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Abstract

In weighted voting games, each agent has a weight,
and a coalition of players is deemed to be winning
if its weight meets or exceeds the given quota. An
agent’s power in such games is usually measured
by her Shapley value, which depends both on the
agent’s weight and the quota. [Zuckerman et al.,
2008] show that one can alter a player’s power sig-
nificantly by modifying the quota, and investigate
some of the related algorithmic issues. In this pa-
per, we answer a number of questions that were left
open by [Zuckerman et al., 2008]: we show that,
even though deciding whether a quota maximizes
or minimizes an agent’s Shapley value is coNP-
hard, finding a Shapley value-maximizing quota is
easy. Minimizing a player’s power appears to be
more difficult. However, we propose and evaluate a
heuristic for this problem, which takes into account
the voter’s rank and the overall weight distribution.
We also explore a number of other algorithmic is-
sues related to quota manipulation.

1 Introduction

Collective decision making is a crucial component of multi-
agent interaction. Consequently, assessing the power of indi-
vidual voters in decision-making bodies is an important con-
cern in the analysis of multi-agent systems. This issue is of-
ten studied within the framework of weighted voting games,
where each player is associated with a weight; to win, a coali-
tion needs to amass a weight that meets or exceeds a given
threshold, or quota. Usually, the voter’s power in such games
is associated with her Shapley value [Shapley, 1953], which
in the context of weighted voting games is also known as the
Shapley–Shubik power index [Shapley and Shubik, 1954].
This quantity depends on both the players’ weights and the
quota of the game.

The weight of each voter is determined either by his con-
tribution to the system (money, shares, etc.) or the size of
the electorate that he represents. In either case, the vot-
ers’ weights are usually hard to alter. In contrast, the quota
of the game can easily be modified: for instance, a legisla-
tive body may raise the quota for decisions on certain issues
from 51% of all votes to 66%. A change to the quota can

have a profound effect on players’ power. This phenomenon
has been observed in real-life voting systems [Leech, 2002b;
Leech and Machover, 2003; Machover, 2007], and recently
[Zuckerman et al., 2008] embarked on a systematic study
of this issue from the algorithmic perspective. For instance,
[Zuckerman et al., 2008] show that one can determine in
polynomial time if a player’s power can be reduced to 0 by
changing the quota; however, deciding which of the two given
values of the quota is preferable for a given player is compu-
tationally hard.

In this paper, we continue to study the dependence be-
tween the players’ power and the quota in weighted voting
games. We focus on finding values of the quota that maxi-
mize/minimize the power of a given player. This is perhaps
the most important problem from the perspective of a ma-
nipulator who cares about the impact of a certain agent in a
decision-making body; however, it has not been addressed by
the previous work.

First, we show that if arbitrary values of the quota are
allowed, a player’s power can be maximized by setting the
quota to that player’s weight. In contrast, the associated de-
cision problem, i.e., determining whether the current value of
the quota is already optimal for a given player, is computa-
tionally hard. Thus, if the manipulation is costly, it is hard for
the manipulator to determine whether it is worth the effort.

If the goal is to minimize the player’s power rather than
to maximize it, then the respective decision problem remains
hard, but the status of the optimization problem (finding a
value of the quota that minimizes the player’s power) is un-
clear. However, we identify two values of quota, which are
very likely to be good choices. The first of them is q = 1
(assuming integer weights): when the quota is small enough,
all players have the same power, which is likely to be a bad
deal for larger players. The second candidate is q = w + 1,
where w is the target player’s weight. This quota is more
likely to be harmful for smaller players. We perform em-
pirical analysis, drawing the players’ weights from various
probability distributions, and show that with high probability
one of these values of the quota minimizes the target player’s
power, with the right choice usually being q = w + 1 for the
smaller players and q = 1 for the larger players. We provide a
(partial) analytic explanation of these results, by showing that
for the bottom half of the voters (with respect to the weight)
the quota q = w + 1 is strictly worse than q = 1.
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While it is hard to determine whether a given value of the
quota is optimal/pessimal for a given player, there are spe-
cial cases of this problem that admit an efficient algorithm:
namely, checking if a given quota maximizes the power of the
smallest player or minimizes the power of the largest player.
Both questions can be reduced to deciding whether all players
are equally powerful, which turns out to be poly-time solv-
able. Interestingly, the complementary problem—finding a
quota that ensures all players have different power—has been
shown to be easy as well [Zuckerman et al., 2008].

The rest of the paper is structured as follows. We give a
brief overview of related work in Section 1.1. Section 2 in-
troduces the necessary terminology. Section 3 provides sev-
eral examples that illustrate the behavior of the Shapley value
as a function of the quota. Section 4 details the main theo-
retical results of our work, and Section 5 complements them
by empirical analysis. Section 6 presents our conclusions and
suggests directions for future research.

1.1 Related Work

Several papers are relevant to this research, with [Zuckerman
et al., 2008] being the direct precursor of this work.

The complexity of computing the Shapley–Shubik power
index is well understood: [Deng and Papadimitriou, 1994;
Matsui and Matsui, 2001; Prasad and Kelly, 1990] show that
deciding whether a player has zero power is hard (and hence
computing the exact value of the index is hard, too). We re-
mark that these hardness results do not preclude the existence
of efficient algorithms for manipulating the quota: it might
be possible to change a player’s power in the desired direc-
tion even without knowing the exact value of his power be-
fore and after the change. Further, there are several heuristics
and approximation algorithms for power computation [Mann
and Shapley, 1962; Leech, 2002a; Dubey and Shapley, 1979;
Bachrach et al., 2010; Fatima et al., 2008; Merrill, 1982].

There are several studies of manipulation in weighted vot-
ing games. Apart from [Zuckerman et al., 2008], [Aziz et al.,
2011] study a different form of manipulation, namely, players
splitting their weight among several identities, or, conversely,
merging into a single identity; [Faliszewski and Hemaspaan-
dra, 2009] consider the more general question of comparing
the players’ power across different weighted voting games.

An alternative approach to measuring a player’s power
is by means of the Banzhaf power index [Banzhaf, 1965].
The behavior of this index as a function of the quota has
been studied in [Dubey and Shapley, 1979; Leech, 2002a;
Merrill, 1982]; the results of this analysis have been used in
developing approximation algorithms for this index [Fatima
et al., 2008].

2 Preliminaries

A weighted voting game G = (w, q) is given by a vector
w = (w1, . . . , wn) of positive integer weights and a positive
integer quota q ∈ Z+. It is associated with a set of players
N = {1, ..., n}, where the i-th player has weight wi. We or-
der the players so that w1 ≤ w2 ≤ . . . ≤ wn. A subset, or
coalition, S ⊆ N is called winning if w(S) :=

∑
j∈S wj ≥

q, and losing otherwise. We write v(S) = 1 if S is win-

ning and v(S) = 0 if S is losing; it is usually stipulated that
v(N) = 1, i.e., q ≤ w(N). A player i is called q-pivotal
for S ⊆ N \ {i} if q − wi ≤ w(S) < q, or equivalently, if
v(S) = 0, but v(S ∪ {i}) = 1. When q is clear from the
context, we will simply say that i is pivotal for S. A player i
is called a dummy if he is not pivotal for any coalition.

Let Π(N) be the set of permutations over N , and let
Pi(σ) ⊆ N denote the set of all predecessors of player i
in a permutation σ ∈ Π(N), i.e., Pi(σ) = {j ∈ N |
σ(j) < σ(i)}. We say that i is q-pivotal for σ if i is q-
pivotal for Pi(σ). The set of all permutations for which a
player i ∈ N is q-pivotal is denoted by Πi(q). The Shap-
ley value, or Shapley–Shubik power index, [Shapley, 1953;
Shapley and Shubik, 1954] of player i in a game with quota
q is φi(q) =

|Πi(q)|
n! . This power index has a number of very

attractive properties; it is efficient, i.e.,
∑n

i=1 φi(q) = 1, sym-
metric, i.e., if v(A∪{i}) = v(A∪{j}) for all A ⊆ N \{i, j},
then φi(q) = φj(q), and monotone, i.e., wi ≤ wj implies
φi(q) ≤ φj(q).

As we vary the quota q, φi(q) becomes a function from Z
+

to [0, 1]. Since we would like to ensure that v(N) = 1, we
limit our analysis to the values of q in the interval [1, w(N)]∩
N. Note that there is no loss of generality in assuming q ∈ N:
while φi(q) is well-defined for any real q ∈ [1, w(N)], all
players’ weights are integer, so a game (w, q) with q ∈ R is
equivalent to (w, �q	). We set opt(φi) = {q ∈ N | φi(q) ≥
φi(q

′) for all q′ ∈ N} and pess(φi) = {q ∈ N | φi(q) ≤
φi(q

′) for all q′ ∈ N}; these are the sets of quota values that,
respectively, maximize and minimize the power of player i.

3 Examples

We start by providing several examples of weighted voting
games, and investigate the behavior of a given player’s power
as a function of the quota in these games.

Example 3.1. We construct a 20-player game by draw-
ing weights uniformly at random from [1, 40]; the resulting
weight vector is w1 = (1, 2, 4, 5, 16, 17, 20, 21, 21, 23,
24, 24, 27, 28, 28, 33, 33, 36, 36, 40). Figure 1 shows
the Shapley value of player 10 with weight 23 in games of
the form (w1, q), where q varies from 1 to w(N). We note
several interesting properties of this graph. First, φi(q) is
centrally symmetric; this is a well-known property of the
Shapley value, referred to as self-duality [Felsenthal and Ma-
chover, 1998]. Second, the graph has two distinct peaks at
w10 = 23 and w(N) − w10 + 1 = 417. This observa-
tion is in line with our theoretical results: Section 4.1 shows
that φi(q) always peaks at q = wi. Third, φ10(q) has a
global minimum at q = 24 = w10 + 1; Section 5 demon-
strates that q = wi + 1 is often (though not always) in
pess(φi). Finally, the graph plateaus at w10/w(N) ≈ 0.052

as the quota goes to w(N)+1
2 ; this phenomenon has been

observed (and explained) in [Leech and Machover, 2003;
Machover, 2007].

Example 3.2. We repeat the experiment in Example 3.1, but
generate the players’ weights according to the Poisson distri-
bution with mean 30, obtaining weight vector w2 = (23, 24,
24, 25, 25, 25, 25, 27, 28, 28, 29, 30, 30, 32, 32, 33, 34, 34,
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35, 36); we focus on the second largest player. We observe a
high degree of fluctuation in the player’s Shapley value.
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Figure 1: The Shapley value of player 10 (weight 23) for
weight vector w1 (Ex. 3.1)
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Figure 2: The Shapley value of player 19 (weight 35) for
weight vector w2 (Ex. 3.2)

Example 3.3. Finally, consider a weight vector of the form
1, 2, . . . , 2n. The graphs for n = 7 and players with weights
4, 16 and 64 are given in Figure 3. A remarkable property of
this set of weights is the abundance of local minima and max-
ima; φ1 has a local maximum at any even quota and a mini-
mum at any odd quota, and φ4(q) = 0 for q = 16, 32, 48, . . . .
This is true in general for weight vectors of this form.
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Figure 3: The Shapley values of players 3, 5, 7 (weights
4, 16, 64) for weight vector w3 = (1, 2, . . . , 128) (Ex. 3.3)
Proposition 3.1. If q = 2kr for some r ∈ N, then φk(q) = 0.

The intuition behind Proposition 3.1 is that for k to be 2kr-
pivotal for a coalition S, it must be the case that 2kr−2k−1 ≤

w(S) < 2kr. But then the (k− 1)-st digit of w(S) is set to 1,
i.e., k ∈ S, a contradiction. A similar approach allows us to
characterize the local maxima of φk.
Proposition 3.2. φk(q) has a local maximum at q =
2k−1(2r− 1), for all r ∈ N such that 2k−1(2r− 1) ≤ w(N).

Examples 3.2 and 3.3 show that φi(q) may be highly non-
monotone; if we are only allowed to change the quota within
a given (small) interval, the best value of the quota is not nec-
essarily at an endpoint of this interval.

4 Theoretical Results

In this section, we provide algorithms and hardness results for
a number of problems related to maximizing or minimizing
the power of a given player.

4.1 Maximizing the Shapley Value

We will now show that we can maximize the power of player
i by setting q = wi. Such a quota may seem unrealistic;
in a real-life voting system we typically have q ≥ w(N)/2
and wi < w(N)/2 for all i ∈ N . However, self-duality
implies that our results hold for the quota w(N) − wi + 1,
and w(N) − wi + 1 > w(N)/2 if wi < w(N)/2; we chose
to prove our results for q = wi to improve readability.

Before we formally state our main result, let us prove the
following useful lemma. We define Ti(x) = {σ ∈ Π(N) |
w(Pi(σ)) < x} for all x > 0.
Lemma 4.1. |Ti(a)|+ |Ti(b)| ≥ |Ti(a+b)| for any a, b ∈ N.

Proof. Without loss of generality, we assume a ≥ b. Set
Ti(a, a+ b) = {σ ∈ Π(N) | a ≤ w(Pi(σ)) < a+ b}; since
Ti(a) ⊆ Ti(a+b), we have |Ti(a+b)|−|Ti(a)| = |Ti(a, a+
b)|. Therefore, to prove that |Ti(b)| ≥ |Ti(a + b)| − |Ti(a)|,
it suffices to show that |Ti(b)| ≥ |Ti(a, a+ b)|.

We construct a injective mapping ψ : Ti(a, a+ b)→ Ti(b)
as follows. If σ ∈ Ti(a, a + b) is a permutation of the form
σ = (x1, ..., xk, y1, ..., y�, i, z1, ..., zr), where k is the first
index for which

∑k
j=1 w(xj) ≥ a, then we set ψ(σ) =

(y1, . . . , y�, i, x1, . . . , xk, z1, . . . , zr). Note that since i and
a are given, ψ is invertible and hence injective. We denote
X = {x1, . . . , xk} and Y = {y1, . . . , y�}; it is possible
that Y = ∅, but this does not affect our analysis. Since
σ ∈ Ti(a, a + b), we have w(X ∪ Y ) < a + b. However,
w(X) ≥ a, so w(Y ) < b. This means that ψ(σ) ∈ Ti(b).
Thus, there exists an injective mapping from Ti(a, a + b) to
Ti(b), and hence |Ti(b)| ≥ |Ti(a, a+ b)|.
Theorem 4.2. For any w ∈ (Z+)n we have wi ∈ opt(φi).

Proof. We differentiate between the following two cases:
q ≤ wi: For any σ ∈ Πi(q), w(Pi(σ)) < q ≤ wi and
w(Pi(σ)) + wi ≥ wi, hence σ ∈ Πi(wi). Therefore,
for all q ≤ wi it holds that Πi(q) ⊆ Πi(wi), and hence
φi(q) ≤ φi(wi).
q > wi: Note that Πi(q) = Ti(q) \Ti(q−wi) and Πi(wi) =
Ti(wi). By Lemma 4.1 we have |Ti(wi)| + |Ti(q − wi)| ≥
|Ti(q)|. Thus, we obtain

|Πi(wi)| = |Ti(wi)| ≥ |Ti(q)| − |Ti(q − wi)|
= |Ti(q) \ Ti(q − wi)| = |Πi(q)|,
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and hence φi(wi) ≥ φi(q).

Theorem 4.2 provides a simple recipe for the manipula-
tor who favors player i: he should set the quota to wi (or to
w(N)−wi+1). However, changing the quota may be costly,
and therefore the manipulator may want to know whether the
current quota is already optimal. As wi ∈ opt(φi), this is
equivalent to asking whether φi(q) = φi(wi); we call this
decision problem MAXSV. MAXSV can be viewed as a
special case of the QUOTA problem considered in [Zucker-
man et al., 2008], where we are given w, i, q, and q′, and the
goal is to check whether φi(q) > φi(q

′). [Zuckerman et al.,
2008] prove that QUOTA is computationally hard; however,
this does not imply that MAXSV is hard, since in MAXSV
one of the candidate quotas is fixed to be wi, which poten-
tially could make MAXSV an easier problem.

Nevertheless, we can show that MAXSV is hard, too; the
proof proceeds by a reduction from SUBSETSUM [Garey and
Johnson, 1979], and is omitted due to space constraints.

Theorem 4.3. MAXSV is coNP-hard.

4.2 Minimizing the Shapley Value

So far we focused on maximizing an agent’s Shapley value.
However, the manipulator may wish to minimize the power of
a player by changing the quota. We first establish that, just
as in the case of maximization, the corresponding decision
problem is hard. Specifically, we define the problem MINSV
as follows: given a weighted voting game G = (w, q), and a
player i ∈ N , is it the case that q ∈ pess(φi)? We have the
following result (proof omitted).

Theorem 4.4. MINSV is coNP-hard.

For the rest of this section, we focus on finding a quota
in pess(φi). This task appears to be more challenging than
finding a maximizing quota. Indeed, the graphs in Section 3
suggest that a suitable value of the quota may be q = wi + 1.
However, the experiments in Section 5 show that wi + 1 is
not always in pess(φi), especially for relatively large players.
For such players it is often a good solution to set q = 1; this
ensures that these players are no more powerful than smaller
players. Indeed, for the largest player, q = 1 is clearly the
worst possible quota, since φn(q) ≥ 1

n for any q. However,
this approach only works for above-median players; we can
prove that for below-median players q = wi + 1 is a strictly
better choice for the manipulator than q = 1.

Theorem 4.5. If i ≤ n
2 and wi+1 > wi, then φi(wi+1) < 1

n .

Proof. If player i is pivotal for a set S ⊆ N \ {i}, and the
quota is wi + 1, then S ⊆ {1, . . . , i − 1}. Denote by Ak the
collection of sets of size k for which player i is pivotal. For
any 1 ≤ k ≤ i − 1, we have |Ak| ≤

(
i−1
k

)
. Note also that

the contribution of a set in Ak to the Shapley value of player
i equals to

k!(n− k − 1)!

n!
=

1

n
· 1(

n−1
k

) .

Therefore, the total contribution from Ak is at most 1
n ·

(i−1
k )

(n−1
k )

.

This means that

φi(wi + 1) ≤ 1

n

i−1∑
k=1

(
i−1
k

)
(
n−1
k

) ≤ 1

n

i−1∑
k=1

(
1

2

)k

<
1

n
.

Theorems 4.4 and 4.3 show that deciding whether a given
quota is in opt(φi) or pess(φi) is coNP-hard. However,
there are certain values of i for which these problems be-
come easy. Specifically, consider the problem of checking
if q ∈ opt(φ1). By monotonicity, we have φ1(q) ≤ · · · ≤
φn(q); thus φ1(q) ≤ 1

n and, moreover, φ1(q) = 1
n if and

only if φ1(q) = . . . = φn(q). Thus, q ∈ opt(φ1) if and
only if φ1(q) = . . . = φn(q). Similarly, q ∈ pess(φn) if
and only if φ1(q) = . . . = φn(q). It turns out that deciding
whether all players have the same Shapley value (or, equiva-
lently, whether φn(q) = φ1(q)) is easy.

Theorem 4.6. There exists a poly-time algorithm that checks
whether φn(q) = φ1(q).

Algorithm 1: FIND-SET(w, q)

for k = 1 to n− 2 do
A← {2, . . . , k + 1};
B ← {2, . . . , n− 1} \A;
while B �= ∅ do

if q − wn ≤ w(A) < q − w1 then
return A;

i← min(A) ;
j ← min(B) ;
A← A \ {i} ∪ {j} ;
B ← B \ {j} ;

return “no”;

Proof. Observe that φn(q) > φ1(q) if and only if there is
a set A ⊆ {2, . . . , n − 1} for which player n is pivotal but
player 1 is not, i.e., q − wn ≤ w(A) < q − w1. Algorithm 1
iteratively tries to find such a set of size k, 1 ≤ k ≤ n− 2, by
starting with a set that contains the k smallest elements and
repeatedly (i) removing the smallest element and (ii) adding
the smallest yet unused element. This process stops if either a
set with the desired weight is found or if there are no elements
left to swap in; in the latter case the last set to be considered
contains the k largest elements.

Each swap increases w(A) by at most wn−1−w2 ≤ wn−
w1. Therefore, if a set A with q − wn ≤ w(A) < q − w1

exists, our algorithm is guaranteed find it. Since we remove
one element of B at each swap, there are at most n− 2 swaps
in each of the n − 2 iterations, which ensures polynomial
running time.

Algorithm 1 can be simplified by observing that a set A
with |A| = k and q − wn ≤ w(A) < q − w1 exists if and
only if the first k weights in W = {w2, . . . , wn−1} are small
enough and the last k weights in W are large enough.
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Figure 4: The X-axis is the rank of the player. In the first row of graphs, the bar in position i indicates the difference between
min(φi(wi + 1), φi(1)) and minq φi(q). In the second row of graphs, the Y -axis indicates the number of times (out of 100
trials) that, respectively, 1 ∈ pess(φi) and wi + 1 ∈ pess(φi).

Corollary 4.7. φn(q) > φ1(q) if and only there exist a k ∈
[1, n−2] with

∑k+1
i=2 wi < q−w1 and

∑n−1
i=n−k wi ≥ q−wn.

Corollary 4.8. There exist poly-time algorithms for checking
whether q ∈ opt(φ1) and whether q ∈ pess(φn).

5 Empirical Results

We have conjectured that two values of the quota that are
likely to minimize the Shapley value of player i are the quotas
1 and wi + 1. In this section, we will verify this empirically.

We considered three different distributions of weights: uni-
form on [1, 40], normal with μ = 30, σ2 = 15 and Poisson
distribution with mean 20. For each distribution, we con-
ducted 100 tests. In each test, we generated 30 weights and
checked whether the Shapley value of player i ∈ [1, 30] is
minimized at q ∈ {1, wi + 1}. The results are graphed in
Figure 4.

Our experiments show that for the uniform distribution,
the likelihood of wi + 1 being the global minimum is rel-
atively low. However, under the normal or Poisson distri-
butions, the likelihood of this event increases dramatically.
Similarly, for the uniform distribution, it is often the case that
1, wi+1 �∈ pess(φi), especially for small values of i, whereas
in all 100 experiments for the Poisson distribution the mini-
mum occurred at wi + 1 or 1, i.e., pess(φi) ⊆ {1, wi}. Fur-
thermore, for all distributions, even if there exists a quota q
such that φi(q) < φi(wi + 1), φi(1), the average difference
between min(φi(wi + 1), φi(1)) and φi(q) is small.

We conclude that when the players’ weights are tightly
clustered (as it typically happens for normal and Poisson dis-
tribution) either q = wi + 1 or q = 1 is likely to minimize
player i’s power. When choosing between these two options,
the rule of thumb is to set q = wi +1 for the bottom 70–80%
of all voters, and q = 1 for all other voters.

Another interesting question that merits empirical inves-
tigation is whether the manipulator can incur significant
changes of the players’ Shapley values if the quota is required

to be reasonably close to 50% of the total weight, since such
constraints on the quota are very common in practice. Now,
in Example 3.1 any choice of quota between—roughly—25%
and 75% of the total weight results in the player’s power be-
ing very close to his relative weight, i.e., w10/w(N), whereas
in Example 3.2 this is not the case. Our next experiment aims
to establish which of these scenarios is more frequent.

Given a vector of weights w and a player i, let r be the
maximum radius such that |φi(q) − wi

w(N) | < ε for all q ∈
[w(N)

2 − r, w(N)
2 + r] ∩ N. In this notation, the quantity we

are interested in is 2r
w(N) .

Our experiment was conducted as follows: for each player
i ∈ {1 . . . 30}, we have drawn 30 weights from the uniform
distribution on the interval [1, 40]. We then computed the pro-
portion 2r

w(N) . The results were averaged over 50 trials. The
same was done for weights drawn from the Poisson distribu-
tion with mean 20. The results are presented in Figure 5a
(uniform) and Figure 5b (Poisson). In both figures, the X
axis represents the rank of the player (between 1 and 30),
while the Y axis represents the average value of 2r

w(N) for
ε = 0.0001, 0.00025, 0.001. We observe that, under both
distributions, for most players their power is very close to
their relative weight for a significant proportion of the quo-
tas. However, for very large players this is less likely to be
the case, as illustrated by Example 3.2. Interestingly, for dif-
ferent values of ε the graphs are shaped differently; in partic-
ular, for very small values of ε the graphs peak around player
20, with the position of the peak being different for the two
distributions.

6 Conclusions and Future Work

We explored the behavior of the Shapley value as a function
of the quota in weighted voting games. We viewed this prob-
lem from the position of a manipulator who aims to maxi-
mize/minimize a given player’s power. We have shown that,
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Figure 5: The average proportion 2r
w(N) for ε = 0.0001, 0.00025, 0.001

despite a number of hardness results for related problems,
maximizing a player’s power is easy. While we do not have
a polynomial-time algorithm for the minimization problem,
our heuristic approach works extremely well, especially for
large players. However, in a more realistic scenario where
the quota is not allowed to stray too far from 50%, the ma-
nipulator cannot do much, especially for smaller players: for
a large, centrally symmetric range of quotas the small play-
ers’ power is fairly close to their (normalized) weight. In
summary, it appears that it is the large players who are most
vulnerable to quota manipulation: small changes of the quota
may be sufficient to change their power significantly. How-
ever, to change the power of small players in a measurable
way, one may need the ability to choose very high/low quota
values.

Perhaps the most interesting open question inspired by
this work is whether one can find a power-minimizing quota
efficiently. A related question is whether there exists a
polynomial-time algorithm for maximizing the total power
of a set of players: indeed, φi(q) is minimal if and only if∑

j∈N\{i} φj(q) is maximal.
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