T (F(R)) is a vot-
ing rule. Throughout most of this paper, we consider the tie-
breaking rule that given a set of tied candidates S, chooses an
element of S uniformly at random; we will refer to this rule
as the randomized tie-breaking rule.

Voting rules We will now describe the voting rules (corre-
spondences) considered in this paper. For all rules that as-
sign scores to candidates (i.e., Copeland, Maximin and k-
approval), the winners are the candidates with the highest
scores (for Copeland and k-approval, the candidate’s score
is the total number of points he obtains). We omit the defini-
tion of the Ranked Pairs rule, as our hardness proof for this
rule does not directly rely on its definition.
Copeland We say that a candidate a wins a pairwise election
against b if more than half of the voters prefer a to b; if exactly
half of the voters prefer a to b, then a is said to tie his pairwise
election against b. Given a rational value α ∈ [0, 1], under the
Copelandα rule each candidate gets 1 point for each pairwise
election he wins and α points for each pairwise election he
ties.
Maximin The Maximin score of a candidate c ∈ C is equal
to the number of votes he gets in his worst pairwise election,
i.e., mind∈C\{c} |{i | c �i d}|.
k-approval, Plurality and Bucklin Under the k-approval
rule, a candidate gets one point for each voter that ranks him
in the top k positions; 1-approval is also known as Plurality.
Let k∗ be the smallest value of k such that some candidate’s
k-approval score is at least �n/2� + 1; we will say that k∗
is the Bucklin winning round. Under the simplified Bucklin
rule, the winners are all candidates whose k∗-approval score
is at least �n/2�+ 1; under the Bucklin rule, the winners are
all k∗-approval winners.
Plurality with Runoff and STV Under the STV rule, the
election proceeds in rounds. During each round, the can-
didate with the lowest Plurality score is eliminated, and the
candidates’ Plurality scores are recomputed. The winner is
the candidate that survives till the last round. Plurality with
Runoff can be thought of as a compressed version of STV: we
first select two candidates with the highest Plurality scores,
and then output the winner of the pairwise election between
them. Note that these definitions are somewhat ambiguous,
as several candidates may have the lowest/highest Plurality
score; we will comment on this issue in Section 6.

Manipulation Given a preference profile R over a set of can-
didates C, for any preference order L ∈ L(C) we denote by
(R−i, L) the preference profile obtained from R by replacing
Ri with L. We say that a voter vi can successfully manipulate
an election (C, V ) with a preference profile (R1, . . . , Rn)
with respect to a voting rule F if F(R−i, L) �i F(R). To
define a notion of successful manipulation for voting corre-
spondences with respect to randomized tie-breaking, we fol-
low [Obraztsova et al., 2011] and assume that the manipula-
tor vi is endowed with a utility function u : C → N that is
consistent with vi, i.e., u(c) ≥ u(c′) if and only if c �i c′.
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Then, if a voting correspondence F outputs a set S ⊆ C,
vi’s expected utility û(S) is given by û(S) = 1

|S|
∑

c∈S u(c).
We say that vi can successfully manipulate F under ran-
domized tie-breaking if û(F(R−i, L)) > û(F(R)) for some
L ∈ L(C); a vote L ∈ L(C) is optimal for vi with respect
to F if û(F(R−i, L)) ≥ û(F(R−i), L

′) for all L′ ∈ L(C).
The corresponding algorithmic problem is defined as follows.
Definition 1. An instance of the F -RANDMANIPULATION
problem is a tuple (E,R, vi, u, q), where E = (C, V ) is an
election, R is a preference profile for E, vi is a voter in V ,
u : C → N is a utility function such that u(c) ≥ u(c′) if
and only if c �i c′, and q is a non-negative rational num-
ber. It is a “yes”-instance if there exists a vote L such that
û(F(R−i, L)) ≥ q and a “no”-instance otherwise.

In the optimization version of F -RANDMANIPULATION,
the goal is to find an optimal vote.

We remark that F -RANDMANIPULATION is in NP for any
polynomial-time computable voting correspondence F : it
suffices to guess the manipulative vote L, determine the set
S = F(R−i(L)), and compute the average utility of the can-
didates in S.

3 Maximin

[Obraztsova et al., 2011] show that if the manipulator’s util-
ity function is given by u(p) = 1, u(c) = 0 for c ∈ C \ {p},
i.e., the manipulator likes one candidate and equally dislikes
all other candidates, then Maximin-RANDMANIPULATION is
polynomial-time solvable. We will now show that if we “in-
vert” the manipulator’s utility, i.e., set u(w) = 0, u(c) = 1
for c ∈ C \ {w}, then Maximin-RANDMANIPULATION be-
comes NP-complete. Observe that if the manipulator v has
this utility function, and w is the Maximin winner irrespective
of v’s vote, then v’s goal is to maximize the overall number
of Maximin winners.

Our hardness proof proceeds by reduction from FEED-
BACK VERTEX SET [Garey and Johnson, 1979]. Recall that
an instance of FEEDBACK VERTEX SET is given by a directed
graph G with s vertices {ν1, . . . , νs} and a parameter t ≤ s;
it is a “yes”-instance if it is possible to delete at most t ver-
tices from G so that the resulting graph contains no directed
cycles and a “no”-instance otherwise. It will be convenient to
assume that G contains no directed cycles of length 2. It is
easy to see that FEEDBACK VERTEX SET remains NP-hard
under this assumption; we omit the proof of this fact due to
space constraints.
Theorem 1. Maximin-RANDMANIPULATION is NP-
complete.

Proof. We have argued that Maximin-
RANDMANIPULATION is in NP. For the hardness
proof, suppose that we are given an instance (G, t) of
FEEDBACK VERTEX SET, where G is an s-vertex graph with
the vertex set {ν1, . . . , νs} that has no directed 2-cycles.
We will now construct an instance of our problem with
C = {c1, c2, . . . , cs, w}.

By (the proof of) McGarvey’s theorem [McGarvey, 1953],
there exists an election E = (C, V ) with a preference profile
R′ = (R1, . . . , Rn), where n is even, such that

• for i = 1, . . . , s, if the indegree of νi in G is at least
1, then exactly n/2 voters rank w above ci; otherwise,
exactly n/2 + 1 voter ranks w above ci.

• if (νi, νj) ∈ G (and hence, since G contains no directed
cycles of length 2, (νj , νi) �∈ G), exactly n/2 + 1 voters
rank ci above cj .

• if (νi, νj) �∈ G and (νj , νi) �∈ G, exactly n/2 voters rank
ci above cj .

Moreover, R′ = (R1, . . . , Rn) can be constructed in time
polynomial in s. We will say that ci is a parent of cj if exactly
n/2+1 voter ranks ci above cj . Observe that in the resulting
election the Maximin score of w is n/2, and the Maximin
score of any other candidate is n/2− 1.

Set V ′ = V ∪ {vn+1}, and consider the election E′ =
(C, V ′) with a preference profile (R′, L) = (R1, . . . , Rn, L),
where L is the manipulator’s vote. Since w is the unique
Maximin winner before the manipulator votes, and w’s score
exceeds the score of any other candidate by 1, a candidate ci
is a winner of (R′, L) if and only if (a) the manipulator ranks
ci above all of her parents and (b) w’s Maximin score does
not increase; on the other hand, w will remain the Maximin
winner no matter how the manipulator votes.

Let the manipulator’s utility be given by u(w) = 0, u(c) =
1 for any c ∈ C \ {w}. Under this utility function, the ma-
nipulator’s utility is 0 if w is the only Maximin winner, 1 if
w is not among the Maximin winners, and r/(r + 1) if the
Maximin winners are w and r candidates from C \ {w}. Let
Rn+1 be some preference order over C that is consistent with
u, and set R = (R1, . . . , Rn, Rn+1). We claim that (G, t) is
a “yes”-instance of FEEDBACK VERTEX SET if and only if
(E′,R, vn+1, u, (s − t)/(s − t + 1)) is a “yes”-instance of
Maximin-RANDMANIPULATION.

Suppose (G, t) is a “yes”-instance of FEEDBACK VERTEX
SET. Then we can delete t vertices from G so that the result-
ing graph G′ is acyclic, and hence can be topologically sorted.
Let νi1 , . . . , νis−t

be the vertices of G′, listed in the sorted or-
der, i.e., so that any edge of G is of the form (νij , νi�) with
j < �. Consider the vote L obtained by ranking the candi-
dates that correspond to vertices of G′ first, in reverse topo-
logical order (i.e., cis−t , . . . , ci1 ), followed by the remaining
candidates in C \ {w}, followed by w. By construction, each
of the first s−t candidates is ranked above all of its parents, so
its Maximin score in (R′, L) is n/2. On the other hand, w’s
score remains equal to n/2. Thus, the manipulator’s utility in
the resulting election is at least (s− t)/(s− t+ 1).

Conversely, suppose the manipulator submits a vote L′ so
that in the preference profile R−(n+1)(L

′) his utility is at
least (s − t)/(s − t + 1). We have argued that w is a Max-
imin winner in R−(n+1)(L

′), and therefore R−(n+1)(L
′) has

at least s− t+1 Maximin winners (including w). Let C ′ be a
set of some s−t candidates in C \{w} that are Maximin win-
ners in R−(n+1)(L

′), and suppose they appear in L′ ordered
as ci1 , . . . , cis−t

. Let G′ be the induced subgraph of G with
the set of vertices νi1 , . . . , νis−t

. Each of the candidates in C ′
appears in L′ before all of its parents. Therefore, in the or-
dering νi1 , . . . , νis−t

of the vertices of G′ all arcs are directed
from right to left, i.e., G′ contains no directed cycles. Since
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G′ has s− t vertices, this means that (G, t) is a “yes”-instance
of FEEDBACK VERTEX SET.

4 Copeland

For the Copeland rule, we give an NP-hardness reduction
from the INDEPENDENT SET problem [Garey and Johnson,
1979]. An instance of this problem is given by an undirected
graph G and a positive integer t. It is a “yes”-instance if G
contains an independent set of size at least t, i.e., if G has at
least t vertices such that no two of them are connected by an
edge; otherwise, it is a “no”-instance.

Our reduction makes use of a technical lemma (proof omit-
ted due to space constraints), which essentially shows that any
undirected graph G can be obtained as a graph of ties in an
election whose size is polynomial in the size of G; a similar
result appears in [Faliszewski et al., 2008] (Lemma 2.4).

Lemma 1. Let G be an undirected graph with the vertex set
ν1, . . . , νs, s ≥ 3. Let d(νi) denote the degree of vertex
νi. Then there exists a directed graph G′ with the vertex set
G∪Z∪{w}, where G = {g1, . . . , gs}, Z = {z1, . . . , z4s+1},
such that the outdegree dout and the indegree din of each ver-
tex of G′ satisfy

• dout(w) = 4s+ 1, din(w) = s;

• dout(gi) = 4s+1− d(νi), din(gi) = s for i = 1, . . . , s;

• din(z) + dout(z) = 5s+ 1 and dout(z) ≤ 3s+ 1 for all
z ∈ Z,

G′ contains no 2-cycles, and, furthermore for i, j ∈
{1, . . . , s}, gi and gj are not connected by an arc in G′ if
and only if there is an edge between νi and νj in G.

We are now ready to present the main result of this section.

Theorem 2. Copelandα-RANDMANIPULATION is NP-
complete for any rational α ∈ [0, 1].

Proof. Fix α ∈ [0, 1] We have argued that Copelandα-RAND-
MANIPULATION is in NP. For the hardness proof, suppose
that we are given an instance (G, t) of INDEPENDENT SET,
where G is a graph with the vertex set {ν1, . . . , νs}. We will
now construct an instance of our problem with a set of can-
didates C = G ∪ Z ∪ {w}, where G = {g1, g2, . . . , gs},
Z = {z1, . . . , z4s+1}.

Given two candidates x, y ∈ C in an n-voter election, we
say that x safely wins a pairwise election against y (and y
safely loses a pairwise election against x) if at least �n/2�+2
voters prefer x to y. For any candidate x ∈ C, let SW(x) and
SL(x) denote the number of pairwise elections that x safely
wins and safely loses, respectively.

Let d(νi) denote the degree of the vertex νi in G. By
Lemma 1 and McGarvey’s theorem [McGarvey, 1953], we
can construct an election E = (C, V ) with a preference pro-
file (R1, . . . , Rn) that has the following properties:

• SW(w) = 4s+ 1, SL(w) = s;

• SW(gi) = 4s+ 1− d(νi), SL(gi) = s for i = 1, . . . , s;

• SW(z) + SL(z) = 5s+ 1 and SW(z) ≤ 3s+ 1 for any
z ∈ Z;

• there is a tie between two candidates c and c′ if and only
if c = gi, c′ = gj for some i, j ∈ {1, . . . , s} and there is
an edge between νi and νj in G.

Consider an election E′ = (C, V ′) with V ′ = V ∪{vn+1},
and a utility function u given by u(w) = 0, u(z) = 0 for any
z ∈ Z, u(g) = 1 for any g ∈ G. Let R be a preference order-
ing that is consistent with u, and set R = (R1, . . . , Rn, R).
For any L ∈ L(C), in the preference profile R−(n+1)(L) the
Copelandα score of w is 4s + 1, and the Copelandα score
of each candidate z ∈ Z is at most 3s + 1. Moreover, the
Copelandα score of each gi ∈ G is at least 4s+1−d(νi) and
at most 4s+1; to ensure that gi’s score is 4s+1, the manipula-
tor must rank gi above all of the candidates that gi is tied with
in E (note that for α = 1 all candidates in G are currently
tied with w, but some of them will lose points after the ma-
nipulator votes). We claim that (G, t) is a “yes”-instance of
INDEPENDENT SET if and only if (E′,R, vn+1, u, t/(t+1))
is a “yes”-instance of Copelandα-RANDMANIPULATION.

Indeed, let J = {νi1 , . . . , νit} be an independent set in
G. Consider a vote L that ranks the candidates gi1 , . . . , git
first (in any order), followed by the remaining candidates in
G ∪ Z, followed by w. Clearly, in the resulting election the
Copelandα score of the top t candidates in L is 4s+1, so the
manipulator’s utility is at least t/(t+ 1).

Conversely, suppose that for some L′ ∈ L(C) the manip-
ulator’s utility is at least t/(t + 1). Let S′ be the set of all
candidates in G whose Copelandα score in R−(n+1)(L

′) is
4s + 1; we have |S′| ≥ t. As argued above, the manipulator
ranks each candidate g ∈ S′ above all candidates that g is tied
with in E. This implies that two candidates in S′ cannot be
tied in E, i.e., S′ corresponds to an independent set in G.

5 Bucklin

In this section, we describe a polynomial-time algorithm for
Bucklin-RANDMANIPULATION. We will focus on the sim-
plified Bucklin rule, and omit the term “simplified” through-
out this section; in the end, we will briefly explain how
to extend our algorithm to the classic Bucklin rule. We
first need some additional notation. Consider an election
E = (C, V ) with |C| = m and the preference profile
R = (R1, . . . , Rn+1), and suppose that vn+1 is the manipu-
lating voter whose utility function is u. Set V ′ = V \{vn+1},
E′ = (C, V ′) and R′ = (R1, . . . , Rn). For any c ∈ C, let
sk(c) denote c’s k-approval score in R′. Given a L ∈ L(C),
let S(L) be the set of Bucklin winners in (R−(n+1), L).

Let � = min{k | sk(c) ≥ �n+1
2 �+1 for some c ∈ C}, and

set D = {c ∈ C | s�(c) ≥ �n+1
2 �+ 1}. Clearly, for any L ∈

L(C), if k is the Bucklin winning round in (R−(n+1), L),
then k ≤ �. For each i = 1, . . . ,m, let Ci = {c ∈ C |
si(c) = �n+1

2 �, si−1(c) < �n+1
2 �}, and set C<i =

⋃
j<i Cj

if i < � and C<� = (
⋃

j<� Cj) \D.
Suppose that i ≤ �. If the manipulator ranks a candi-

date c ∈ Ci in position i or higher, and ranks each can-
didate in C<i in position i or lower, in the resulting elec-
tion i is the Bucklin winning round, and c is a Bucklin win-
ner. Conversely, if i ≤ � is the Bucklin winning round in
(R−(n+1), L) and a candidate c is a Bucklin winner, then one
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of the following conditions holds: (a) c ∈ Ci and c is ranked
in position i or higher in L, or (b) c ∈ C<i and c is ranked in
position i in L, or (c) i = � and c ∈ D.

For i ≤ � and s ≤ m, let Li,s denote the set of all
votes L ∈ L(C) such that (a) i is the Bucklin winning
round in (R−(n+1), L) and (b) |S(L) ∩ Ci| = s. Also, let
L∗i,s = argmax{û(S(L)) | L ∈ Li,s} be the set of utility-
maximizing votes in Li,s.

We will now explain how to find a vote in L∗i,s. First, we
will show that if L∗ ∈ L∗i,s and the set S(L∗) contains some
candidate c ∈ C<i, then c is the top candidate in C<i.

Lemma 2. If L∗ ∈ L∗i,s for some i ≤ � and s ≤ m and
S(L∗)∩C<i �= ∅, then |S(L∗)∩C<i| = 1 and S(L∗)∩C<i ∈
argmax{u(c) | c ∈ C<i}.

Proof. Fix a vote L∗ ∈ L∗i,s, and let c be a candidate in
S(L∗)∩C<i. Since i is the Bucklin winning round for L∗ and
c ∈ C<i, c cannot be ranked in position i− 1 or higher in L∗.
Further, since c ∈ S(L∗) and i is the Bucklin winning round
for L∗, c cannot be ranked in position i + 1 or lower in L∗
(here, for i = � it is crucial that the set C<� does not contain
candidates in D). Hence, c is ranked in position i in L∗, so
|S(L∗) ∩ C<i| = 1. Now, if c �∈ argmax{u(c) | c ∈ C<i},
consider the vote L′ obtained from L∗ by swapping c with
some candidate b ∈ argmax{u(c) | c ∈ C<i}. We
have L′ ∈ Li,s. Further, the argument above shows that
b �∈ S(L∗), so S(L′) = (S(L∗) \ {c}) ∪ {b} and hence
û(S(L′)) > û(S(L∗)), a contradiction.

Now, we use Lemma 2 to find a vote in L∗i,s.

Lemma 3. For any i ≤ � and any s ≤ |C|, there is a
polynomial-time algorithm that checks whether Li,s is non-
empty, and, if so, identifies a vote L∗ ∈ L∗i,s.

Proof. Let L1
i,s be the set of all votes L in Li,s such that

S(L) ∩ C<i �= ∅, and let L2
i,s = Li,s \ L1

i,s. We will identify
the best vote in L1

i,s and L2
i,s and output the better of the two.

Observe that either or both of L1
i,s and L2

i,s can be empty: if
both are empty, then so is Li,s, and if Lj

i,s is empty, but L3−j
i,s

is not, we output the best vote in L3−j
i,s .

If C<i �= ∅, let bi be some candidate in argmax{u(c) | c ∈
C<i}. By Lemma 2, to find the best vote in L1

i,s, we place bi
in position i. Now, we need to place s candidates from Ci in
top i − 1 positions. Clearly, if |Ci| < s or if s > i − 1, this
is impossible, so L1

i,s = ∅. Otherwise, we pick s candidates
in Ci with the highest utility, breaking ties arbitrarily, and
rank them in top s positions in the vote. We then fill the
remaining i − 1 − s positions above i with candidates from
C \ (Ci ∪C<i); again, if |C \ (Ci ∪C<i)| < i− 1− s, then
L1
i,s = ∅. The remaining candidates can be ranked arbitrarily.

It is easy to see that the resulting vote L1 is in L1
i,s, and,

moreover, û(S(L1)) ≥ û(S(L′)) for any L′ ∈ L1
i,s.

The procedure for finding the best vote in L2
i,s is similar.

By the same argument as in the previous case, if |Ci| < s or
s > i or |C \ C<i+1| < i − s, then L2

i,s is empty. Other-
wise, we pick s candidates in Ci with the highest utility, rank

them in top s positions in the vote, rank some candidates from
C\(Ci∪C<i) in the next i−s positions, and then rank the re-
maining candidates arbitrarily. The resulting vote L2 satisfies
û(S(L2)) ≥ û(S(L′)) for any L′ ∈ L2

i,s.

Using Lemma 3, we can simply find the best vote in Li,s for
all i = 1, . . . , �, s = 0, . . . ,m; while for many values of i
and s the set Li,s is empty, we have Li,s �= ∅ for some i ≤ �,
s ≤ m. We obtain the following result.
Theorem 3. Simplified Bucklin-RANDMANIPULATION is
polynomial-time solvable.

To extend our algorithm to the classic Bucklin rule, ob-
serve that if L ∈ Li,s for some i < �, then each Bucklin win-
ner in (R−(n+1), L) has the same i-approval score (namely,
�n+1

2 � + 1), so any Bucklin winner in (R−(n+1), L) is also
a simplified Bucklin winner in (R−(n+1), L). Thus, only the
case i = � has to be handled differently. In this case, it matters
which candidates in D are ranked in top � positions by the ma-
nipulator, as this affects their �-approval score. Despite these
additional complications, the best vote in

⋃m
s=0 L�,s with re-

spect to the classic Bucklin rule can be identified efficiently;
we omit the details due to space constraints.
Theorem 4. Bucklin-RANDMANIPULATION is polynomial-
time solvable.

6 Iterative Rules

Some of the common voting rules, such as, e.g., STV, do
not assign scores to candidates. Rather, they are defined via
multi-step procedures. When one computes the winner un-
der such rules, ties may have to be broken during each step
of the procedure. A natural approach to winner determi-
nation under such rules is to use the parallel universes tie-
breaking [Conitzer et al., 2009]: a candidate c is an election
winner if the intermediate ties can be broken so that c is a win-
ner after the final step. Thus, any such rule defines a voting
correspondence in a usual way, and hence the corresponding
RANDMANIPULATION problem is well-defined. In this sec-
tion, we consider three rules in this class, namely, Plurality
with Runoff, STV, and Ranked Pairs (to save space, we omit
the definition of the Ranked Pairs rule, as it is not essential
for the presentation).

For Plurality with Runoff, RANDMANIPULATION turns
out to be in P. The main idea of the proof is that if Lc is the
set of all votes that rank a candidate c ∈ C first, then the best
vote in Lc ranks all candidates other than c according to their
utility; we omit the full proof due to space constraints.
Theorem 5. Plurality with Runoff-RANDMANIPULATION is
polynomial-time solvable.

For STV and Ranked Pairs, RANDMANIPULATION is NP-
hard. The proof of this fact hinges on an observation that
allows us to inherit hardness results from the standard model
of voting manipulation.

Let F be a voting correspondence. In the F-COWINNER-
MANIPULATION problem, we are given an election E =
(C, V ) with a preference profile R = (R1, . . . , Rn), and a
preferred candidate p ∈ P . The question is whether there
exists a vote L ∈ L(C) such that the preference profile
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R′ = (R1, . . . , Rn, L) satisfies p ∈ F(R′). For STV and
Ranked Pairs, COWINNERMANIPULATION is known to be
NP-hard (see, respectively, [Bartholdi et al., 1989] and [Xia
et al., 2009]). It is easy to see that this implies that for these
rules RANDMANIPULATION is hard as well; we omit the
proof due to space constraints.

Proposition 1. For any voting correspondence F , the prob-
lems F-COWINNERMANIPULATION many-one reduces to
F-RANDMANIPULATION.

Corollary 1. STV-RANDMANIPULATION and Ranked
Pairs-RANDMANIPULATION are NP-hard.

We remark that it is not clear if these problems are in
NP, since the respective winner determination problem is not
known to be polynomial-time solvable; in fact, for STV it is
known to be NP-hard [Conitzer et al., 2009].

For iterative rules one can also use randomness to break the
intermediate ties. The manipulator’s goal is then to maximize
the expected utility with respect to the resulting distribution.
Generally speaking, this problem is different from RAND-
MANIPULATION: while the set of candidates that win with
non-zero probability is the same in both settings, the proba-
bility distribution on these candidates can be different. Nev-
ertheless, we can extend the easiness result for Plurality with
Runoff to this model; however, it is not clear if this is the case
for the hardness results of Corollary 1.

7 Conclusions and Future Work

We have determined the complexity of finding an optimal ma-
nipulation under the randomized tie-breaking rule for several
prominent voting rules, namely, Maximin, Copelandα for any
rational α ∈ [0, 1], two variants of the Bucklin rule, Plurality
with Runoff, STV, and Ranked Pairs. Together with the re-
sults of [Obraztsova et al., 2011], this provides an essentially
complete picture of the complexity of RANDMANIPULATION
for commonly studied voting rules (Table 1).

P NP-hard
Scoring rules Copeland, Thm. 2
Maximin (restricted) Maximin (general), Thm. 1
simplified Bucklin, Thm. 3 STV, Cor. 1
classic Bucklin, Thm, 4 Ranked Pairs, Cor. 1
Plurality w/Runoff, Thm. 5

Table 1: Complexity of RANDMANIPULATION for classic
voting rules. The first two results in the left column are due
to [Obraztsova et al., 2011].

There is a number of open questions left by our work. For
instance, it would be interesting to see whether the easiness
results for coalitional manipulation under lexicographic tie-
breaking proven by [Zuckerman et al., 2009; Xia et al., 2009]
extend to randomized tie-breaking, or whether our algorith-
mic results hold under a more general definition of random-
ized tie-breaking, where different candidates may be selected
with different probabilities; the latter question includes, in
particular, the setting considered in the end of Section 6. An-
other promising research direction is designing approxima-

tion algorithms for the optimization version of RANDMANIP-
ULATION; while the proof of our hardness result for Copeland
can be strengthened to show that this problem does not admit
a constant-factor approximation algorithm (we omit the proof
due to space constraints; briefly, we modify our construction
so that there are many zero-utility necessary winners), it is
not the clear if this is the case for Maximin, STV, or Ranked
Pairs.
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