
Learning Where You Are Going and from Whence You Came:
h- and g-Cost Learning in Real-Time Heuristic Search

Nathan R. Sturtevant

Computer Science Department
University of Denver

Denver, Colorado, USA
sturtevant@cs.du.edu

Vadim Bulitko

Department of Computing Science
University of Alberta

Edmonton, Alberta, Canada
bulitko@ualberta.ca

Abstract

Real-time agent-centric algorithms have been used
for learning and solving problems since the in-
troduction of the LRTA* algorithm in 1990. In
this time period, numerous variants have been pro-
duced, however, they have generally followed the
same approach in varying parameters to learn a
heuristic which estimates the remaining cost to
arrive at a goal state. Recently, a different ap-
proach, RIBS, was suggested which, instead of
learning costs to the goal, learns costs from the
start state. RIBS can solve some problems faster,
but in other problems has poor performance. We
present a new algorithm, f -cost Learning Real-
Time A* (f -LRTA*), which combines both ap-
proaches, simultaneously learning distances from
the start and heuristics to the goal. An empiri-
cal evaluation demonstrates that f -LRTA* outper-
forms both RIBS and LRTA*-style approaches in a
range of scenarios.

1 Introduction

In this paper we study the problem of agent-centered real-
time heuristic search [Koenig, 2001]. The first distinctive
property of such search is that an agent must repeatedly plan
and execute actions within a constant time interval that is
independent of the number of states in the problem being
solved. The second property is that in each step the plan-
ning must be restricted to the state space around the agent’s
current state. The size of this part must be constant-bounded
independently of the total number of states in the problem.

The goal state is not reached by most local searches, so
the agent runs the risk of getting stuck in a dead end. To ad-
dress this problem, real-time heuristic search algorithms up-
date (or learn) their heuristic function (h-costs) with experi-
ence. The classic algorithm in this field is LRTA*, developed
in 1990 [Korf, 1990].

While LRTA* is both real-time and agent-centric, its learn-
ing process can be slow and result in apparently irrational
behavior. The reason is two-fold. First, heuristic costs tend
to be inaccurate for states distant from the goal state which
is where the agent starts out. Thus, in the learning process,
LRTA* updates/learns inaccurate h-costs of its current state

from inaccurate h-costs of neighboring states. This makes the
learning process slow. Second, because LRTA*’s learning is
limited to h-costs, it tends to spend a large amount of time fill-
ing in heuristic depressions (i.e., visiting and updating states
that are not on an optimal path to the goal state).

These problems were partially addressed by RIBS [Sturte-
vant et al., 2010], which learns costs from the start state (g-
costs), and uses these values to prune the search space. While
RIBS is superior to LRTA* in some state spaces, it performs
worse than LRTA* in problems where there is a wide diver-
sity of heuristic costs. Additionally, RIBS takes time to find
an optimal solution on the first trial, while LRTA* may find a
suboptimal solution quickly and then slowly converge.

The drawbacks of LRTA* and RIBS motivate the pri-
mary contribution of this paper — the development of f -cost
Learning Real-Time A* (f -LRTA*) which learns both g- and
h-costs. This enables pruning methods which detect and re-
move states guaranteed not to be on an optimal path. As a
result, f -LRTA* can learn faster than both LRTA*-like al-
gorithms and RIBS in a range of scenarios. When an agent
knows from whence it came (g-costs), it is able to avoid re-
peating the mistakes it made in the past by pruning away irrel-
evant portions of the state space. Learning a better estimate of
where it is going (h-costs) allows it to follow more aggressive
strategies in seeking the goal.

2 Problem Formulation

We define a heuristic search problem as an undirected graph
containing a finite set of states S and weighted edges E, with
a state sstart designated as the start state and a state sgoal
designated as the goal state. At every time step, a search
agent has a single current state, a vertex in the search graph,
and takes an action by traversing an out-edge of the current
state. We adopt the standard plan-execute cycle where the
agent does not plan while moving and does not move while
planning. The agent knows the search graph in its vicinity but
not the entire space.

Each edge has a finite positive cost c(s, s′) associated with
it. The total cost of the edges traversed by an agent from its
start state until it arrives at the goal state is called the solution
cost. The problem specification includes a heuristic function
h(s) which provides an admissible (non-overestimating) esti-
mate of the cost to travel from the current state, s, to the goal

365

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence



Algorithm 1 LRTA*(sstart, sgoal, d)
1: s← sstart
2: while s �= sgoal do
3: generate d successor states of s, generating a frontier
4: find a frontier state s′ with the lowest c(s, s′) + h(s′)
5: h(s)← c(s, s′) + h(s′)
6: change s one step towards s′

7: end while

state. A state is expanded when all its neighbors are generated
and considered by an algorithm.

When an agent reaches the goal state, a trial has completed.
The agent is teleported back to the start state, and a new trial
begins. An agent is said to learn when it adjusts costs of any
states. An agent has converged when no learning occurs on
a trial. Real-time heuristic search literature has considered
both first-trial and convergence performance. We follow the
practice and employ both performance measures in this paper.
To avoid trading off solution optimality for problem-solving
time, which is often domain-specific, we only consider al-
gorithms that converge to an optimal solution after a finite
number of trials.

We require algorithms to be complete and produce a path
from start to goal in a finite amount of time if such a path
exists. To guarantee completeness, real-time search requires
safe explorability of the search graph, defined as the lack of
terminal non-goal states (e.g., agent’s plunging to its death off
a cliff). The lack of directed edges in our search graph gives
us safe explorability as the agent is always able to return from
a suboptimally chosen state by reversing its action.

3 Related Work

There are two types of costs commonly used in heuristic
search: (i) the remaining cost, or h-cost, defined as an ad-
missible estimate of the minimum cost of any path between
the given state and the goal and (ii) the travel cost so far, or
g-cost, defined as the minimum cost of all explored paths be-
tween the start state and a given state. The f -cost of a state
is the current estimate of the total path cost through the state
(i.e., the sum of the state’s g- and h-costs). The initial h-cost
function is part of the problem specification.

3.1 Learning the cost to go (h-costs)

Most work in real-time heuristic search focused on h-cost
learning algorithms, starting with the seminal Learning Real-
time A* (LRTA*) algorithm [Korf, 1990] shown as Algo-
rithm 1. As long as the goal state is not reached (line 2), the
agent follows the plan (lines 3-4), learn (line 5) and execute
(line 6) cycle. The planning consists of a lookahead during
which d (unique) closest successors of the current state are
expanded. During the learning part of the cycle, the agent
updates h(s) for its current state s. Finally, the agent moves
by going towards the most promising state discovered in the
planning stage.

Research in the field of learning real-time heuristic search
has resulted in a multitude of algorithms with numerous vari-
ations. Most of them can be described by four attributes.

1.0 2.0 3.0 G

S 1.0 2.5

1.0 1.0 1.0

1.0 1.0 1.5

1.0 1.5
(a)(b)

(e) (d) (c)

Figure 1: Dead-ends and redundant states.

The local search space (LSS) is the set of states whose
heuristic values are accessed in the planning stage. The lo-
cal learning space is the set of states whose heuristic values
are updated. A learning rule is used to update the heuristic
values of the states in the learning space. The control strat-
egy decides on the actions taken following the planning and
learning phases. While no comprehensive comparison of all
these variants exists, some strategies were co-implemented
and compared within LRTS [Bulitko and Lee, 2006].

In this paper we use LSS-LRTA* [Koenig and Sun, 2009]
as a representative h-cost-learning algorithm. LSS-LRTA*
expands its LSS in an A* fashion, uses the Dijkstra’s algo-
rithm to update h-costs of all states in the local search space
and then moves to the frontier of the search space.

The primary drawback of learning h-costs is that the learn-
ing process is slow. This appears to be necessarily so, because
such algorithms update inaccurate h-costs in their learning
space from also inaccurate h-costs on the learning space fron-
tier. The local nature of such updates makes for a small, in-
cremental improvement in the h-costs.

Combined with the fact that the initial h-costs tend to
be highly inaccurate for states distant from the goal state,
LRTA*-style algorithm can take a long time to escape a
heuristic depression. A recent analysis of a “corner depres-
sion” shows that in this example LRTA* and its variants must
make Ω(N

3
2 ) visits to Θ(N) states [Sturtevant et al., 2010].

3.2 Learning the cost so far (g-costs)

The first algorithm to learn g-costs was FALCONS [Furcy
and Koenig, 2000]. But, FALCONS did not use g-costs for
pruning the state space, only as part of the movement rule.
RIBS [Sturtevant et al., 2010] is an adaptation of IDA* [Korf,
1985] designed to improve LRTA*’s performance when es-
caping heuristic depressions. It does so by learning costs from
the start state to a given state (i.e., g-costs) instead of the h-
costs. When g-costs are learned, they can be used to identify
dead states and remove them from the search space, increas-
ing the efficiency of search. RIBS classifies two types of dead
states, those that are dead-ends and those that are redundant1.
States that are not dead are called alive.

A state n is a dead-end if, for all of its successor si, g(n)+
c(n, si) > g(si). This means that there is no optimal path
from start to si that passes through n. This is illustrated in
Figure 1 where states are labeled with their g-costs. The state
marked (a) is dead because (a) is not on a shortest path to
either of its successors (b) or (c).

A state n is redundant if, for every non-dead successor si,
there exists a distinct and non-dead parent state sp �= n such

1We adapt the terminology of RIBS [Sturtevant et al., 2010] by
defining a general class of dead states and its two subclasses.

366



that g(sp) + c(sp, si) ≤ g(n) + c(n, si). This means that
removing n from the search graph is guaranteed not to change
the cost of an optimal path from the start to the goal. This is
also illustrated in Figure 1 where exactly one of state (e) or
state (b) can be marked redundant on the path to (d).

RIBS can learn quickly in state spaces with many dead-
end and/or redundant states. For instance, in the “corner de-
pression” of Θ(N) states mentioned before, RIBS is able to
escape in just O(N) state visits, which is an asymptotic im-
provement over LRTA*’s Ω(N

3
2 ) [Sturtevant et al., 2010].

On the negative side, RIBS inherits performance charac-
teristics from IDA* and has poor performance when there are
many unique f -costs along a path to the goal. For instance, if
every state has a unique f -cost, RIBS will take Θ(N2) moves
to reach the goal state while visiting N states. Additionally,
RIBS has a local search space consisting only of the current
state and its immediate neighbors. While this does not hurt
asymptotic performance, it does introduce a larger constant
factor when compared to larger search spaces.

4 f -LRTA*

The primary contribution of this paper is the new algorithm
f -LRTA* that learns both g and h costs. f -LRTA* uses the
LSS-LRTA* learning rule to learn its h-costs. Like RIBS,
f -LRTA* also learns g-costs which it uses to identify dead
states thereby attempting to substantially reduce the search
space. Unlike RIBS, f -LRTA* has an additional rule for
pruning states by comparing the total cost of the best solu-
tion found so far and the current f -cost of a state. Also unlike
RIBS, f -LRTA* works with an arbitrarily sized LSS.

The pseudo-code for f -LRTA* is listed as Algorithm 2. It
takes two main control parameters: d which determines the
size of the lookahead and w which controls the movement
policy. The algorithm works in three stages detailed below.

4.1 Stage 1: Expanding LSS and Learning g-costs

In the first stage, the local search space (LSS) is expanded
(line 3 in the pseudo-code of the function f -LRTA*). As with
other similar algorithms, the LSS is represented by two lists:
OPEN (the frontier) and CLOSED (the expanded interior).
The states in the LSS have local g-costs, denoted by gl and
defined relative to the current state of the agent, and global
g-costs defined relative to the start state.

The LSS is expanded incrementally with the shape of ex-
pansion controlled by sorting of the OPEN list. All results
presented in this paper sort the OPEN list by local fl = gl+h-
costs. Dead states count as part of the LSS, but are otherwise
ignored in the initial expansion phase. Expansion and g-cost
propagation occurs in the function ExpandAndPropagate.

When a state s is expanded (line 1 in function ExpandAnd-
Propagate), its successors are placed on OPEN in the standard
A* fashion (line 3). If the global g-cost of s can be prop-
agated to a neighbor, the g-cost of the neighbor is reduced.
The reduction is recursively propagated as far as possible
through OPEN and CLOSED (ExpandAndPropagate lines 9-
13). If the neighboring state was dead, that neighbor is also
expanded (ExpandAndPropagate line 10), which helps guar-
antee that f -LRTA* will be able to converge to the optimal

Algorithm 2 f -LRTA*
globals: OPEN/CLOSED
f -LRTA*(sstart, sgoal, d, w)
1: s← sstart
2: while s �= sgoal do
3: ExpandLSS(s, sgoal, d)
4: GCostLearning()
5: LSSLRTA-HCostLearning()
6: Mark dead-end and redundant states on CLOSED and OPEN
7: if all states on OPEN are marked dead then
8: move to neighbor with lowest g-cost
9: else

10: s← best non-dead state si in OPEN
11: (chosen by gl(si) + w · h(si) or g(si) + w · h(si))
12: end if
13: end while

ExpandLSS(scurr, sgoal, d)
1: push scurr onto OPEN (kept sorted by lowest gl or gl+h(scurr))
2: for i = 1 . . . d do
3: s← OPEN.pop()
4: place s on CLOSED
5: if s is dead then
6: continue for loop at line 2
7: end if
8: ExpandAndPropagate(s, sgoal, true)
9: if s is goal then

10: return
11: end if
12: end for

2: if expand then
3: perform regular A* expansion steps on si
4: end if
5: if g(s) + c(s, si) < g(si) then
6: mark si as alive
7: g(si)← g(s) + c(s, si)
8: h(si)← default heuristic for si
9: if si is on CLOSED and was dead then

10: ExpandAndPropagate(si, sgoal, true)
11: else if si is on OPEN or CLOSED then
12: ExpandAndPropagate(si, sgoal, false)
13: end if
14: end if
15: if g(si) + c(si, s) < g(s) and si is not dead then
16: g(s)← g(si) + c(si, s)
17: h(s)← default heuristic for s
18: Restart FOR loop with i← 0 on line 1
19: end if
20: end for

GCostLearning(sgoal)
1: for each state s in OPEN do
2: ExpandAndPropagate(s, sgoal, false)
3: end for

solution. If a shorter path to s is found through a neighbor
(ExpandAndPropagate line 15), all previous neighbors of s
are reconsidered in case their g-costs can also be reduced.

When global g-costs are updated for a state, the h-cost of
that state is reset to its default heuristic value (ExpandAnd-
Propagate lines 8 and 17). This is needed to ensure that f -
LRTA* will be able to converge to the optimal solution.

367



S b

a c

G
1.0

1.0

1.0

1.0

1.0

g: 2.0
h: 2.5
f: 4.5

g: 1.0
h: 2.0
f: 3.0

g: 3.0
h: 1.5
f: 4.5

Figure 2: Effects of w on the movement policy.

At this point in the execution, most of the possible g-cost
updates have been performed, but updates from states on
OPEN to other states on OPEN have not been performed.
These updates can change the g-cost of states on CLOSED
and are performed inside the GCostLearning procedure.

The parameter d limits the size of the CLOSED list, how-
ever the g-cost propagation rules can lead to states being re-
expanded. All re-expansions take place in the LSS and are
bounded by the size of d. Thus, f -LRTA* retains its real-
time agent-centered nature.

4.2 Stage 2: Learning h-costs and State Pruning

In the second stage, h-cost learning occurs according to the
LSS-LRTA* learning rule (the corresponding pseudo-code is
omitted to save space). First, states on the OPEN list are
sorted by h-cost. Beginning with the lowest h-cost, heuris-
tics values are propagated into the LSS: If a state n on the
OPEN list is expanded with an immediate neighbor, m, then
h(m) ← max(h(m), h(n)+ c(m,n)). As with LSS-LRTA*,
after the first such update, subsequent increases to h(m) are
not allowed. Dead states on OPEN are ignored.

Finally, states within the LSS are examined to see if they
can be further pruned. While RIBS rules for marking a state
dead were used in Stage 1, we also mark a state dead if its
f -cost is greater than the cost of the best solution found on
the previous trials.

4.3 Stage 3: Movement

After performing learning, the movement policy moves to a
state selected from OPEN (line 10 in function f -LRTA*). A
common policy is to move to the state with the lowest local
f -cost, fl(n) = gl(n) + h(n). f -LRTA* can also move to
the state with lowest global f -cost, f(n) = gl(n) +w · h(n).
Weighting (w) the heuristic also provides alternate movement
policies. Low weights result in performance more similar to
RIBS, where the focus is on finding accurate g-costs. High
weights emphasize the heuristic over the g-cost, and are sim-
ilar to moving to the state with best fl.

Unlike weighted A* [Pohl, 1970] and weighted-
LRTA* [Shimbo and Ishida, 2003], f -LRTA* will not
converge to an inadmissible heuristic for any value of
1 ≤ w < ∞. However, the movement policy may not select
the optimal path upon convergence if w �= 1. Hence, once
convergence with w �= 1 occurs, we reset w to 1 and continue
the convergence process.

We demonstrate the difference that the movement policy
can have in Figure 2. We assume the agent is at state (a)
and the local search space is two states: (b) and (c). With

w = 1, f -LRTA* will direct the agent backwards to state (b),
which has the lowest (global) f -cost. However, with w = 10
weighted f -cost of (c) will be 3.0 + 15.0 = 18.0, while the
weighted f -cost of (b) will be 1.0 + 20.0 = 21.0. Thus, the
agent will move to (c).

5 Completeness and Optimality

f -LRTA* is complete and finds an optimal solution upon con-
vergence. For the sake of space we give only a sketch of the
proof which also motivates some of the design choices.

Completeness is proved by contradiction. Assume that f -
LRTA* is unable to find a solution if one exists. That means
that it is either in a state with no moves or it is stuck in an
infinite loop. The former is not possible because f -LRTA*
makes a move even when all neighbors of a state are dead
(line 8 in function f -LRTA*). The latter is impossible be-
cause with every iteration of such a loop, the algorithm would
keep increasing h-costs of states on the loop by a lower-
bounded positive amount. The h-cost of any state has a finite
upper bound, so infinite looping is not possible. The h-cost
of a state can be reset (lines 8 and 17 in ExpandAndPropa-
gate) whenever the state’s g-cost is decreased. However, only
a finite number of resets are possible, because every state,
besides the start state, has a finite positive g-cost and each
reduction is by a lower-bounded positive amount.

Optimality can be proved in the same way as for most
LRTA*-style algorithms with the following caveat. f -LRTA*
uses the standard dynamic programming update for its h-
costs which guarantees admissibility of h. However, dead
states are removed from the OPEN list when h updates are
performed in stage 2. As a result, the learned h-costs are ad-
missible for the search graph with the dead states removed
but may be inadmissible with respect to the original graph.
This phenomenon motivates two design choices in f -LRTA*.
First, when a shorter path to a dead state is discovered, the
state is made alive (line 6 in ExpandAndPropagate) and the
g-cost is decreased (lines 7 and 16). Second, whenever a g-
cost of a state is decreased, the h-cost of that state is reset to
the initial heuristic (lines 8 and 17). Thus, it is possible to
prove that along at least one optimal paths to the goal, states
with optimal g-costs will always have admissible h-costs.

6 Empirical Evaluation

In order to evaluate the strengths of learning both g- and
h-costs, we compare f -LRTA* to two contemporary algo-
rithms: LSS-LRTA* and RIBS. We do so in two pathfind-
ing domains using several performance metrics: solution cost
(i.e., the total distance traveled), states expanded, and plan-
ning time. These are measured on the first trial and over
all trials until convergence, along with the number of trials
required for convergence. The implementation focus for f -
LRTA* has been on correctness, not always speed, although
f -LRTA* does have more learning overhead. All experiments
were run on a single core of a 2.40GHz Xeon server.

In the following tables and graphs we will list control pa-
rameters with the name of the algorithms. The d in LSS-
LRTA*(d) is the number of states in the CLOSED list of the
LSS. The d in f -LRTA*(d, w) has the same function; w is

368



N states

sg

sstart

Figure 3: The corner heuristic depression map.

the weight used by the movement policy. f -LRTAl* chooses
the best state to move to using local g-costs, while f -LRTA*
uses global g-costs. f -LRTA* may expand fewer than d states
if many of them are dead, but may perform more than d re-
expansions if many g-cost updates are performed. RIBS takes
no parameters.

We use two domains; the first, based on octile movement,
is a de facto standard in the real-time heuristic literature. The
second, based on a constrained heading model, is a more
practical pathfinding domain for video games and robotics.

The first domain is grid-based pathfinding on a two-
dimensional grid with some blocked cells. The agent occu-
pies a single vacant cell and its coordinates form the agent’s
state. It can change its state by moving in one of the eight di-
rections (four cardinal and four diagonal). The move costs are
1 for cardinal moves and 1.5 for diagonal moves. The initial
heuristic is the octile distance, which is a natural extension of
the Manhattan distance for diagonal moves. It also happens
to be a perfect heuristic in the absence of blocked cells.

The constrained heading domain is also grid-based
pathfinding but the states and moves are defined differ-
ently. Specifically, the agent’s state is the x, y-coordinates
of the vacant cell it presently occupies as well as its head-
ing, which is 0...345◦ by 15◦ increments. There are
twenty actions available to the agent: moving forward or
backwards while changing the heading i degrees (i ∈
{−45,−30,−15, 0, 15, 30, 45}) (14 actions). The agent can
also turn in place without changing location, but may not re-
main completely stationary (6 actions). The initial heuristic
is the Euclidean distance between the coordinates of a state
and the goal state, ignoring the current and the goal headings.
Movement costs are the heading divided by 15 mod 6 indexed
into the array {1.0, 3.25, 3.75, 1.50, 3.75, 3.25}. Turning in
place has cost 1.

We first perform scaling experiments to illustrate asymp-
totic performance, and then look at data on maps from a re-
cent commercial video game.

6.1 Asymptotic Performance

We begin by duplicating the scaling experiments used to eval-
uate RIBS [Sturtevant et al., 2010]. These experiments take
place on the map in Figure 3, where the number of states in
the corner is N . The goal is on the other side of the cor-
ner which creates a heuristic depression of N states. Mark-
ing dead states helped RIBS escape the depression in O(N)
moves whereas LRTA* takes Θ(N1.5) moves.

The results on the corner depression map with octile move-
ment are found in Figure 4. We plot states expanded in the

St
at

es
 E

xp
an

de
d 

(F
ir

st
 T

ri
al

)

104

105

106

107

108

States in Local Minimum
103 104 105

LSS-LRTA*(1)
LSS-LRTA*(10)
LSS-LRTA*(100)
RIBS()
ƒ-LRTA*(1,1.5)
ƒ-LRTA*(10,1.5)
ƒ-LRTA*(100,1.5)

Figure 4: Scaling results with octile movement model.

first trial. When increasing the number of states in the lo-
cal minimum and measuring the slope of the lines on the
log-log plot, we observe that f -LRTA* retains the supe-
rior asymptotic performance of RIBS as compared to LSS-
LRTA*. RIBS and f -LRTA* show a linear fit with the num-
ber of states in the depression with a correlation coefficient of
0.99. LSS-LRTA* fits N1.5 with a coefficient of 0.99. While
the number of states expanded is roughly the same for RIBS
and f -LRTA*, the distance travelled by f -LRTA* on the first
trial is 3− 20 times less than RIBS, due to larger lookahead.
Plots for convergence follow the same trends. In this experi-
ment f -LRTA* performance depends on moving towards the
state with best global f -cost using a low heuristic weight. In
all other experiments higher weights and/or movement to the
state with best (local) fl-cost shows better performance. This
has partially to do with the size of local minima, but there may
be other factors at work which have yet to be understood.

We use the same map in the second domain. In the start
state, the agent faces to the right, and in the goal state the
agent also faces to the right. The results for distance traveled
on the first trial is shown in Figure 5. First, we observe that
RIBS performance is notably worse than LSS-LRTA* or f -
LRTA*. This is due to the fact that there are fewer states that
share the same f -cost, meaning that RIBS uses many more
iterations to explore the search space, as would IDA*.

The data on this log-log plot fits with a correlation
coefficient of 0.99 to the following polynomials. LSS-
LRTA* with d ∈ {1, 10, 100} has the convergence cost of
N2.13, N2.00, N1.91 respectively, where N is the number of
states in the heuristic depression. RIBS has the convergence
cost of N2.42. f -LRTA* with d ∈ {1, 10, 100} and w = 10.0
fits N1.62, N1.54, N1.57 respectively. The data supports the
conjecture that f -LRTA* is asymptotically faster in this do-
main than both LSS-LRTA* and RIBS.

6.2 Experiments on Game Maps

We use standard benchmark problems for the game Dragon
Age: Origins2 to experiment on more realistic maps.

Under the octile movement model we experimented with
the 106 problems which have octile solution length 1020-
1024. The average results are in Table 1. The LSS column
is the average number of states expanded each time the agent

2http://www.movingai.com/benchmarks/

369



First Trial All Trials
Algorithm Dist. States Exp. Time Dist. States Exp. Time Trials LSS Exp.
RIBS 2,861,553 1,219,023 4.46 2,861,553 1,219,023 4.46 1 1.0
LSS-LRTA*(1) 633,377 2,761,163 12.58 23,660,293 98,619,076 266.81 12,376 9.4
LSS-LRTA*(10) 113,604 952,402 2.18 3,844,178 21,970,613 53.30 1951 41.5
LSS-LRTA*(100) 18,976 305,518 0.63 559,853 5,920,709 14.74 295 264.9
f -LRTAl*(1,10.0) 127,418 389,367 2.44 1,848,413 5,321,043 32.14 890 6.7
f -LRTAl*(10,10.0) 52,097 188,144 0.89 663,378 1,808,493 9.18 264 19.8
f -LRTAl*(100,10.0) 10,890 82,414 0.35 136,184 624,262 2.96 69 124.3

Table 1: Average results on Dragon Age: Origins maps with octile movement.

First Trial All Trials
Algorithm Dist. States Exp. Time Dist. States Exp. Time Trials LSS Exp.
LSS-LRTA*(1) 22,047 2,845,386 3.60 886,622 98,876,890 121.55 4276 21.4
LSS-LRTA*(10) 4,650 2,005,258 3.58 153,688 43,058,124 73.82 890 129.8
LSS-LRTA*(100) 820 1,155,577 2.93 25,380 22,751,673 55.29 161 879.7
FLRTAl*(1,1.5) 3,779 331,433 1.60 54,488 3,363,426 16.08 88 16.0
FLRTAl*(10,1.5) 1,816 318,176 1.56 21,448 2,522,682 12.27 45 58.4
FLRTAl*(100,1.5) 530 362,386 1.93 5,634 2,223,981 11.58 21 423.4

Table 2: Average results on Dragon Age: Origins maps with constrained movement.

St
at

es
 E

xp
an

de
d 

(F
ir

st
 T

ri
al

)

103

104

105

106

107

States in Local Minimum
1000 10000

LSS-LRTA*(1)
LSS-LRTA*(10)
LSS-LRTA*(100)
RIBS()
ƒ-LRTAℓ*(1,10)
ƒ-LRTAℓ*(10,10)
ƒ-LRTAℓ*(100,10)

Figure 5: Scaling results with constrained heading model.

plans. f -LRTA* does less work on average because many
states in the LSS are dead. On these maps, f -LRTA* traveled
less distance and expanded fewer states to solve each problem
on both the first trial and all trials. All differences between al-
gorithms with the same d are statistically significant with at
least 95% confidence.

In the constrained heading model we ran the 1280 prob-
lems with optimal octile solution length 100-104, with the
results shown in Table 2. All differences between algorithms
with the same d are statistically significant with at least 95%
confidence. This movement model is significantly more diffi-
cult for LSS-LRTA*, but RIBS is unable to complete the test
set in reasonable amounts of time. f -LRTA* can solve the
whole problem set faster than RIBS solves just 36 problems.
The same trends can be observed in this data as in the octile
movement model.

7 Conclusions and Future Work

In this paper we proposed a new algorithm, f -LRTA* which
combines traditional h-learning real-time heuristic search
with the g-cost learning. As a result, f -LRTA* retains su-
perior asymptotic performance in the corner depression. Ad-
ditionally, learning h-costs allows f -LRTA* to outperform

RIBS in pathfinding on video game maps. Future work will
investigate dynamic rules for adapting movement based on
the number of state re-expansions performed in order to avoid
using different values of w for different problems.

Our hope is that this work will encourage work new direc-
tions, not only in real-time agent-centered search, but perhaps
in other fields as well. An important question first raised by
Furcy and Koenig [2000] is how g-cost learning might apply
to reinforcement learning. Ultimately, this work shows that
there is value in knowing from whence you came.

References
[Bulitko and Lee, 2006] Vadim Bulitko and Greg Lee. Learning

in real time search: A unifying framework. JAIR, 25:119–157,
2006.

[Furcy and Koenig, 2000] David Furcy and Sven Koenig. Speeding
up the convergence of real-time search. In AAAI, pages 891–897,
2000.

[Koenig and Sun, 2009] Sven Koenig and Xiaoxun Sun. Compar-
ing real-time and incremental heuristic search for real-time sit-
uated agents. Autonomous Agents and Multi-Agent Systems,
18(3):313–341, 2009.

[Koenig, 2001] Sven Koenig. Agent-centered search. AI Mag.,
22(4):109–132, 2001.

[Korf, 1985] Richard Korf. Depth-first iterative deepening: An op-
timal admissible tree search. AIJ, 27(3):97–109, 1985.

[Korf, 1990] Richard Korf. Real-time heuristic search. AIJ, 42(2-
3):189–211, 1990.

[Pohl, 1970] Ira Pohl. Heuristic search viewed as path finding in a
graph. AIJ, 1:193–204, 1970.

[Shimbo and Ishida, 2003] Masashi Shimbo and Toru Ishida. Con-
trolling the learning process of real-time heuristic search. AIJ,
146(1):1–41, 2003.

[Sturtevant et al., 2010] Nathan R. Sturtevant, Vadim Bulitko, and
Yngvi Börnsson. On learning in agent-centered search. In AA-
MAS, pages 333 – 340, 2010.

370




