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Abstract

We propose a novel online planning algorithm for
ad hoc team settings—challenging situations in
which an agent must collaborate with unknown
teammates without prior coordination. Our ap-
proach is based on constructing and solving a series
of stage games, and then using biased adaptive play
to choose actions. The utility function in each stage
game is estimated via Monte-Carlo tree search us-
ing the UCT algorithm. We establish analytically
the convergence of the algorithm and show that it
performs well in a variety of ad hoc team domains.

1 Introduction

Collaboration without prior coordination is a recognized chal-
lenge in multi-agent systems research [Stone et al., 2010].
Consider, for example, a passenger arriving at a foreign air-
port for the first time, not knowing the native language. An
autonomous robot is deployed at the airport to provide ser-
vices for passengers. It can help passengers with common
tasks such as baggage pickup or locating a boarding gate.
The robot has no prior knowledge of each passenger’s needs,
but should be able to collaborate with a passenger and help
perform some common tasks. This is an example of an ad
hoc team setting, where the fundamental objective is to col-
laborate without pre-coordination [Stone et al., 2009; 2010;
Stone and Kraus, 2010; Barret et al., 2011]. The robot may
know in advance the airport facilities, but not the specific
needs and preferences of a passenger. The challenge is to cre-
ate such an autonomous agent that can efficiently and robustly
work with other agents on tasks that require teamwork. In
practice, many human-robot teams are ad hoc. Applications
include rescue robots brought to an earthquake site from dif-
ferent parts of the world, or e-commerce cooperative agents
created by different companies with different standards.

Planning under uncertainty for teams of agents has been
widely studied using various mathematical models such as
Multi-Agent MDPs (MMDPs) [Boutilier, 1999] and Decen-
tralized POMDPs (DEC-POMDPs) [Bernstein et al., 2000].
Despite recent progress, most of the existing approaches rely
on substantial pre-coordination. Some assume that planning
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can take place completely offline [Seuken and Zilberstein,
2008]. Others allow agents to coordinate online, but assume
that they employ identical planners and pre-determined co-
ordination protocols [Wu et al., 2011]. In ad hoc teams,
agents must cooperate with unknown teammates such as ran-
dom persons or robots programmed by different people. Such
collaboration without pre-coordination is becoming increas-
ingly important in multi-agent systems research.

We focus on a certain type of ad hoc teams in which a target
agent knows the number of teammates as well as a set of their
feasible actions. The system state and the joint action played
at each step are fully observable by the agent. However, local
features of an individual teammate such as sensing, acting,
communicating and decision-making capabilities are hidden
from the agent. This represents a large array of challeng-
ing ad hoc team problems, particularly scenarios that involve
random people. In the above example, the robot may have
information about the airport and the range of actions that a
human may perform. But it cannot have a model characteriz-
ing each person. The only way for the robot to know people
is by interacting with them and observing their behaviors. To
succeed in such ad hoc settings, an agent must reason about
the interaction history and adapt its actions to its teammates.

We propose a novel online planning algorithm for ad hoc
teams. In our approach, the planning problem is approx-
imated by solving a series of stage games, one for each
time step. In each game, we use biased adaptive play
(BAP) [Wang and Sandholm, 2003], which is a variant of fic-
titious play in game theory. Originally, BAP was designed
to maintain coordination in fully cooperative repeated games.
It is an appealing approach to ad hoc team settings because
it is rational and convergent even in the presence of hetero-
geneous agents. We extend BAP to ad hoc team problems
and analyze its performance both theoretically and empiri-
cally. When constructing each stage game, the utility func-
tion is estimated by Monte-Carlo tree search, using the UCT
algorithm [Kocsis and Szepesvári, 2006]. UCT is a Monte-
Carlo method for planning in large domains. It has outper-
formed previous approaches in challenging games such as
Go [Gelly and Silver, 2007]. The key advantage of a Monte-
Carlo method is that it requires only a generative model—a
black box simulator—making it particularly suitable for our
setting. We extend UCT to search the large policy space of
unknown teammates. The underlying MMDP is used as a
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generative model. Given a state and a joint action, it out-
puts samples for UCT, including the next state and reward.
The key contribution of our work are a general framework for
planning in ad hoc team, and the first algorithm that combines
the advantages of BAP and UCT in these settings.

The paper is organized as follows. We first describe the
essentials of MMDPs and the ad hoc team settings that we
target. Next we introduce the online planning algorithm and
discuss its properties. Then we present experimental results
on several domains, and conclude with a summary of the con-
tributions and future work.

2 Background

In this section, we review the Multi-agent Markov Decision
Process (MMDP) framework [Boutilier, 1999] and introduce
the setting of ad hoc agent teams. Although our ultimate goal
is to build a single autonomous agent, teamwork considera-
tions are essential for the agent to succeed in this setting.

2.1 The MMDP Model

Formally, a Multi-agent Markov Decision Process (MMDP)
is defined as a tuple 〈I, S, {Ai}, P,R, s0, γ〉, where:

• I is a set of agents, identified by i ∈ {1, 2, · · · , n}.

• S is a set of states where s ∈ S, and s0 is the initial state.

• Ai is a set of actions for agent i where ai ∈ Ai, and
A = ×n

i=1Ai is the set of joint actions where �a ∈ A.

• P : S×A×S → [0, 1] is the transition function, where
P (s′|s,�a) denotes the probability of transiting to a new
state s′ when the agents take joint action �a in state s.

• R : S × A → � is the reward function, where R(s,�a)
denotes the reward received by the team when the agents
take joint action �a in state s.

• γ is the discount factor where 0 < γ ≤ 1.

At every decision cycle t, each agent i independently chooses
an action ai ∈ Ai and the joint action of the team �a =
〈a1, a2, · · · , an〉 is executed in the environment. As the sys-
tem moves from state st to state st+1 according to the transi-
tion function, all the agents receive an identical reward. The
goal of the agent team is to determine a control strategy called
joint policy that maximizes the expected long-term accumu-
lated reward of the team: E

[∑∞
t=0 γ

tR(st,�at)|s0].
A local policy for agent i is a mapping πi : S×Ai → [0, 1]

where πi(ai|s) defines the probability of agent i taking action
ai when the system state is s. A joint policy is a vector π =
〈π1, π2, · · · , πn〉 of local policies, one for each agent. Given
a joint policy π, the value of each state s ∈ S can be defined
recursively using the so-called Bellman equation:

V π(s) =
∑
�a∈A

π(�a|s)
[
R(s,�a) + γ

∑
s′∈S

P (s′|s,�a)V π(s′)

]
.

Similarly, the Q-function is defined as follows, for each joint
action �a and state s, when the agents follow joint policy π:

Q(s,�a) = R(s,�a) + γ
∑

s′∈S
P (s′|s,�a)V π(s′). (1)

It is worth pointing out that the MMDP model represents a
fully cooperative decision problem, since the reward function
is common. In other words, all the agents share the same goal
of maximizing the total expected reward of the team.

2.2 Ad Hoc Agent Teams

In ad hoc team settings, a group of agents with different deci-
sion models and capabilities must cooperate so as to complete
common tasks, yet they have no prior opportunity to coordi-
nate Stone et al. [2010]. Agents in ad hoc teams are likely to
have heterogeneous sensing and acting capabilities that may
not be common knowledge. Furthermore, they may have dif-
ferent communication protocols or world models. Thus nei-
ther pre-coordination nor execution-time negotiation are fea-
sible. Rather, an agent must reason about the interaction with
different teammates and adjust its behavior to cooperate with
them on the fly. Although this problem pertains to teamwork,
the fundamental challenge is to build a single autonomous
agent with such capabilities, not an entire team.

Ad hoc teams represent a very broad concept in multi-agent
systems. Agents in these settings must be prepared to collab-
orate with varying types of teammates. In ad hoc human team
formation [Kildare, 2004], teamwork situations are organized
along three dimensions: teammate, team and task character-
istics. To simplify the challenge, it is necessary to initially
limit the scope of these characteristics [Stone et al., 2010]. In
this paper, we restrict ourselves to settings where: (1) the sys-
tem state is fully observable by the agent; (2) the agent knows
the number of teammates as well as a set of their feasible ac-
tions; (3) a generative model (simulator) of the ad hoc team is
available for drawing samples of team actions; and (4) at the
end of each step, the agent receives an observation of the joint
action taken by the team. The team can be homogeneous or
heterogeneous and has no direct communication.

We make no assumptions about the teammates’ acting and
sensing capabilities, or their decision models. Teammates
may even be unaware that they take part in an ad hoc team.
The space of teammates’ feasible actions includes all the ac-
tions that the agent can perceive. In practice, an agent must
be able to recognize these actions in order to reason about
teammates’ behaviors. The generative model, represented as
an MMDP, specifies the task characteristics. In some appli-
cations such as human-robot interaction, a closed-form rep-
resentation of the system dynamics may not be available, but
a black-box simulator (e.g., USARSim [Lewis et al., 2007])
often exists. The policy space of teammates is typically
very large. Without pre-coordination, the agent must reason
about the past action sequences of its teammates online, learn
quickly from these interactions, and act accordingly.

3 Online Planning for Ad Hoc Teams

In this section we propose the Online Planning for Ad Hoc
Agent Teams (OPAT) algorithm. Online planning provides a
convenient mechanism for reasoning about the interaction as
it unfolds, and making decision during execution time. An
agent operating as part of an ad hoc team must learn to coop-
erate with different types of teammates, taking into account
future steps when optimizing its current action.
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3.1 Overview of the Online Planning Algorithm

Our online planner interleaves planning and execution [Bren-
ner and Nebel, 2009], selecting one action at a time for the
current step. To estimate the value of each action, it performs
forward search. In this planning process, the agent must con-
sider the strategies of its teammates and reason about all the
possible outcomes. Intuitively, a selfish policy can be arbitrar-
ily bad if it ignores cooperation; a robot cannot help passen-
gers if it ignores their reactions. The robot must be prepared
to adjust its behavior based on the interaction.
Definition 1. A stage game Γs = 〈I, {Ai}, {Qi}〉 is a
normal-form game where I is a set of players, Ai is a set
of actions and Qi is the utility function for player i ∈ I . It is
cooperative when all players have the same utility function.

From a game-theoretic standpoint, ad hoc teamwork can
be modeled as a large stochastic game with unknown play-
ers [Leyton-Brown and Shoham, 2008]. However, the result-
ing game can be intractable, particularly with long horizons.
To address that, our online planner generates actions by ap-
proximately constructing and solving smaller games called
stage games, one game, Γs, for every state s ∈ S. At
each step, the agent performs game-theoretic reasoning us-
ing its current knowledge of the state and teammates, much
like the classical one-step lookahead approach to game play-
ing. Thus, the overall problem is decomposed into a series
of smaller games. Performance depends on how each stage
game is constructed and how the agents choose actions.

To build a stage game, it is necessary to define a utility
function Q(�a) that ideally should capture not only the imme-
diate payoff of a joint action �a, but also its expected future
value. State-of-the-art techniques for online planning often
rely on heuristics to evaluate the resulting outcomes of joint
actions. Unfortunately, it is hard to determine good heuristics
for ad hoc teams due to the lack of knowledge about team-
mates. Such a heuristic must inherently vary when used in
conjunction with different teammates. To develop a general
framework for ad hoc teams, we incorporate Monte-Carlo
tree search to estimate the payoff of each joint action.

After constructing a stage game, the key question is how to
reason about the interaction and play adaptively. This is chal-
lenging because the characteristics of teammates are hidden
and the only clue is the interaction history. In this work, we
use biased adaptive play to create a virtual game Γ̂s based
on a set of “optimal” joint actions according to the estimated
value of the tree search. The best response action of the vir-
tual game is chosen by sampling the interaction history.

As shown in Algorithm 1, agent i interacts with other mem-
bers of the ad hoc team online by: (1) estimating the value of
each joint action with Monte-Carlo tree search; (2) construct-
ing a stage game and a virtual game; and (3) choosing an
action using biased adaptive play. The following subsections
explain each part in detail.

3.2 Adapting to Strategies of Teammates

To play adaptively with unknown teammates, we borrow
some game-theoretic ideas. MMDPs are equivalent to team
Markov games 〈I, S, {Ai}, P, {Ri}, γ〉 where all players
share an identical payoff: ∀i, j ∈ I, Ri = Rj . Generally,

Algorithm 1: Online Planning for Ad Hoc Teams
procedure ONLINEPLANNIG(T )

h← ∅, r ← 0, s← s0 // start with state s0.
for t=1 to T do

if agent i then // run online in parallel.
foreach �a ∈ A do

Q(s,�a)← TREESEARCH(s,�a, h)

Γs ← STAGEGAME(s,Q)

Γ̂s ← VIRTUALGAME(Γs)

ai ← BIASEDADAPTIVEPLAY(Γ̂s, hm[s])

else
a−i ← TEAMMATEACTIONS()

h[s]← h[s] ◦ �a, (s′, r′) ∼ ENVIRONMENT(s,�a)

r ← r + γt · r′, s← s′

return r // the total accumulated reward.

a team Markov game can be decomposed into a set of stage
games Γs = 〈I, {Ai}, Q〉, one for each state s ∈ S, where
Q(�a) is the the utility function. Each stage game is also fully
cooperative, just like team Markov games. It is known that a
team Markov game converges to a Pareto-optimal Nash equi-
librium if all the players coordinate in an optimal Nash equi-
librium at each stage game Γs, ∀s ∈ S [Boutilier, 1996].

Biased adaptive play (BAP) [Wang and Sandholm, 2003]
is a variant of fictitious play. It relies on the observation that
the past action choices of other agents can be used to esti-
mate their policies. Given a stage game Γs, BAP constructs
a virtual game Γ̂s = 〈I, {Ai}, Q̂〉, where Q̂(�a) = 1 if �a is
an optimal joint action for Γs and Q̂(�a) = 0 otherwise. We
denote A∗ = {�a ∈ A|Q̂(�a) = 1} the optimal joint action set
in Γ̂s and Ht

m = (�at−m+1, · · · ,�at−1,�at) the m most recent
plays in Γs at time t. Given the virtual game Γ̂s and the m
most recent plays Ht

m, the main procedure of BAP is shown
in Algorithm 2, which returns agent i’s best response action.

If conditions C1 or C2 of Algorithm 2 are met, agent i con-
cludes that all teammates have coordinated in an action of A∗.
Therefore, it selects the best-response action a∗i with respect
to the optimal joint action set A∗. If none of these conditions
hold, agent i estimates the expected payoff EP (ai) for each
of its actions ai ∈ Ai using the K samples of Hk

m. Intuitively,
EP (ai) is an estimate of the action ai given the average pol-
icy of its teammates according to Hk. The action trace played
by teammates can be viewed as an indication of their policy.
Using the m most recent plays instead of the entire interac-
tion allows BAP to cope with situations where teammates are
also adjusting their strategies.

The good property of BAP is that, even in a group with
heterogeneous agents such as an ad hoc team, it is still able to
converge to the best-response policy. In ad hoc teams, team-
mates may be constrained (e.g. having reduced action sets)
and thus follow some sub-optimal strategies. The auxiliary
virtual games Γ̂s in BAP are weakly acyclic with respect to
the bias set A∗ that contains only optimal policies. This en-
sures that agents with BAP will eventually converge to either
a strict Nash equilibrium of Γ̂s or a Nash equilibrium in A∗
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Algorithm 2: Generative Biased Adaptive Play

procedure BIASEDADAPTIVEPLAY(Γ̂s, H
t
m)

if |Ht
m| < m then // generate more samples.
Ht

m ← SAMPLEPLAY(s,Ht
m,m)

Hk ← DRAWKSAMPLES(K,Ht
m)

if ∃�a∗ ∈ A∗, ∀�a ∈ Hk, (a−i = a∗
−i) then // C1

(a∗
i , a

∗
−i)← argmax�at′ {t′|�at′ ∈ Hk ∧ �at′ ∈ A∗}

else if ∃�a ∈ A, (�a ∈ Hk ∧ �a ∈ A∗) then // C2
a∗
i ∼ {ai ∈ Ai|(ai, a

∗
−i) ∈ A∗}

else
∀a−i, N(a−i)← COUNTTIMES(a−i ∈ Hk)

∀ai, EP (ai)←∑
a−i∈A−i

Q̂(ai, a−i)
N(a−i)

K

a∗
i ∼ {ai ∈ Ai|EP (ai) = maxa′

i∈Ai
EP (a′

i)}
return a∗

i // the best-response action.

procedure SAMPLEPLAY(s,Ht
m,m)

N(s)← |Ht
m|+ 1

foreach �a ∈ A do

N(s,�a)← COUNTTIMES(�a ∈ Ht
m) + 1

for k=|Ht
m| to m do

�a← argmax�a′∈A Q̂(s,�a′) + c
√

lnN(s)
N(s,�a′)

N(s)← N(s) + 1, N(s,�a)← N(s,�a) + 1

Ht
m ← Ht

m ◦ �a
return Ht

m // the augmented joint history.

with probability 1 [Wang and Sandholm, 2003].
One weakness of the original BAP method is that a state s

must be visited before one can sample from the action history
h[s]. This can be satisfied in repeat games for which BAP
was designed, but not in ad hoc settings, especially during
the early stages of interaction or when the state space is very
large. To cope with this, we sample joint actions from the
feasible space using the UCB1 heuristic [Auer et al., 2002],
which balances the tradeoff between the value of a joint ac-
tion and the frequency of choosing it. Other heuristics such as
the action histories of “nearby” states are useful when a suit-
able distance measure is known [Melo and Ribeiro, 2008].

The construction of a stage game Γs requires that agent i
has the knowledge of the optimal Q-function, that is, the util-
ity of Γs. It is worth noting that this is different from the op-
timal Q-function of the MMDP and cannot be computed of-
fline since the characteristics of the teammates are unknown.
We therefore estimate the utility of Γs using Mote-Carlo tree
search, as detailed in the next subsection.

3.3 Planning by Monte-Carlo Tree Search

The Monte-Carlo rollout method provides a simple solution
for estimating the value of state s using random policies. It
generates sequences of states using a simulator starting with
s until reaching a terminal state or the planning horizon. The
value of state s is estimated by the mean return of K trials
starting from s. Intuitively, if we sample the state s infinitely
often using an optimal policy, the averaged return will con-
verge to the optimal expected value of s. Hence the perfor-
mance of the rollout method can be improved by sampling

actions selectively. To achieve this, Monte-Carlo tree search
builds a lookahead tree in a sequentially best-first order. The
nodes of the tree keep track of estimates of action values at
the sampled states from earlier simulations. The value gath-
ered during a simulation is added to the nodes incrementally.
Therefore, if some state is visited again, the estimated action
values can be used to bias the choice of actions at that state.

Instead of greedily selecting the action with the high-
est value, the UCT method [Kocsis and Szepesvári, 2006]
chooses actions using the UCB1 heuristic [Auer et al., 2002].
Each node is viewed as a separate multi-armed bandit where
the arms correspond to actions and the payoffs to the esti-
mated value. As Kocsis and Szepesvári show, the probability
of selecting the optimal action converges to 1 as the num-
ber of samples grows. The UCT algorithm balances between
testing the current best action and exploring alternatives to
ensure that no good actions are overlooked due to early es-
timation errors. Domain knowledge can be used to initial-
ize the tree nodes in the UCT algorithm. It narrowly focuses
the search on promising states and thereby speeds up conver-
gence [Gelly and Silver, 2007].

The balance between exploration and exploitation is im-
portant when searching over the teammates’ policy space. In-
stead of searching the entire policy space of the MMDP, we
want to concentrate on regions of actions that are more likely
to be played by teammates. Meanwhile, we do not want to
miss other actions that teammates may play in the future.
Therefore, BAP is used at each step of the tree search to bias
the action selection based on the interaction history. A stage
game Γs is maintained for each tree node and updated with
new values Q(s, ·) when the node is reencountered.

In Algorithm 3, a tree node is generated for each encoun-
tered state s. Each node contains a value Q(s,�a) and a visi-
tation count N(s,�a) for each joint action �a. The overall visi-
tation count for state s is N(s) =

∑
�a∈A N(s,�a). Addition-

ally, a stage game Γs is constructed for each node and updated
each time the node is reencountered. In the UCB1 heuristic,
the augmented term c

√
log N(s)

N(s,�a′) is an exploration bonus that is
highest for rarely tried actions; the scalar constant c is the rel-
ative ratio of exploration to exploitation. When a node is not
in the search tree, the search tree is expanded and the rollout
method is used to estimate the value. The search depth T is
chosen based on the available online planning time.

3.4 Discussion and Analysis

In principle, it is straightforward to model an ad hoc team
as a DEC-POMDP with heterogeneous actions and obser-
vations. For agent i, the observation set can be defined as:
Ωi = {(s, a−i)|s ∈ S, a−i ∈ A−i} —pairs of states and
teammates’ actions, with the following observation function:
∀(s′, a′−i) ∈ Ωi, O((s′, a′−i)|s,�a) = δ(s′ = s)·δ(a′−i = a−i)

where δ(p) is 1 if p is true and 0 otherwise. However, in ad
hoc team settings, some knowledge about the teammates is
hidden from the planner. Thus, most existing approaches for
DEC-POMDPs do not apply to ad hoc team settings. In this
paper, we assume that the system state is fully observable by
the agent so we can focus on playing adaptively with many
types of teammates. Our work can be extended to partially
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Algorithm 3: Biased Monte-Carlo Tree Search
procedure TREESEARCH(s,�a, h)

for k=1 to K do

h′[s]← h[s] ◦ �a, (s′, r) ∼ MMDP(s,�a)
rk ← r + γ · SIMULATION(s′, h′, 0)

return 1
K

∑K
k=1 rk // the averaged value.

procedure SIMULATION(s, h, t)
if t > T return 0 // reach the search depth.
if s 
∈ TREE then

TREE ← INITIALIZE(s,Q,N,Γs)
return ROLLOUT(s, t)

Γ̂s ← VIRTUALGAME(Γs)

ai ← BIASEDADAPTIVEPLAY(Γ̂s, hm[s])

�a← argmax�a′|ai,a−i∈A−i
Q(s,�a′) + c

√
logN(s)
N(s,�a′)

h′[s]← h[s] ◦ �a, (s′, r′) ∼ MMDP(s,�a)
r ← r′ + γ · SIMULATION(s′, h′, t+ 1)
N(s)← N(s) + 1, N(s,�a)← N(s,�a) + 1

Q(s,�a)← Q(s,�a) + r−Q(s,�a)
N(s,�a)

Γs ← STAGEGAME(s,Q)
return r // the long-term reward.

procedure ROLLOUT(s, t)
if t > T return 0
�a ∼ πROLLOUT(·|s), (s′, r) ∼ MMDP(s,�a)
return r + γ · ROLLOUT(s′, t+ 1)

observable domains by replacing the current state with a be-
lief state or internal memory state.

Proposition 1. Given an infinite number of samples, OPAT
will converge to the best-response actions when all the team-
mates play an optimal MMDP policy.

Proof (sketch). As shown by Wang and Sandholm [2003],
BAP converges in the limit to either a strict Nash equilibrium
or a Nash equilibrium in A∗. The best-response action set
A∗ is determined by the estimated values of UCT. The policy
space searched by UCT is constrained by the choice of agent
i’s actions, which depends on the past action sequences of the
entire team. If all teammates coordinate by using an optimal
policy of the underlying MMDP, BAP is convergent and will
eventually select the best-response actions. Thus agent i’s ac-
tions in conjunction with its teammates’ actions constitute an
optimal joint policy for the entire team. According to Kocsis
and Szepesvári [2006], the value function returned by UCT is
optimal given infinite samples. Therefore, OPAT returns the
best-response actions by induction.

A backup method is used in OPAT when no history of a
particular state exists. It assumes that the other agents will
act sensibly until it learns otherwise. This is important for ad
hoc teams because an agent’s initial actions could affect the
behaviors of other actors. In some sensitive domains involv-
ing interaction with humans, it might be safer to prudently
perform actions that are less reliant on the teammates while
obtaining some understanding of their policies. However, this
could be misinterpreted by the teammates and delay useful

collaboration. While our general framework does not con-
sider the learning capabilities of ad hoc teammates, this can
be addressed by incorporating different backup methods.

The design of an ad hoc agent and its performance greatly
depend on how much information is known about the domain
and potential teammates. In this work, we assume the domain
is known, while the behavior of teammates is unknown. They
can be rational, irrational or somewhere in between. A typical
domain is the pick-up soccer game where every player knows
the rules of the game, but has no idea about the strategies of
the other players and no chance to pre-coordinate.

Some parameters of OPAT depend on the characteristics
of the teammates. The number of actions retrieved from his-
tory was originally introduced by BAP for adapting to team-
mates’ behaviors. Presumably lower values will work better
when the teammates are adapting in response to the agent’s
actions. The value function of the underlying MMDP can
be used as domain knowledge to initialize the tree nodes in
UCT and bias the choice of actions. It should be noted that
the MMDP values are overestimates and may not be useful
when the teammates are irrational. Long term autonomy can
be achieved by considering the discounted rewards in UCT.
This can be done simply by stoping the search when reaching
some depth D with γD < ε where γ is a discount factor and
ε is a relatively small number.

4 Experiments

Our experimental evaluation follows the paradigm introduced
by Stone et al. [2010]. We chose a set of problem domains
and designed a variety of ad hoc teams with different agents.
Then, we randomly replaced an agent in each team with the
agent running the OPAT algorithm and recorded the team
performance, averaging results over 100 runs. The selected
domains are common benchmark problems from the DEC-
POMDP literature1, offering different initial conditions that
can be sampled. Performance is measured by the joint ac-
cumulated reward over some fixed time T . In the selected
domains, coordination is essential for success.

We created two types of teams with different unknown
teammates (UTM) in terms of their acting and sensing capa-
bilities: UTM-1 agents play a sequence of actions according
to some pre-defined patterns, while UTM-2 agents maintain
a belief based on their observations and choose actions us-
ing the optimal Q-function. The pre-defined patterns are se-
quences of random actions with some fixed repeated lengths
that are randomly chosen at the beginning of each run. For ex-
ample, given a random repetition value of 2, the action pattern
may be “AACCBBEE” where “ACBE” are random actions.
Some pre-defined random seeds are used to guarantee that
each test had the same action sequences. Note that in ad hoc
teams, agents may not be aware that they take part in a team
or they may not be capable of working efficiently with other
agents. UTM-1 agents are referred to as “irrational” since
they don’t follow the optimal course of actions. The goal of
UTM-1 is to test if OPAT can adapt well when its teammates’
policies are not particularly effective in advancing the joint

1
http://users.isr.ist.utl.pt/˜mtjspaan/decpomdp/index en.html
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Table 1: Results for Different Ad Hoc Teams
Ad Hoc Teammate OPAT MMDP RAND
Cooperative Box Pushing T=20, (-41.71, -20.16 )

UTM-1 35.25 -25.97 -29.62
UTM-2 23.30 -21.65 -26.33

Meeting in 3×3 Grid T=20, (1.75, 1.87 )
UTM-1 5.20 3.14 1.47
UTM-2 6.30 4.65 1.98

Multi-Channel Broadcast T=20, (5.45, 17.40 )
UTM-1 13.15 10.15 9.25
UTM-2 7.15 17.40 9.30

goal. For UTM-2 agents, we simulate different sensing capa-
bilities by varying the level of noise in teammates’ observa-
tions. Generally, UTM-1 agents are irrational with respect to
teamwork while UTM-2 agents are rational, but having only
partial observations of the system state.

Table 1 shows the results of an agent running OPAT and
the optimal MMDP policy computed offline by value itera-
tion. Results are also provided for an agent executing random
policies. Note that the MMDP agent is very competitive be-
cause it fully observes the system state and knows the optimal
value of each joint action in every state. The pair of values af-
ter each domain name are the expected value of a team with
two UTM-1 agents (denoted by ∗) and a team with two UTM-
2 agents (denoted by +), without replacing agents.

Figure 1 shows a comparison of OPAT when the teammate
runs an identical copy of OPAT or the optimal MMDP policy.
The goal is to show the performance of OPAT when all team-
mates are rational and have the same capabilities. Note that
OPAT coordinates well in different settings without know-
ing the teammates’ capabilities or policies. Its performance
improves substantially by increasing the number of samples.
The values of “MMDP-vs-MMDP” and “MMDP-vs-RAND”
remain constant for different sample sizes because neither
agents uses samples for decision making. They serves as the
upper and lower bounds on the values in this domain.

Although all the tested domains are common DEC-
POMDP benchmarks, we did not compare OPAT with ex-
isting DEC-POMDP approaches because the settings are en-
tirely different: we assume full observability in these experi-
ments and that offline computation of policies is not feasible.

Cooperative Box Pushing represents domains where mis-
coordination is very costly (e.g. collision with other agents or
pushing a large box individually). To succeed, the agent must
adjust its policy to avoid penalties from unexpected team-
mates’ actions. As shown in Table 1, OPAT outperforms
MMDP and gets positive rewards in both ad hoc teams. Meet-
ing in 3×3 Grid represents problems with multiple ways of
coordination (e.g. meeting in any grid location). OPAT again
performs quite well. The results for the partial sensing team
(UTM-2) in Multi-Channel Broadcast show a limitation of
OPAT to be addressed in the future: it has no explicit model of
the teammates’ sensing capabilities as it directly maps team-
mates’ actions to states. Another reason is that in this domain,
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Figure 1: Comparison of different pairs of algorithms on the
Cooperative Box Pushing domain (T=20).

only one node can broadcast at a time; the goal is to minimize
collisions and maximize throughput. RAND broadcasts mes-
sages randomly regardless of collisions. Intuitively, OPAT
may wait for its teammate to broadcast in order to avoid col-
lisions, but sometimes the teammate fails to broadcast due to
its noisy sensing. Hence the channel is more likely to be idle.
On the other hand, MMDP makes very strong assumptions
about its teammate’s behavior and will broadcast according
to the optimal Q-function. On average, MMDP performs bet-
ter than RAND. In fact, in the experiments, we observed the
following average channel idle time: OPAT 62.25%, RAND
52%, and MMDP 9.75%.

The computational cost of OPAT depends mainly on the
search depth and the sample size of UCT. One of the key ad-
vantages of Monte-Carlo methods is that they scale very well
over the state space. For problems with many agents, more
sophisticated techniques should be used to search over the
large joint action space. The sample size of OPAT provides
a good tradeoff between value and runtime. Intuitively, the
runtime will increase when larger sample size is chosen. In
the experiments, we observed the following average runtime
of OPAT for each domain (seconds per step): Box-Pushing
0.059, Meeting-in-Grid 0.122, Broadcast-Channel 0.008. As
Figure 1 shows, the value grows with the number of samples
when running with MMDP or OPAT teammates. As indi-
cated by Proposition 1, it converges to the optimal value as
the number of samples goes to infinity.

In the experiments, we observed that the agent’s behavior
changed when it interacted with different teammates. Con-
sider, for example, the cooperative Box-Pushing domain.
Given an irrational teammate, the agent spends more time
pushing the small box alone, while given an MMDP team-
mate, the agent tends to push the large box together with its
teammate rather than pushing a small box.

5 Conclusion

We presented OPAT—a novel online planning algorithm for
ad hoc agent teams. It is designed for situations where
agents must collaborate without pre-coordination and team-
mates may not be fully known. We empirically tested OPAT
in various ad hoc teams with different types of teammates:
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irrational, rational but partially observable, and fully ratio-
nal teammates whose characteristics are unknown in advance.
Unlike much of the previous work in the literature of multi-
agent learning and game theory, we do not assume that team-
mates are running the same algorithms or pre-computed poli-
cies. Instead, we adopt the settings proposed by Stone et
al. [2010], allowing arbitrary teammates that are not neces-
sarily rational or even aware of teamwork. The adaptiveness
of OPAT relies on its ability to learn quickly from the interac-
tion history and find best-response actions that are consistent
with a fixed history window—the most recent m plays.

Several approaches in the literature are related to our work.
Most notably, Stone et al. [2009] formulate the ad hoc team
problem as a matrix game, assuming that teammates play
best-response policies to the observed actions of the agent.
Stone and Kraus [2010] investigate a special instance of ad
hoc teams where teammates have a fixed known behavior and
solve the problem as a finite-horizon cooperative k-armed
bandit. These works are different from ours in that they
consider only one-step team strategies in restrictive settings.
More recently, Barret et al. [2011] presented an empirical
study of ad hoc teamwork in the Pursuit domain with a range
of algorithms. Unlike OPAT, they do not bias the agent’s
action selection according to the teammates’ past plays. In-
stead, they view the unknown behavior of teammates as part
of the model uncertainty and approximate the optimal joint
Q-function by a linear combination of different pre-defined
models updated using Bayes’ rule [Barret et al., 2011].

In this work, planning in ad hoc teams is treated as an op-
timization problem in the joint policy space, which is con-
strained by the limited capabilities of teammates. The ob-
jective is to maximize the team’s joint reward. A generative
model is utilized to evaluate the agent’s policies via Monte-
Carlo simulation with actions that are consistent with team-
mates’ behaviors. By doing this, the agent can choose the
best-response actions regardless of whether the teammates
are rational. One possible future extension is for the agent
to plan its actions taking into account that they will be ob-
served and interpreted by its teammates. The agent can then
analyze the teammates’ responses and play accordingly. An-
other interesting research direction is to consider a library of
“typical” teammates’ policies and adaptively use the ones that
match best the interaction. This could improve the agent’s
ability to collaborate with initially unknown teammates.
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