
On Combining Decisions from
Multiple Expert Imitators for Performance

Jonathan Rubin and Ian Watson

Department of Computer Science
University of Auckland
Auckland, New Zealand

jrub001@aucklanduni.ac.nz
ian@cs.auckland.ac.nz

Abstract

One approach for artificially intelligent agents
wishing to maximise some performance metric in a
given domain is to learn from a collection of train-
ing data that consists of actions or decisions made
by some expert, in an attempt to imitate that ex-
pert’s style. We refer to this type of agent as an ex-
pert imitator. In this paper we investigate whether
performance can be improved by combining deci-
sions from multiple expert imitators. In particular,
we investigate two existing approaches for combin-
ing decisions. The first approach combines deci-
sions by employing ensemble voting between mul-
tiple expert imitators. The second approach dy-
namically selects the best imitator to use at runtime
given the performance of the imitators in the cur-
rent environment. We investigate these approaches
in the domain of computer poker. In particular, we
create expert imitators for limit and no limit Texas
Hold’em and determine whether their performance
can be improved by combining their decisions us-
ing the two approaches listed above.

1 Introduction

Supervised machine learning algorithms typically construct
models by processing a collection of training data. Novel in-
stances/problems are later addressed by making generalised
decisions based upon the model that was learned during train-
ing. One approach for artificially intelligent agents wishing
to maximise some performance metric in a given domain is
to learn from a collection of training data that consists of ac-
tions or decisions made by some expert, in an attempt to im-
itate that expert’s style. The expert that provides the training
data can be either human or artificial. We refer to this type
of agent as an expert imitator. This approach has seen suc-
cessful application in computer games [Ontañón et al., 2009;
Floyd and Esfandiari, 2009; Rubin and Watson, 2010], but
has also been applied in other domains [Coates et al., 2008].

Our research takes place in the domain of two-player Texas
Hold’em poker – a game defined by simple rules, which how-
ever, provides a rich, dynamic environment for applying so-
phisticated strategies. Performance in the game of poker is
known to have an intransitive relationship, i.e. while player

A beats player B and player B beats player C, it does not nec-
essarily follow that A beats C. Given the intransitive nature
of poker strategies, the successful combination of different
styles of play has the potential to largely improve overall per-
formance, against a range of different opponents.

By training on experts with different styles of play, we cre-
ate multiple expert imitators in the domains of limit and no
limit Texas Hold’em. We determine whether the performance
of individual expert imitators can be improved by combining
their decisions. We investigate two existing approaches for
combining decisions.

The first approach combines decisions using ensemble
voting [Dietterich, 2000], where a final decision is made
by having each expert imitator vote on their preferred ac-
tion. The second approach combines decisions by dynam-
ically selecting a single expert imitator for each hand of
play. This approach attempts to choose the expert imita-
tor that achieves the greatest profit against a particular style
of play in order to maximise overall profit against a range
of opponents. This approach was originally applied to the
game of limit Texas Hold’em in [Johanson et al., 2007;
Johanson, 2007] where the UCB1 [Auer et al., 2002] allo-
cation strategy was applied to dynamically select experts dur-
ing play. Here we follow the same procedure described in
[Johanson, 2007] for dynamically selecting expert imitators.
Our own research extends this idea to the more complicated
domain of no limit Texas Hold’em. Furthermore, our work
focuses specifically on combining the decisions from multiple
expert imitators. Expert imitators can be used to imitate the
different playing styles of artificial or human experts, simply
by observing and recording their betting decisions. A major
benefit of using this approach is that producing new strate-
gies simply requires updating the data that is used to train the
system. By using expert imitators, a diverse set of strategies
with various playing styles can be produced with negligible
computational effort.

2 Related Work

While any learning algorithm that uses training data from a
single expert to train a system can be considered an expert
imitator, some learning algorithms are more suited to this
particular purpose than others. For example, the lazy learn-
ing [Aha, 1997] of case-based reasoning is particularly well
suited to expert imitation where expert observations can be

344

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence



recorded and stored for later use at decision time. Depending
on the particular domain, some CBR systems have demon-
strated successful imitation after making only a handful of
observations [Ontañón et al., 2009]. In the games domain,
[Floyd and Esfandiari, 2009] demonstrated successful imi-
tation in the domain of simulated robot soccer to control a
multi-agent soccer team. [Ontañón et al., 2009] observes
human experts playing a real time strategy game and uses
case-based planning to generate unique strategies. Our own
case-based poker playing system, Sartre [Rubin and Watson,
2010], has demonstrated strong performance at international
computer poker competitions by training on hand history data
from the strongest agent in the previous year’s competition.
Using this approach a version of Sartre placed 3rd out of 15
competitors at the 2010 AAAI competition1.

Many classification systems have made use of ensemble
decision making to improve accuracy. Typically a collection
of different learned hypotheses will vote for a particular cate-
gory. The category with the most (possibly weighted) votes is
the one that is selected. [Davidson, 2002] used an ensemble
approach to predict future actions of an opponent in the do-
main of limit Texas Hold’em. The results showed that having
multiple learning algorithms vote improved overall accuracy
compared to just a single learning algorithm.

Rather than having different hypotheses vote on a solu-
tion, a more difficult problem involves dynamically selecting
an appropriate hypothesis at runtime in order to maximise
overall payoff. Johanson et al. [2007] created a collection
of exploitive strategies in the game of limit Texas Hold’em
that were designed to exploit particular opponents. They
employed the UCB1 update policy together with showdown
DIVAT [Billings and Kan, 2006] analysis to select the best
exploitive player against a particular opponent during game
play. In this work, we apply a similar idea to selecting expert
imitators in the domain of limit and no limit Hold’em.

3 Expert Imitators

The expert imitators we describe in this work are lazy learners
created using the case-based reasoning methodology [Kolod-
ner, 1993]. Each expert imitator, Ij , is made up of a collection
of cases, Cj = {cj,1, cj,2, . . . , cj,n}, where j refers to the par-
ticular expert being imitated and ∀c ∈ Cj , c = (x, a), where
x is a feature vector that captures game state information and
a is an action vector that specifies the probability of taking a
certain action, given game state x.

Given a game state described by ct, a decision is made by
processing the collection of stored cases and maximising a
global similarity metric to retrieve the most similar case to ct.

cmax = argmax
ck

sim(ck, ct), ∀ck ∈ Cj (1)

where, sim(c1, c2) is some global similarity metric that de-
termines the similarity between the feature vectors of the two
cases c1, c2.

The retrieved case, cmax, suggests an action (amax) that
Ij uses to approximate the decision that the original expert
would have taken, given the current game state.

1http://www.computerpokercompetition.org/

3.1 Action Vectors

The action vectors used to make a betting decision differ de-
pending on whether the limit or no limit variation is being
played.

Limit Hold’em

In the domain of limit Hold’em the action vector used by the
expert imitator has the following format:

a = (f, c, r)

where each entry within the vector is a number between
0.0 and 1.0 that indicates the probability of taking a particu-
lar betting action. All entries within the vector must sum to
exactly 1.0. The actions that are possible in limit Hold’em are
either fold (f ), check/call (c) or bet/raise (r).

No Limit Hold’em

In limit Hold’em, if a player wishes to raise, the amount they
are allowed to raise is set at a certain predefined level. On the
other hand, in the no limit variation, players are allowed to bet
or raise any amount, including all of the money or chips they
possess (this is called going all-in). While this appears to be
a simple rule change, the consequences it has on game play
are quite dramatic. In order to construct an action vector for
no limit Hold’em, a mapping is required to assign quantita-
tive bet amounts into discrete categories. The no limit action
vector used by the expert imitators in this paper is given by
the following:

a = (f, c, q, h, i, p, d, v, t, a)

where each entry refers to different discrete betting cate-
gories as follows: fold (f ), call (c), raise quarter pot (q), raise
half pot (h), raise three quarter pot (i), raise pot (p), raise
double pot (d), raise five times pot (v), raise ten times pot (t),
all-in (a). Once again each entry corresponds to the probabil-
ity of taking that particular action and all entries in the vector
sum to 1.0.

4 Combining Decisions

Given an action vector, the final action an expert imitator se-
lects can be determined by one of the following policies:

1. Probabilistic – Select an action probabilistically based
on the values specified in the action vector. Or,

2. Max Frequency – Select the action within the triple
that has the greatest probability value

4.1 Ensemble-based Decision Combination

Given an action vector a = (a1, a2, . . . , an) and a collec-
tion of expert imitators I1, I2, . . . , Im, where each imitator
applies the max frequency decision policy, we can derive a
vector v = (v1, v2, . . . , vn), whose elements correspond to
the total number of votes each action received.

The final action taken by the ensemble of imitators is given
by selecting the action, aj , that corresponds to the strictly
maximum number of votes, vj , if one exists. If a strictly max-
imum number of votes does not exist, then the action speci-
fied by imitator I1 is used, where I1 is an arbitrary imitator
selected by the authors.

345



4.2 Dynamic strategy selection

Multi-arm bandit problem

The multi-arm bandit problem is a well known problem in
statistics and artificial intelligence. The problem consists of
a gambler and a collection of slot machines (one-armed ban-
dits). Each slot machine has a particular reward distribution
associated with it, which is unknown to the gambler. The
gambler seeks to maximise his or her overall profit by play-
ing the right machines. The problem for the gambler is to
determine which machine to play next based on the sequence
of rewards he or she has witnessed so far.

The situation described above depicts a classic example of
the exploration/exploitation trade off. The gambler needs to
choose between selecting the machine that has so far offered
the greatest reward (exploitation), versus selecting a differ-
ent machine which may offer yet a greater reward than that
witnessed so far (exploration).

UCB1

The UCB1 [Auer et al., 2002] algorithm offers a simple, com-
putationally efficient solution to the multi-arm bandit prob-
lem. The UCB1 algorithm defines a policy for selecting the
next machine to choose based on the concept of regret. In the
multi-arm bandit problem, regret refers to the difference be-
tween the reward the gambler would have received had they
always selected the optimal slot machine compared to the ac-
tual reward the gambler received. The UCB1 algorithm offers
a logarithmic bound on regret and is given as follows:

1. Select each machine once

2. Select machine, j, that maximises the following equa-
tion:

argmax
j

x̄j +

√
2 lnn

nj
(2)

where,
x̄j is the average reward obtained from machine j,
n is the total number of trials so far, and
nj is the total number of times machine j has been se-
lected.

The algorithm depicted above can be applied to dynamic
strategy selection in the computer poker domain. Rather than
selecting slot machines, the UCB1 algorithm can determine
the order in which to select different expert imitators. In
the computer poker domain, x̄j in equation (2) now refers
to the average utility (profit or loss) achieved by expert imita-
tor, Ij , while playing against the current opponent. Similarly,
nj refers to the total number of times Ij has been chosen to
play against the current opponent. However, due to the inher-
ent variance present in the game of Texas Hold’em, strategy
selection based on profit alone can severely bias the results
of the UCB1 allocation policy. Hence, efforts to reduce this
inherent variance are required in order to stabilise the results.

Variance Reduction

As in [Johanson, 2007], we employ the use of DIVAT analy-
sis [Billings and Kan, 2006] in order to improve the average

utility values, x̄j , used by the UCB1 allocation strategy. DI-
VAT (ignorant value assessment tool) is a perfect information
variance reduction tool developed by the University of Al-
berta Computer Poker Research Group2. The basic idea be-
hind DIVAT is to evaluate a hand based on the expected value
(EV) of a player’s decisions, not the actual outcome of those
decisions. DIVAT achieves this by comparing the EV of the
player’s decisions against the EV of some baseline strategy,
see equation 3.

EV (ActualActions)− EV (BaselineActions) (3)

Equation 3 attempts to factor out the effects of luck as
both the actual strategy and the baseline strategy experience
the same lucky or unlucky sequence of events. For example,
an imitator that benefits by a statistically unlikely event no
longer makes a difference as the baseline strategy also bene-
fits by the same improbable event. What actually matters is
any difference in EV the imitator is able to achieve by varying
the actions that it takes. When the imitator is able to achieve a
greater EV than the baseline, it is rewarded. Alternatively, if
the imitator’s actions result in a lower EV then it is punished
with a negative outcome. If the EV of both strategies is the
same the outcome is 0.

Any type of strategy can be used as a baseline. Typi-
cally, in limit Hold’em a bet-for-value baseline strategy is
adopted. A bet-for-value strategy makes no attempt to dis-
guise the strength of its hand. By establishing game-theoretic
equilibrium-based thresholds, a sequence of baseline betting
decisions can be constructed, based on hand strength alone.
Strong hands will be bet and/or raised, whereas weak hands
will be checked or folded.

The EV, from equation 3, is approximated by a concept
known as pot equity or all-in equity3. To determine all-in
equity in a two-player Hold’em match, both player’s hidden
cards need to be known. A player’s all-in equity is given by
multiplying the current amount in the pot by the probabil-
ity that the player will win the hand. On the last round the
probability that the player will win is either 0 or 1. For inter-
mediate rounds the probability that the player will win is de-
termined by enumerating all possible combinations of the re-
maining community cards and counting the number of times
the player’s hand wins, loses and ties. All-in equity is com-
putationally efficient as it makes the basic assumption that a
player’s equity is given by the current pot size and does not
attempt to predict what the final pot size might have been had
there been future betting.

Finally, DIVAT requires perfect information about both
players’ hidden cards. When either player folds this informa-
tion is not available. Therefore, to calculate the utility values
used by the UCB1 allocation strategy, DIVAT analysis is em-
ployed only when a showdown occurs. If a fold occurs the
actual monetary outcome of the hand is used instead.

2http://webdocs.cs.ualberta.ca/ games/poker/index.html
3A better EV calculation involves the concept of roll-out equity.

Here we use all-in equity as it is less computationally expensive.

346



Table 1: Expert Imitator Results against Fell Omen 2 and AlistairBot
Fell Omen 2 AlistairBot Average

Dynamic 0.01342 ±0.006 0.68848 ±0.009 0.35095 ±0.0075
Ensemble 0.00830 ±0.010 0.67348 ±0.010 0.34089 ±0.0100
Rockhopper-max -0.01445 ±0.009 0.69504 ±0.009 0.34030 ±0.0090
PULPO-max -0.00768 ±0.006 0.66053 ±0.024 0.32643 ±0.0150
Sartre-max 0.00825 ±0.014 0.63898 ±0.019 0.32362 ±0.0165
PULPO-prob -0.00355 ±0.011 0.63385 ±0.018 0.31515 ±0.0145
Sartre-prob -0.01816 ±0.006 0.64535 ±0.015 0.31360 ±0.0105
Rockhopper-prob -0.02943 ±0.011 0.63870 ±0.020 0.30464 ±0.0155

Figure 1: Shows the total number of times each expert imita-
tor was selected to challenge Fell Omen 2

5 Experimental Results

5.1 Methodology

We provide experimental results in the domains of both limit
and no limit Texas Hold’em. In each domain 3 basic expert
imitators were constructed. All expert imitators were trained
on hand history data from the annual computer poker com-
petition. Each expert imitator was trained on separate data
determined as follows:

1. The first expert imitator was trained on decisions made
by the agent that won the bankroll division of the 2010
AAAI computer poker competition.

2. The second expert imitator was trained on decisions
made by the agent that won the equilibrium division of
the 2010 AAAI computer competition.

3. The final expert imitator was our own entry into the 2010
AAAI computer poker competition.

Both max frequency and probabilistic decision re-use poli-
cies were investigated resulting in a total of 6 basic expert
imitators.

From these 6 expert imitators, we also constructed two
players that combined decisions in the following ways:

1. An ensemble-based player was constructed where each
of the basic max frequency expert imitators voted for a
particular action and the action with the most votes was

Figure 2: Shows the total number of times each expert imita-
tor was selected to challenge AlistairBot

selected. The decision of one designated expert imita-
tor, selected by the authors, was used in case all expert
imitators voted for a separate action.

2. A dynamic-selection based player was constructed that
dynamically selected at runtime the best basic expert
imitator to use against the current opponent. Selection
was based on the UCB1 allocation strategy together with
showdown DIVAT analysis. In the limit variation, a bet-
for-value baseline strategy was adopted during DIVAT
analysis. In no limit a more simplistic always-call strat-
egy was used as the baseline.

These 8 players were then each challenged against two dif-
ferent types of computerised players. All matches played
were duplicate matches. A single duplicate match involves
playing 3000 hands, after which the players’ memories are
wiped and the 3000 hands are played again, but in the reverse
direction, i.e. the cards that were initially given to player A
are instead given to player B and vice-versa. This way both
players get to play both sets of cards and this reduces the
variance that is involved in simply playing a set of hands in
one direction only. For each of the 16 match-ups, 5 duplicate
matches were played, for an overall total of 480,000 hands.

5.2 Limit Results

In the limit domain each expert imitator challenged the fol-
lowing competitors:

347



Table 2: Expert Imitator Results (No Limit) against MCTSBot and SimpleBot
MCTSBot SimpleBot Average

Hyperborean-max 1.7781 ±0.193 0.7935 ±0.084 1.2858 ±0.139
Dynamic 1.3332 ±0.146 0.5928 ±0.058 0.9630 ±0.102
Ensemble 1.3138 ±0.047 0.5453 ±0.058 0.9295 ±0.053
Hyperborean-prob 1.1036 ±0.165 0.5075 ±0.093 0.8055 ±0.129
Sartre-max 0.9313 ±0.117 0.5248 ±0.032 0.7281 ±0.075
Sartre-prob 0.4524 ±0.106 0.3933 ±0.073 0.4228 ±0.090
Tartanian-max 0.1033 ±0.451 0.3450 ±0.087 0.2242 ±0.269
Tartantian-prob -0.0518 ±0.127 0.4221 ±0.032 0.1852 ±0.080

Figure 3: Shows the total number of times each no limit ex-
pert imitator was selected to challenge MCTSBot

1. Fell Omen 2 – A solid Nash equilibrium-based agent
commonly used as a benchmark for testing limit
Hold’em agents.

2. AlistairBot – An exploitive agent that uses Monte-Carlo
simulation to determine the decision with the best EV
against the current opponent.

Table 1 presents the results of the 8 expert imitators against
the above two competitors. The results are presented in small
bets per hand (sb/h), where the total number of small bets
won or lost are divided by the number of hands played. Each
original expert imitator begins with the name of the original
expert used to train the system followed by the decision pol-
icy used, i.e. either max frequency or probabilistic. The Sartre
agent was our entry into the 2010 computer poker competi-
tion. Figures 1 and 2 show the total number of times each
expert imitator was selected via the UCB1 allocation policy
(used by Dynamic) to play against each of the competitors.

5.3 Limit Discussion

Overall, the results presented in Table 1 support the idea
that combining decisions from multiple expert imitators can
improve performance over a single expert imitator alone.
Against Fell Omen 2, Dynamic does better than any other
expert imitator. Against AlistairBot, the expert imitator
trained on the Rockhopper agent, using a max frequency bet-
ting policy, fares the best. Combining the results against the
two opponents and taking the average sees Dynamic achieve

Figure 4: Shows the total number of times each no limit ex-
pert imitator was selected to challenge SimpleBot

the best average outcome, followed by Ensemble. However,
care must be taken in interpreting these results as there is
overlap between the standard deviations.

Also depicted in the results are plots showing the total
number of times each original expert imitator was selected
via the UCB1 allocation strategy to play against Fell Omen
2 (Figure 1) and AlistairBot (Figure 2). Table 1 suggests
that the expert imitator Sartre-max did the best out of all
the original imitators against Fell Omen 2, achieving a profit
of +0.00825 sb/h. In particular, Sartre-max was the only
original imitator to achieve a slight profit against Fell Omen
2, whereas the other 5 achieved slight losses. It was there-
fore thought by the authors that this agent would be se-
lected the most by Dynamic when challenging Fell Omen
2, however this appears not to be the case. Instead, Fig-
ure 1 shows that Rockhopper-max was selected the most
overall, followed by Sartre-prob and Sartre-max in third
place. A similar scenario is depicted in Figure 2, where
PULPO-prob is selected by far the most, whereas the ob-
vious choice (Rockhopper-max, as it achieves the greatest
profit of +0.69504 sb/h against AlistairBot) is only 3rd on
the list. These discrepancies are likely due to a combination
of variability in the data and possibly exaggerated utility val-
ues within the UCB1 allocation strategy.

5.4 No Limit Results

In the no limit domain, each expert imitator challenged the
following opponents:

348



1. MCTSBot – an exploitive agent that uses Monte-Carlo
Tree Search [Van den Broeck et al., 2009].

2. SimpleBot – a no limit rule-based agent.

The opentestbed4 project was used to gather results as the
above no limit agents were made publicly available within
this framework. Table 2 presents the no limit results. The
results are in big blinds per hand. Once again Figures 3 and
4 show the total number of times an expert imitator was se-
lected via the UCB1 allocation strategy to play against the
above two competitors.

5.5 No Limit Discussion

While both Dynamic and Ensemble achieve high placings
in the no limit results (2nd and 3rd, respectively). Table 2 sug-
gests that they were not able to improve upon the performance
of a single expert imitator, i.e. Hyperborean-max. Here
Hyperborean-max performs the best against both MCTS-
Bot and SimpleBot, suggesting that an alternative choice of
opponent may be required in order to receive any benefit by
combining decisions from multiple expert imitators. In both
Figures 3 and 4, Sartre-max was selected the most by Dy-
namic, followed by Hyperborean-max.

The altered betting structure from limit to no limit had a
few follow on effects when it came to dynamically selecting
expert imitators. First, the amount of money invested by each
player is typically larger than in limit poker. This can result
in larger swings in the utility values used by the UCB1 allo-
cation strategy. Furthermore, in no limit a lot more hands end
when one player folds to another player’s bet, compared to
limit where a lot more hands proceed all the way to a show-
down. Showdown DIVAT (as its name suggests) can only be
applied when a showdown is reached. The increased propor-
tion of fold actions observed in no limit poker results in less
variance reduction taking place on the utility values used by
UCB1 and hence could have resulted in possibly selecting an
inappropriate expert imitator a lot more often than was nec-
essary.

6 Conclusion

In conclusion, we have evaluated a series of expert imitators
in the domains of limit and no limit Texas Hold’em and inves-
tigated two separate approaches for combining their decisions
in an attempt to improve performance. Overall, combining
decisions either via ensemble voting or dynamic selection at
runtime appears to improve performance. In the limit varia-
tion, combining decisions was able to produce better results
than relying on one expert alone. This is likely due to the in-
transitive nature of poker strategies. In the no limit variation,
dynamic selection did better than most single expert imitators
alone, but was not the overall best strategy to use. This could
be due to the fact that we simply have not tested against a di-
verse enough set of opponents and therefore, no benefit was
received by selecting different expert imitators, or that fur-
ther improvements to the variance reduction techniques used
in the no limit domain are required to stabilise the results.

4http://code.google.com/p/opentestbed/

References

[Aha, 1997] David W. Aha. Editorial. Artificial Intelligence
Review, 11(1-5):7–10, 1997.

[Auer et al., 2002] Peter Auer, Nicolò Cesa-Bianchi, and
Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine Learning, 47(2-3):235–256, 2002.

[Billings and Kan, 2006] Darse Billings and Morgan Kan. A
tool for the direct assessment of poker decisions. The
International Association of Computer Games Journal,
2006.

[Coates et al., 2008] Adam Coates, Pieter Abbeel, and An-
drew Y. Ng. Learning for control from multiple
demonstrations. In Machine Learning, Proceedings of
the Twenty-Fifth International Conference (ICML 2008),
pages 144–151, 2008.

[Davidson, 2002] Aaron Davidson. Opponent modeling in
poker: Learning and acting in a hostile and uncertain en-
vironment. Master’s thesis, University of Alberta, 2002.

[Dietterich, 2000] Thomas G. Dietterich. Ensemble methods
in machine learning. In Multiple Classifier Systems, First
International Workshop, MCS 2000, pages 1–15, 2000.

[Floyd and Esfandiari, 2009] Michael W. Floyd and Babak
Esfandiari. An active approach to automatic case gener-
ation. In Case-Based Reasoning Research and Develop-
ment, 8th International Conference on Case-Based Rea-
soning, ICCBR 2009, pages 150–164, 2009.

[Johanson et al., 2007] Michael Johanson, Martin Zinke-
vich, and Michael H. Bowling. Computing robust counter-
strategies. In Advances in Neural Information Processing
Systems 20, Proceedings of the Twenty-First Annual Con-
ference on Neural Information Processing Systems, 2007.

[Johanson, 2007] Michael Bradley Johanson. Robust strate-
gies and counter-strategies: Building a champion level
computer poker player. Master’s thesis, University of Al-
berta, 2007.

[Kolodner, 1993] Janet Kolodner. Case-based reasoning.
Morgan Kaufmann Publishers, San Mateo, CA, 1993.

[Ontañón et al., 2009] Santiago Ontañón, Kane Bonnette,
Prafulla Mahindrakar, Marco A. Gómez-Martı́n, Katie
Long, Jainarayan Radhakrishnan, Rushabh Shah, and Ash-
win Ram. Learning from human demonstrations for real-
time case-based planning. In IJCAI-09 Workshop on
Learning Structural Knowledge From Observations, 2009.

[Rubin and Watson, 2010] Jonathan Rubin and Ian Watson.
Similarity-based retrieval and solution re-use policies in
the game of texas hold’em. In Case-Based Reasoning. Re-
search and Development, 18th International Conference
on Case-Based Reasoning, ICCBR 2010, pages 465–479,
2010.

[Van den Broeck et al., 2009] Guy Van den Broeck, Kurt
Driessens, and Jan Ramon. Monte-Carlo tree search in
poker using expected reward distributions. In Advances
in Machine Learning, First Asian Conference on Machine
Learning, ACML 2009, pages 367–381, 2009.

349




