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Abstract

We study distributed task-allocation problems where co-

operative agents need to perform some tasks simultane-

ously. Examples are multi-agent routing problems where

several agents need to visit some targets simultaneously,

for example, to move obstacles out of the way cooper-

atively. In this paper, we first generalize the concept of

reaction functions proposed in the literature to character-

ize the agent costs of performing multiple complex tasks.

Second, we show how agents can construct and approx-

imate reaction functions in a distributed way. Third, we

show how reaction functions can be used by an auction-

like algorithm to allocate tasks to agents. Finally, we

show empirically that the team costs of our algorithms

are substantially smaller than those of an existing state-

of-the-art allocation algorithm for complex tasks.

1 Introduction

We study complex-task allocation problems in a cooperative
setting where agents collaborate to minimize the team cost
(that is, maximize the team performance) and some tasks
need to be performed simultaneously. Our motivating prob-
lem is multi-agent routing where the tasks are to visit given
targets in the plane. The terrain, the locations of the agents
and the locations of the targets are known. Multi-agent rout-
ing is a standard problem for robot teams [Koenig et al., 2007;
Dias et al., 2006], for example, as part of de-mining, search-
and-rescue and taking rock probes on the moon. In this paper,
we are interested in the version of multi-agent routing where
some targets, called complex targets, need to be visited si-
multaneously by more than one agent. For example, large
fires can only be extinguished with several fire engines, and
heavy objects can only be moved with several robots. Thus,
allocation algorithms for complex tasks have to solve the fol-
lowing two interrelated subproblems:
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• Subproblem 1: Each complex target has to be visited by
more than one agent. Thus, one has to determine which
group of agents should visit a given complex target.

• Subproblem 2: Each complex target has to be visited
by the group of agents at the same time. Thus, one has
to determine when a given group of agents should visit
a given complex target.

Solving Subproblem 2 is non-trivial since a group of agents
needs to agree on a common visit time. Zheng and Koenig
[Zheng and Koenig, 2008] proposed an approach that makes
use of reaction functions to allocate complex targets to agents.
Reaction functions characterize the costs of agents for visit-
ing a single complex target at any given visit time and thus
can be used by a central planner to determine the optimal
visit time of a group of agents for visiting an additional com-
plex target. The main drawback of this approach is that the
visit times of complex targets cannot be changed once they
have been assigned, which results in highly suboptimal task
allocations. In this paper, we first generalize the concept of
reaction functions to characterize the costs of an agent for vis-
iting multiple complex targets at any given visit times. Then,
we show how agents can construct and approximate general-
ized reaction functions in a distributed way. Third, we show
how an auction-like algorithm can use generalized reaction
functions to allocate targets to agents. Finally, we show em-
pirically that the team costs of our algorithms can be substan-
tially smaller than those of the allocation algorithm developed
in [Zheng and Koenig, 2008].

2 Multi-Agent Routing

We follow [Zheng and Koenig, 2008] to formalize multi-
agent routing problems. A multi-agent routing problem con-
sists of a set of agents A and a set of targets X . The number
of different agents that need to visit target x ∈ X simulta-
neously, called its coalition size, is d(x). We call a target
x simple if d(x) = 1 and complex otherwise. The set of
simple targets Xs and the set of complex targets Xc partition
the set of all targets. The group of d(x) different agents that
need to visit complex target x at some visit time t is called the
coalition of the complex target. Each agent in the coalition
thus has a commitment to visit the complex target x at visit
time t, written as x ← t. Each agent a ∈ A is characterized
by a simple target capacity qsa and a complex target capacity
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qca with the meaning that agent a can visit at most qsa simple
targets and at most qca complex targets.

An allocation of agent a is a triple (Xs
a, X

c
a, Ca), where

Xs
a is the set of simple targets assigned to it, Xc

a is the set
of complex targets assigned to it, and Ca is the set of its
commitments for the complex targets in Xc

a. The agent cost
cagenta (Xs

a, X
c
a, Ca) is the smallest sum of travel and wait

times needed for agent a to visit all targets assigned to it from
its initial location, where it can freely determine when to visit
each simple target in Xs

a subject to the restriction that it has
to visit all complex targets (if any) at the visit times recorded
in its commitment set Ca. (The agent cost is defined to be
infinity if agent a cannot satisfy this restriction, |Xs

a| > qsa or
|Xc

a| > qca.)
Our objective is to find a solution with a small team cost,

where a solution requires each target x ∈ X to be assigned
to exactly d(x) different agents. All agents in the coalition
must have the same commitment for a complex target. The
team cost of a set of agents A is

∑
a∈A cagenta (Xs

a, X
c
a, Ca)

(roughly proportional to the energy needed by the agents for
traveling and waiting) for the MiniSum team objective and
maxa∈A cagenta (Xs

a, X
c
a, Ca) (the task-completion time) for

the MiniMax team objective. We use cteam as a special op-
erator for either the sum or max operator, depending on the
team objective, and write cteama∈A cagenta (Xs

a, X
c
a, Ca) to make

our notation independent of the team objective.

3 Generalized Reaction Functions

In this section, we introduce the concept of (generalized) re-
action functions, explain how to construct and use them, and
finally describe how to approximate them.

3.1 Concepts

As discussed in the introduction, solving a complex-task al-
location problem consists of two parts: which targets should
be assigned to which agents (Subproblem 1) and when should
the agents visit their assigned targets (Subproblem 2). In or-
der to evaluate a given target assignment, the agents have to
determine the visit times of their assigned targets that mini-
mize the team cost (optimal visit times). The reason for in-
troducing reaction functions is to facilitate the determination
of the optimal visit times for the complex targets.

Assume that each agent a ∈ A has been assigned a set
of simple targets Xs

a ⊆ Xs and a set of complex targets
Xc

a ⊆ Xc, let xa = (x1
a, . . . , x

na
a ) be the vector of the com-

plex targets Xc
a (in an arbitrary order), ta = (t1a, . . . , t

na
a )

be the vector of the corresponding visit times of these com-
plex targets, and let xa ← ta be the set of commitments
{x1

a ← t1a, . . . , x
na
a ← tna

a }. Then, the agent cost of agent
a for visiting the complex targets xa at visit times ta is
cagenta (Xs

a, X
c
a,xa ← ta). Let x = (x1, . . . , xn) be the

vector of all complex targets ∪a∈AX
c
a (in an arbitrary or-

der) and t = (t1, . . . , tn) be the vector of the correspond-
ing visit times of these complex targets. We define a projec-
tion function fa(v) to project any vector v of complex tar-
gets onto the complex targets assigned to agent a ∈ A in
order (t1a, . . . , t

na
a , for example, xa = fa(x) and ta = fa(t).

Thus, the optimal visit times of all complex targets can be
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Figure 1: Multi-Agent Routing on a Graph

permutations visit orders vectors of visit times agent cost

(π ∈ Πa1 ) (p ∈ Pa1,π) (tp) (cp)
a1 � x1 � x2 � xs (3, 7) 10

(x1, x2) a1 � x1 � xs
� x2 (3, 11) 11

a1 � xs
� x1 � x2 (13, 17) 17

a1 � x2 � x1 � xs (5, 9) 14

(x2, x1) a1 � x2 � xs
� x1 (5, 13) 13

a1 � xs
� x2 � x1 (11, 15) 15

Table 1: Visit Orders of Agent a1

determined as

arg min
t∈R

n
+

cteama∈A cagenta (Xs
a, X

c
a,xa ← fa(t))

where R+ is the set of all non-negative numbers.

For the given target assignment {(Xs
a, X

c
a)}a∈A, we can

construct a bipartite graph of agents A and complex targets
Xc where an edge connects an agent a and a complex tar-
get x iff x is assigned to a. Two agents are related iff
they are connected in the graph. This relationship partitions
the set of agents A into a set of bundles B = {b1, . . . , bl}
where each bundle b ∈ B consists of agents that are re-
lated with each other. Since agents in different bundles
can determine the visit times of their assigned targets in-
dependently, we have mint∈R

n
+
cteama∈A cagenta (Xs

a , X
c
a,xa ←

fa(t)) = cteamb∈B (min
tb∈R

nb
+

cteama∈b cagenta (Xs
a, X

c
a,xa ←

fa(tb))), where nb is the number of complex targets assigned
to bundle b and tb is the vector of the visit times of these
complex targets. In other words, we can solve the minimiza-
tion problem min

tb∈R
nb
+

cteama∈b cagenta (Xs
a, X

c
a,xa ← fa(tb))

independently for each bundle b ∈ B.

We now introduce a reaction function F
Xc

a
a (ta) for each

agent a in a bundle b ∈ B that characterizes its agent cost
(= the smallest sum of travel and wait times) of visiting its
assigned complex targets Xc

a at any given visit times ta:

F
Xc

a
a (ta) := cagenta (Xs

a, X
c
a,xa ← ta),

which generalizes the concept of reaction functions proposed
in [Zheng and Koenig, 2008]. The optimal visit times t∗b for
the complex targets assigned to bundle b can thus be deter-
mined as follows:

t
∗
b = arg min

tb∈R
nb
+

cteama∈b F
Xc

a
a (fa(tb)).

3.2 Constructing Reaction Functions

Given a target assignment {(Xs
a, X

c
a)}a∈A, agent a ∈ A con-

structs its reaction function F
Xc

a
a (ta) as follows:
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1. Agent a constructs all possible visit orders of its as-
signed targets in Xs

a ∪Xc
a. Let Pa be the set of all these

visit orders.

2. Agent a constructs all possible permutations of its as-
signed complex targets in Xc

a = {x1
a, . . . , x

na
a }. Let Πa

be the set of all these permutations. For each permuta-

tion π = (x
π(1)
a , . . . , x

π(na)
a ) in Πa, let Pa,π be the set

of the visit orders in Pa in which complex targets are
visited in the order given by permutation π.

Consider the multi-agent routing problem with the given
target assignment shown in Figure 1, where the agents
and targets are located on a graph and the agents can
only move along the edges of the graph. The coalition
sizes of all three complex targets are 2. Table 1 tabulates
the permutations of complex targets and the visit orders
of targets that are assigned to agent a1.

3. For each permutation π ∈ Πa and each visit order
p ∈ Pa,π, agent a finds the vector of visit times tp =

(t
π(1)
p , . . . , t

π(na)
p ) of the complex targets in π and cal-

culates the resulting agent cost cp if it visits its assigned
targets in visit order p without waiting at any target. For
example, Table 1 tabulates the vectors of visit times and
the corresponding agent costs for each possible visit or-
der of agent a1.

4. For each permutation π ∈ Πa and each visit order
p ∈ Pa,π, agent a constructs a meta-function Fπ

a,p(t
π
a ),

which characterizes the agent cost of agent a if it visits
its assigned targets in visit order p, as follows:

Domain: The domain of this meta-function is the set
of all possible visit times t

π
a = (t

π(1)
a , . . . , t

π(na)
a ) of

the complex targets in π = (x
π(1)
a , . . . , x

π(na)
a ) if agent

a visits its assigned targets in visit order p and waits
only at complex targets. Consider any pair of adja-

cent complex targets x
π(i−1)
a ∈ π and x

π(i)
a ∈ π.

Their visit times t
π(i−1)
a and t

π(i)
a must satisfy t

π(i)
a −

t
π(i−1)
a ≥ t

π(i)
p − t

π(i−1)
p since t

π(i)
p − t

π(i−1)
p is the

travel time of agent a from complex target x
π(i−1)
a to

x
π(i)
a in visit order p. This constraint can be re-written

as t
π(i)
a − t

π(i)
p ≥ t

π(i−1)
a − t

π(i−1)
p . Thus, the domain

of the meta-function is the set of vectors of visit times
t
π
a = (t

π(1)
a , . . . , t

π(na)
a ) that satisfy t

π(na)
a − t

π(na)
p ≥

. . . ≥ t
π(1)
a − t

π(1)
p ≥ 0. We define a boolean function

B(ta) = true iff tna
a ≥ . . . ≥ t1a ≥ 0 for any vector ta

so that the domain constraint of the meta-function can
be simply written as B(tπa − tp) = true.

Value: The value of this meta-function is the agent cost
of agent a if agent a visits its assigned targets in visit
order p and waits only at complex targets, which can be
calculated as:

F
π
a,p(t

π
a) = cp + t

π(na)
a − t

π(na)
p iff B(tπa − tp) = true

where cp is the travel time of agent a to visit its as-

signed targets in the order p and t
π(na)
a −t

π(na)
p is the to-

tal wait time of agent a at complex targets for the given
visit times t

π
a . For the sake of convenience, we define

Fπ
a,p(t

π
a) := ∞ if B(tπa − tp) = false.

1to

2t
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Figure 2: Domains of Reaction Functions

5. For each permutation π ∈ Πa, agent a constructs a per-
mutation function Fπ

a (t
π
a) whose domain consists of the

vectors of visit times tπa of complex targets in π that sat-
isfy the domain constraint B(tπa ) = true and whose
value is determined as the minimum of meta-functions
Fπ

a,p(t
π
a) for all visit orders p ∈ Pa,π:

Fπ
a (t

π
a) = min

p∈Pa,π

Fπ
a,p(t

π
a ).

6. Finally, the reaction function F
Xc

a
a (ta) of agent a is the

collection of all permutation functions Fπ
a (t

π
a ) for each

permutation π ∈ Πa.

Consider again the multi-agent routing problem shown
in Figure 1. Figure 2 shows the domains of the reaction
functions of agents a1, a2 and a3 for the given target as-
signments, where a meta-function corresponds to a visit
order of an agent.

The correctness of our approach is given by the following
lemma and theorem.

Lemma 1 For each permutation π ∈ Πa of the complex tar-
gets assigned to agent a, the agent cost (= the smallest sum of
travel and wait times) of agent a for visiting its complex tar-
gets in the order given by permutation π at any given visit
times t

π
a is the value of the permutation function Fπ

a (t
π
a ),

namely, minp∈Pa,π
Fπ

a,p(t
π
a ).

Proof: Let c∗ be the agent cost of agent a. If c∗ =∞, then there

does not exist any visit order so that agent a can visit its complex

targets in the order given by permutation π at visit times t
π
a , that

is, B(tπa − tp) = false for each visit order p ∈ Pa,π. Thus, c∗ =
minp∈Pa,π F

π
a,p(ta). If c∗ �=∞, then let p∗ be a visit order of agent

a that results in agent cost c∗. We let wa = (w
π(1)
a , . . . , w

π(na)
a )

be the vector of total wait times of agent a at complex targets, where

w
π(i)
a is the total wait time of agent a at all complex targets x

π(j)
a

with 1 ≤ j ≤ i. Consider the meta-function Fπ
a,p∗(t

π
a) of agent

a for visit order p∗. We have t
π(na)
a = t

π(na)
p∗ + w

π(na)
a and

Fπ
a,p∗(t

π
a ) = cp∗ + t

π(na)
a − t

π(na)
p∗ = cp∗ + w

π(na)
a = c∗. Since

p∗ ∈ Pa,π, we have c∗ = Fπ
a,p∗(t

π
a) ≥ minp∈Pa,π F

π
a,p(t

π
a).

Given that c∗ is the smallest sum of travel and wait times of agent

a, by definition minp∈Pa,π F
π
a,p(t

π
a) cannot be less than c∗. Thus,

c∗ = minp∈Pa,π F
π
a,p(t

π
a).

Theorem 1 The agent cost of agent a for visiting its com-
plex targets Xc

a = {x1
a, . . . , x

na
a } at any given visit times

ta = (t1a, . . . , t
na
a ) can be calculated from its reaction func-

tion F
Xc

a
a (ta).
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permutations scenarios

a1 does not wait at x1, a1 does not wait at x2, a2 does not wait at x3

(x1, x2, x3) a1 does not wait at x1, a1 does not wait at x2, a3 does not wait at x3

(x1, x3, x2) a1 does not wait at x1, a3 does not wait at x2, a2 does not wait at x3

(x2, x1, x3) a1 does not wait at x1, a3 does not wait at x2, a3 does not wait at x3

(x2, x3, x1) a2 does not wait at x1, a1 does not wait at x2, a2 does not wait at x3

(x3, x1, x2) a2 does not wait at x1, a1 does not wait at x2, a3 does not wait at x3

(x3, x2, x1) a2 does not wait at x1, a3 does not wait at x2, a2 does not wait at x3

a2 does not wait at x1, a3 does not wait at x2, a3 does not wait at x3

Table 2: Permutations and Scenarios

Proof: Sort the visit times ta = (t1a, . . . , t
na
a ) in increasing or-

der to yield t
π
a = (t

π(1)
a , . . . , t

π(na)
a ), which results in permutation

π = (x
π(1)
a , . . . , x

π(na)
a ). Lemma 1 states that the agent cost of

agent a for visiting its complex targets (x
π(1)
a , . . . , x

π(na)
a ) at visit

times t
π
a = (t

π(1)
a , . . . , t

π(na)
a ) can be calculated as the value of

the permutation function Fπ
a (t

π
a), which is also the agent cost of

agent a for visiting its complex targets (x1
a, . . . , x

na
a ) at visit times

ta = (t1a, . . . , t
na
a ).

3.3 Determining Optimal Visit Times

Given the reaction function F
Xc

a
a (ta) of each agent a in the

bundle b of related agents, the optimal visit times of com-
plex targets xb = (x1

b , . . . , x
nb

b ) that are assigned to bundle b

can be determined as argmin
tb∈R

nb
+

cteama∈b F
Xc

a
a (fa(tb)). The

minimization is over Rnb

+ (= all possible visit times of the nb

complex targets). The following theorem, however, shows
that this is unnecessary.

Theorem 2 Let T be the set of vectors of visit times tb at
which the agents in bundle b are able to visit the complex
targets xb without waiting at any simple target and for each
complex target in xb there exists at least one agent in its coali-
tion that does not wait at it. Then,

min
tb∈T

cteama∈b F
Xc

a
a (fa(tb)) = min

tb∈R
nb
+

cteama∈b F
Xc

a
a (fa(tb))

Proof: Let t∗b be the optimal visit times of complex targets xb.

If there exists any simple target at which its assigned agent waits or

any complex target at which all agents in its coalition wait, run the

following procedure on this target x: First, find the smallest wait

time sx > 0 of all agents at target x. Then, let each agent visit target

x sx time units earlier. The resulting team cost does not increase

since all agents visit their targets no later than before. Repeat this

procedure until agents do not wait at any simple target and for each

complex target there exists at least one agent in its coalition that

does not wait at it. The resulting visit times belong to set T , and the

resulting team cost is no larger than that of the optimal visit times

t
∗
b .

Now we describe how a central planner can construct the
set T based on the reaction functions of agents:

1. The central planner constructs all possible permutations
πb of the complex targets in xb.

2. The central planner constructs all possible scenarios so
that, for each complex target in xb, there is at least one
agent in its coalition that does not wait at it.

For example, Table 2 tabulates all possible permutations
and scenarios for the multi-agent routing problem from
Figure 1.

3. For each combination of a scenario and a permuta-

tion πb = (x
πb(1)
b , . . . , x

πb(nb)
b ), the central planner

generates a search tree for constructing the visit times

t
πb

b = (t
πb(1)
b , . . . , t

πb(nb)
b ) that belong to set T , start-

ing with the root node (t
πb(1)
b ≥ 0, . . . , t

πb(nb)
b ≥

t
πb(nb−1)
b ) at depth 0. The depth of the search tree is
nb. Each node at any depth i with 1 ≤ i ≤ nb has the

form (t
πb(1)
b , . . . , t

πb(i)
b , t

πb(i+1)
b ≥ t

πb(i)
b , . . . , t

πb(nb)
b ≥

t
πb(nb−1)
b ), where the visit times (t

πb(1)
b , . . . , t

πb(i)
b ) have

been determined from the previous depths. Consider any

node (t
πb(1)
b , . . . , t

πb(i)
b , t

πb(i+1)
b ≥ t

πb(i)
b , . . . , t

πb(nb)
b ≥

t
πb(nb−1)
b ) at depth i. We now show how the central

planner determines the visit time t
πb(i+1)
b at depth i+1:

Assume that agent a does not wait at complex target

x
πb(i+1)
b in the given scenario. First, the central plan-

ner constructs the permutation πa = fa(πb) of the com-
plex targets assigned to agent a and finds the complex

target x
πa(j)
a ∈ πa that is identical to x

πb(i+1)
b ∈ πb.

Then, for each visit order p ∈ Pa,πa
of agent a, it deter-

mines the visit time t
πa(j)
a of complex target x

πa(j)
a to be

t
πa(j−1)
a + t

πa(j)
p − t

πa(j−1)
p , where t

πa(j−1)
a is the visit

time of complex target x
πa(j−1)
a and t

πa(j)
p − t

πa(j−1)
p is

the travel time of agent a from complex target x
πa(j−1)
a

to x
πa(j)
a in visit order p. Finally, it generates one child

node in which t
πb(i+1)
b = t

πa(j)
a and labels the edge

from the node in question to the child node with the do-
main constraint B(tπa

a − tp) = true of meta-function
Fπa

a,p(t
πa
a ). If the determined visit times in the child node

are inconsistent with any domain constraint labeling the
edges from the root to the child node, the central planner
removes the child node from the search tree. This com-
pletes the construction of the search tree. The central
planner then adds the vectors of visit times in the leaf
nodes of the search tree to set T .

Consider again the multi-agent routing problem from
Figure 1. Assume that the permutation of complex tar-
gets is (x1, x2, x3) and the scenario is that a2 does not
wait at x1, a1 does not wait at x2 and a3 does not wait
at x3. Figure 3 shows the search tree constructed by
the central planner, and Figure 4 shows the correspond-
ing meta-functions of agents used to determine the visit
times.

3.4 Approximating Reaction Functions

The number of meta-functions in the reaction function of
agent a usually depends on the number of visit orders of agent
a for visiting its assigned targets, which is usually exponential
in the number of its assigned targets. Thus, the computation
of the reaction function is time-intensive. Now we show how
to approximate reaction functions by considering only a con-
stant number of visit orders, similar to the approach used in
[Zheng and Koenig, 2008]:

1. Agent a finds a sufficiently large visit time e so that
it can visit all assigned (both simple and complex) tar-
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Figure 3: Search Tree
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Figure 4: Determining Optimal Visit Times

gets in any visit order before time e. For example,∑
x∈Xs

a∪Xc
a
2 · d(a, x) + ε could be a simple choice

of e, where d(a, x) is the travel time of agent a from
its initial location to target x ∈ Xs

a ∪ Xc
a and ε

is a small positive constant. Then, agent a divides
the time interval [0, e) evenly into G time intervals
[sj , ej) for a given discretization granularity G. Lastly,
agent a constructs all possible vectors of na time inter-
vals ([s1, e1), . . . , [sna , ena)), where the value of each
[si, ei) in the vector can be [sj , ej) for any 1 ≤ j ≤ G.

2. Agent a solves the following optimization problem for
each vector of time intervals ([s1, e1), . . . , [sna , ena)),
namely, to find the visit order p of its targets Xs

a ∪ Xc
a

with the minimal agent cost that satisfies the following
two constraints: 1) it visits complex target xi

a at time
tip ∈ [si, ei) and 2) it does not wait at any target.1 (Such
visit order may not always exist for any given vector of
time intervals.) Let the set P ′

a be the set of the result-
ing visit orders p found for all possible vectors of time
intervals ([s1, e1), . . . , [sna , ena)).

3. The remaining steps of constructing the approximate re-
action function are identical to Steps 2-6 of constructing
the reaction function as described in Section ”Construct-
ing Reaction Functions” if one replaces Pa with P ′

a ev-
erywhere.

Approximate reaction functions are identical to the ideal
ones if agent a uses an infinite number of time intervals (G =
∞). In general, however, approximate reaction functions may
not be identical to the ideal reaction functions. For example,
Figure 5 shows two approximate reaction functions obtained
with e = 24 and different discretization granularities.

1This optimization problem is a special case of the NP-hard trav-
eling salesperson problem with time windows [Desrosiers et al.,
1995]. We use the Or-opt heuristic [Or, 1976] to solve it approxi-
mately.
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4 Auctions with Reaction Functions

Now, we describe a greedy auction-like algorithm that makes
use of reaction functions to allocate targets to distributed
agents in a hill-climbing fashion, similar to [Koenig et al.,
2007; Zheng and Koenig, 2008]. The agents are the bidders,
and a central planner is the auctioneer. The algorithm consists
of multiple rounds to allocate all targets to agents. Initially,
all targets are unassigned. During each round, all agents bid
on all unassigned targets (bidding phase) and the auctioneer
assigns one additional target to a coalition of agents (win-
ner determination phase) so that the team cost increases least
(= hill-climbing principle). Consider any round of the algo-
rithm. Assume that the current allocation of agent a ∈ A is
(Xs

a, X
c
a, Ca) and the set of unassigned targets is U . We now

explain how the agents bid and how the auctioneer determines
the winning bid:

• Bidding Phase For each unassigned simple target xs ∈
U , agent a constructs and bids the following reaction
function: (Case 1) If Xc

a 
= ∅, then it constructs a reac-

tion function F
Xc

a

a,xs(ta) = cagenta (Xs
a ∪{xs}, Xc

a,xa ←
ta), where xa is the vector of complex targets in Xc

a and
ta is the corresponding vector of visit times; (Case 2) If
Xc

a = ∅, then it constructs a (trivial) reaction function

F∅
a,xs(·) = cagenta (Xs

a ∪ {xs}, ∅, ∅).

For each unassigned complex target xc ∈ U , agent

a constructs and bids a reaction function F
Xc

a

a,xc(ta) =

cagenta (Xs
a, X

c
a ∪ {xc},xa ← ta), where xa is the vec-

tor of complex targets in Xc
a ∪ {xc} and ta is the corre-

sponding vector of visit times.

• Winner Determination Phase The auctioneer needs to
keep records of the following information for each agent
a ∈ A: 1) its current allocation (Xs

a, X
c
a, Ca); 2) its cur-

rent agent cost cagenta (Xs
a, X

c
a, Ca); and 3) its current re-

action function F
Xc

a
a (ta) if Xc

a 
= ∅. Remember that al-
location algorithms for complex tasks need to solve two
subproblems as described in the introduction:

Solution of Subproblem 1: First, the auctioneer con-
structs the set O(d(x)) that contains all coalitions of
d(x) different agent(s) for visiting each unassigned tar-
get x ∈ U . Second, for each coalition o ∈ O(d(x)), the
auctioneer constructs the bundle b(x, o) ⊆ A of agents
that are related to agents in o after allocating target x
to coalition o. Let xb(x,o) be the vector of all com-

plex targets assigned to bundle b(x, o) and tb(x,o) be
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the corresponding vector of visit times. Third, the auc-
tioneer determines the evaluation cost cevalx,o of allocat-

ing each target x ∈ U to each coalition o ∈ O(d(x))
and the optimal visit times t∗

b(x,o) for complex targets in

xb(x,o) as explained below in the solution of Subprob-

lem 2. Fourth, the auctioneer determines (x∗, o∗) =
argminx∈U,o∈O(d(x)) c

eval
x,o . Finally, the auctioneer al-

locates the target x∗ to all agent(s) in o∗ and sets the
visit times of all complex targets xb(x∗,o∗) to t

∗
b(x∗,o∗).

Solution of Subproblem 2: For each agent a ∈ b(x, o),
the auctioneer constructs the following evaluation func-
tion:

V
Xc

a
a (ta) :=

{
F

Xc
a

a (ta)− cagent
a (Xs

a, X
c
a, Ca) (MiniSum)

F
Xc

a
a (ta) (MiniMax)

where the reaction function F
Xc

a
a (ta) is either the re-

action function F
Xc

a
a,x(ta) submitted by agent a in the

bidding phase if agent a ∈ o, or the reaction function

F
Xc

a
a (ta) recorded by the auctioneer if agent a /∈ o.

Let nb(o,x) be the number of complex targets in xb(o,x).

Then, the auctioneer determines the evaluation cost cevalo,x

to be min
tb(o,x)∈R

nb(o,x)
+

cteam
a∈b(o,x)V

Xc
a

a (fa(tb(o,x))) and

t
∗
b(o,x) to be the corresponding optimal visit times.

Variants: All simple targets are assigned to agents before
any complex target in [Zheng and Koenig, 2008]. However,
this is not necessary for our approach with generalized re-
action functions since the agents are able to update the visit
times of complex targets that have already been assigned to
them when a new target is assigned. In order to better eval-
uate our approach, we use the following three variants of
the auction-like algorithm: V.1 (Mixed) There is no restric-
tion on the auction-like algorithm. V.2 (Simple-First): All
simple targets are assigned before any complex target. V.3
(Complex-First): All complex targets are assigned before
any simple target.

5 Experimental Results

We now evaluate the benefits of generalized reaction func-
tions. Since the algorithm ARF introduced in [Zheng and
Koenig, 2008] is the only existing allocation algorithm in the
literature for multi-agent routing with complex targets, we
compare all three variants of the auction-like algorithm intro-
duced in the previous section against it. We use multi-agent
routing problems on a known four-neighbor planar grid of
size 51 × 51 with square cells that are either blocked or un-
blocked. The grid resembles an office environment with walls
and doors [Koenig et al., 2007]. Table 3 tabulates the team
costs and runtimes of allocation algorithms for solving multi-
agent routing problems with 10 agents, 40 simple targets and
5 complex targets. The coalition size of each complex target
is 2. Each agent can be assigned at most four simple targets
and three complex targets. We report data that has been av-
eraged over 25 instances with randomly generated locations
of agents and targets. We make the following observations:
First, the team costs of the auction-like algorithms are signif-
icantly smaller than those of ARF for both the MiniSum and

Allocation Algorithm MiniSum MiniMax

Team Cost Runtime Team Cost Runtime

ARF [Zheng and Koenig, 2008] 824.16 0.04 162.12 0.03

Ideal 717.64 0.38 150.26 0.25

Mixed G = 30 718.44 0.20 150.39 0.19

G = 15 719.12 0.09 152.60 0.07

Ideal 717.06 0.37 137.18 0.28

Simple-First G = 30 717.41 0.24 137.24 0.20

G = 15 718.16 0.11 137.44 0.12

Ideal 726.48 0.52 151.39 0.43

Complex-First G = 30 727.84 0.38 154.40 0.22

G = 15 733.92 0.20 155.32 0.15

Table 3: Experimental Results

MiniMax team objectives since agents can update the visit
times of their assigned complex targets when a new target is
assigned. Second, the runtimes of the auction-like algorithms
are still small, although they increase significantly as the dis-
cretization granularity G increases. Third, the team costs and
runtimes of the ”Mixed” variant are very similar to those of
the ”Simple-First” variant for the MiniSum team objective.
The reason is that simple targets tend to be allocated before
complex targets in the ”Mixed” variant for the MiniSum team
objective since the team cost typically increases less when al-
locating an additional simple target to some agent than allo-
cating an additional complex target to a coalition of agents.

6 Conclusions

We studied how to improve the team performance of allo-
cation algorithms for complex tasks. We first generalized
the concept of reaction functions proposed in the literature
to characterize the agent costs of performing multiple com-
plex tasks at given times. Second, we showed how agents can
construct and approximate reaction functions in a distributed
way. Third, we showed how an auction-like algorithm can
use reaction functions to allocate tasks to agents. Finally, we
showed empirically that the team performance of our algo-
rithm is substantially better than those of an existing state-of-
the-art allocation algorithm for complex tasks.
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