
Tractable Set Constraints

Manuel Bodirsky

École Polytechnique

LIX (CNRS UMR 7161)

Palaiseau, France

Martin Hils

Équipe de Logique Mathématique

IMJ (CNRS UMR 7586)

Université Paris 7, France

Alex Krimkevich

Stanford University

Department of Computer Science

Stanford, CA, USA

Abstract

Many fundamental problems in artificial intelli-
gence, knowledge representation, and verification
involve reasoning about sets and relations between
sets and can be modeled as set constraint satis-
faction problems (set CSPs). Such problems are
frequently intractable, but there are several impor-
tant set CSPs that are known to be polynomial-time
tractable. We introduce a large class of set CSPs
that can be solved in quadratic time. Our class,
which we call EI , contains all previously known
tractable set CSPs, but also some new ones that
are of crucial importance for example in descrip-
tion logics. The class of EI set constraints has an
elegant universal-algebraic characterization, which
we use to show that every set constraint language
that properly contains all EI set constraints already
has a finite sublanguage with an NP-hard constraint
satisfaction problem.

1 Introduction

Constraint satisfaction problems are computational problems
where, informally, the input consists of a finite set of variables
and a finite set of constraints imposed on those variables; the
task is to decide whether there is an assignment of values to
the variables such that all the constraints are simultaneously
satisfied. Set constraint satisfaction problems are special con-
straint satisfaction problems where the values are sets, and the
constraints might, for instance, force that one set y includes
another set x, or that one set x is disjoint to another set y.
The constraints might also be ternary, such as the constraint
that the intersection of two sets x and y is contained in z, in
symbols (x ∩ y) ⊆ z.

To systematically study the computational complexity of
constraint satisfaction problems, it has turned out to be a
fruitful approach to consider constraint satisfaction problems
CSP(Γ) where the set of allowed constraints is formed from
a fixed set Γ of relations R ⊆ Dk over a common domain D.
This way of parametrizing the constraint satisfaction problem
by a constraint language Γ has lead to many strong algorith-
mic results [Bulatov and Dalmau, 2006; Idziak et al., 2007;
Barto and Kozik, 2009; Bodirsky and Kutz, 2007], and to

many powerful hardness conditions for large classes of con-
straint satisfaction problems [Schaefer, 1978; Bulatov et al.,
2005; Bulatov, 2003; 2006; Bodirsky and Kára, 2009].

A set constraint language Γ is a set of relations R ⊆
(P(N))k where the common domain D = P(N) is the set
of all subsets of the natural numbers; moreover, we require
that each relation R can be defined by a Boolean combina-
tion of equations over the signature �, �, and c, which are
function symbols for intersection, union, and complementa-
tion, respectively. Details of the formal definition and many
examples of set constraint languages can be found in Sec-
tion 3. The choice of N is just for notational convenience;
as we will see, we could have selected any infinite set for
our purposes. In the following, a set constraint satisfaction
problem (set CSP) is a problem of the form CSP(Γ) for a
set constraint language Γ. It has been shown by Marriott and
Odersky [Marriott and Odersky, 1996] that all set CSPs are
contained in NP; they also showed that the largest set con-
straint language, which consists of all relations that can be
defined as described above, has an NP-hard set CSP.

Drakengren and Jonsson [Drakengren and Jonsson, 1998]

initiated the search for set CSPs that can be solved in polyno-
mial time. They showed that CSP({⊆, ||, �=}) can be solved
in polynomial time, where

• x ⊆ y holds iff x is a subset of or equal to y;

• x || y holds iff x and y are disjoint sets; and

• x �= y holds iff x and y are distinct sets.

They also showed that CSP(Γ) can be solved in polynomial
time if all relations in Γ can be defined by formulas of the
form

x1 �= y1 ∨ · · · ∨ xk �= yk ∨ x0 ⊆ y0

or of the form

x1 �= y1 ∨ · · · ∨ xk �= yk ∨ x0 || y0

where x0, . . . , xk, y0, . . . , yk are not necessarily distinct vari-
ables. We will call the set of all relations that can be defined in
this way Drakengren and Jonsson’s set constraint language.
It is easy to see that the algorithm they present runs in time
quadratic in the size of the input.

On the other hand, Drakengren and Jonsson [Drakengren
and Jonsson, 1998] show that if Γ contains the relations de-
fined by formulas of the form

x1 �= y1 ∨ · · · ∨ xk �= yk ∨ u1 || v1 ∨ · · · ∨ uk || vk

510

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence



the problem CSP(Γ) is NP-hard.

Contributions and Outline. We present a significant ex-
tension of Drakengren and Jonsson’s set constraint language
(Section 3) whose CSP can still be solved in quadratic time
in the input size (Section 6); we call this set constraint lan-
guage EI. Unlike Drakengren and Jonsson’s set constraint
language, our language also contains the ternary relation de-
fined by (x ∩ y) ⊆ z, which is a relation that is of particu-
lar interest in description logics – we will discuss this below.
Moreover, we show that any further extension of EI contains
a finite sublanguage with an NP-hard set CSP (Section 7), us-
ing concepts from model theory and universal algebra. In this
sense, we present a maximal tractable class of set constraint
satisfaction problems.

Our algorithm is based on the concept of independence
in constraint languages which was discovered several times
independently in the 90’s [Koubarakis, 2001; Jonsson and
Bäckström, 1998; Marriott and Odersky, 1996] – also
see [Broxvall et al., 2002; Cohen et al., 2000]; however, we
apply this concept twice in a novel, nested way, which leads
to a two level resolution procedure that can be implemented
to run in quadratic time. The technique we use to prove the
correctness of the algorithm is also an important contribution
of our paper, and we believe that a similar approach can be
applied in many other contexts; our technique is inspired by
the already mentioned connection to universal algebra. Due
to space limitations, all proofs have been omitted; they will
appear in the long version of this paper.

Application Areas and Related Literature

Set Constraints for Programming Languages. Set con-
straints find applications in program analysis; here, a set con-
straint is of the form X ⊂ Y , where X and Y are set expres-
sions. Examples of set expressions are 0 (denoting the empty
set), set-valued variables, and union and intersection of sets,
but also expressions of the form f(Z1, Z2) where f is a func-
tion symbol and Z1, Z2 are again set expressions. Unfortu-
nately, the worst-case complexity of most of the reasoning
tasks considered in this setting is very high, often EXPTIME-
hard; see [Aiken, 1994] for a survey.

More recently, it has been shown that the quantifier-free
combination of set constraints (without function symbols)
and cardinality constraints (quantifier-free Pressburger arith-
metic) has a satisfiability problem in NP [Kuncak and Rinard,
2007]. This logic (called QFBAPA) is interesting for program
verification [Kuncak et al., 2006]. The question whether the
approach presented in this paper can also be applied to search
for polynomial-time tractable fragments of QFBAPA is left
as an open problem.

Tractable Description Logics. Description logics are a
family of knowledge representation formalisms that can be
used to formalize and reason with concept definitions. The
computational complexity of most of the computational tasks
that have been studied for the various formalisms is usually
quite high. However, in the last years a series of descrip-
tion logics (for example EL, EL++, Horn-FL0, and var-

ious extensions and fragments [Küsters and Molitor, 2002;
Baader et al., 2005; Krötzsch et al., 2006]) has been discov-
ered where crucial tasks such as e.g. entailment, concept sat-
isfiability and knowledge base satisfiability can be decided in
polynomial time.

Two of the basic assertions that can be made in EL++ and
Horn-FL0 are C1||C2 (there is no C1 that is also C2) and
C1 ∩ C2 ⊆ C3 (every C1 that is C2 is also C3), for con-
cept names C1, C2, C3. These are EI set constraints, and the
latter has not been treated in the framework of Drakengren
and Jonsson. None of the description logics with a tractable
knowledge base satisfiability problem contains all EI set con-
straints.

Spatial Reasoning. Several spatial reasoning formalisms
(like RCC-5 and RCC-8) are closely related to set constraint
satisfaction problems. These formalisms allow to reason
about relations between regions; in the fundamental formal-
ism RCC-5, one can think of a region as a non-empty set,
and possible (binary) relationships are containment, disjoint-
ness, equality, overlap, and disjunctive combinations thereof.
Thus, the exclusion of the empty set is the most prominent
difference between the set constraint languages studied by
Drakengren and Jonsson in [Drakengren and Jonsson, 1998]

(which are contained in the class of set constraint languages
considered here), and RCC-5 and its fragments.

2 Constraint Satisfaction Problems

To use existing terminology in logic and model theory, it
will be convenient to formalize constraint languages as (re-
lational) structures (see e.g. [Hodges, 1993]). A structure Γ
is a tuple (D; fΓ

1 , f
Γ
2 , . . . , R

Γ
1 , R

Γ
2 , . . . ) where D is a set (the

domain of Γ), each fΓ
i is a function from Dki → D (where

ki is called the arity of fΓ
i ), and each RΓ

i is a relation over D,

i.e., a subset of Dli (where li is called the arity of RΓ
i ). For

each function fΓ
i we assume that there is a function symbol

which we denote by fi, and for each relation RΓ
i we have a

relation symbol which we denote by Ri. Constant symbols
will be treated as 0-ary function symbols. The set τ of all
relation and function symbols for some structure Γ is called
the signature of Γ, and we also say that Γ is a τ -structure.
If the signature of Γ only contains relation symbols and no
function symbols, we also say that Γ is a relational structure.
In the context of constraint satisfaction, relational structures
Γ are also called constraint languages, and a constraint lan-
guage Γ′ is called a sublanguage (or reduct) of a constraint
language Γ if the relations in Γ′ are a subset of the relations
in Γ (and Γ is called an expansion of Γ′).

Let Γ be a relational structure with domain D and a finite
signature τ . The constraint satisfaction problem for Γ is the
following computational problem, also denoted by CSP(Γ):
given a finite set of variables V and a conjunctionΦ of atomic
formulas of the form R(x1, . . . , xk), where x1, . . . , xk ∈ V
and R ∈ τ , does there exists an assignment s : V → D such
that for every constraint R(x1, . . . , xk) in the input we have
that (s(x1), . . . , s(xk)) ∈ RΓ?

The mapping s is also called a solution to the instance Φ
of CSP(Γ), and the conjuncts of Φ are called constraints.

511



Note that we only introduce constraint satisfaction problems
CSP(Γ) for finite constraint languages, i.e., relational struc-
tures Γ with a finite relational signature.

3 Set Constraint Languages

In this section, we give formal definitions of set constraint
languages. Let S be the structure with domain P(N), the
set of all subsets of natural numbers, and with signature
{�,�, c,0,1}, where

• � is a binary function symbol that denotes intersection,
i.e., �S = ∩;

• � is a binary function symbol for union, i.e., �S = ∪;

• c is a unary function symbol for complementation, i.e.,
cS is the function that maps S ⊆ N to N \ S;

• 0 and 1 are constants (treated as 0-ary function symbols)
denoting the empty set ∅ and the full set N, respectively.

Sometimes, we simply write � for the function �S and �
for the relation �S, i.e., we do not distinguish between func-
tion symbol and respective relation. We use the symbols �,�
and not the symbols ∩,∪ to prevent confusion with meta-
mathematical usages of ∩ and ∪ in the text.

A set constraint language is a relational structure with a
set of relations with a quantifier-free first-order definition in
S; we always allow equality in first-order formulas. For ex-
ample, the relation {(x, y, z) ∈ P(N)3 | x ∩ y ⊆ z} has the
quantifier-free first-order definition z � (x � y) = x � y over
S.

Theorem 1 (Follows from Theorem 5.8 in [Marriott and
Odersky, 1996]). Let Γ be a set constraint language with a
finite signature. Then CSP(Γ) is in NP.

It is well-known that the structure (P(N);�,�, c,0,1) is a
Boolean algebra, with

• 0 playing the role of false, and 1 playing the role of true;

• c playing the role of ¬;

• � and � playing the role of ∧ and ∨, respectively.

To not confuse logical connectives with the connectives of
Boolean algebras, we always use the symbols �, �, and c
instead of the usual function symbols ∧, ∨, and ¬ in Boolean
algebras. To facilitate the notation, we also write x̄ instead of
c(x), and x �= y instead of ¬(x = y).

We assume that all terms t over the functional signature
{�,�, c,0,1} are written as t =

�n

i=1

⊔ni

j=1
lij where lij is

either of the form x̄ or of the form x for a variable x (ev-
ery term over {�,�, c,0,1} can be re-written into an equiv-
alent term of this form, using the usual laws of Boolean al-
gebras [Boole, 1847]). We allow the special case n = 0 (in
which case t becomes 1), and the special case ni = 0 (in
which case

⊔ni

j=1
lij becomes 0). We refer to ci := {lij | 1 ≤

j ≤ ni} as an (inner) clause of t, and to lij as an (inner) lit-
eral of ci. We say that a set of inner clauses is satisfiable if
there exists an assignment from V → P(N) such that for all
inner clauses, the union of the evaluation of all literals equals
N (this is the case if and only if the formula t = 1 has a
satisfying assignment).

We assume that all quantifier-free first-order formulas
φ over the signature {�,�, c,0,1} are written as φ =∧m

i=1

∨mi

j=1
Lij where Lij is either of the form t = 1 (a pos-

itive (outer) literal) or of the form t �= 1 (a negative (outer)
literal). Again, it is well-known and easy to see that we can
for every quantifier-free formula find an equivalent formula
in this form. We refer to Ci := {Lij | 1 ≤ j ≤ mi} as
an (outer) clause of φ, and to Lij as an (outer) literal of φ.
Whenever convenient, we identify φ with its set of clauses.
In the following, when we write formula we always mean a
formula over the signature {�,�, c,0,1}.

4 EI Set Constraints

To define EI set constraints, we need to introduce a series of
important functions defined on subsets of natural numbers.

Definition 2. Let

• i : (P(N))2 → P(N) be the function that maps (S1, S2)
to the set {2x | x ∈ S1} ∪ {2x+ 1 | x ∈ S2};

• F be the mapping that maps S ⊆ N to the set of finite
non-empty subsets of S;

• f : N → F (N) be a bijection between N and the set of
finite non-empty subsets of N (since both sets are count-
able, such a bijection exists );

• e : P(N)→ P(N) be f−1 ◦F (first apply F , then apply
the inverse of f );

• ei be the operation defined by ei(x, y) �→ e(i(x, y)).

Definition 3. Let f : (P(N))k → P(N) be a function, and
R ⊆ P(N)l be a relation. Then we say that f preserves R
if the following holds: for all t1, . . . , tk ∈ (P(N))l we have
that (f(t11, . . . , t

k
1), . . . , f(t

1
l , . . . , t

k
l )) ∈ R if ti ∈ R for all

i ≤ k. We say that f strongly preserves R is f preserves both
R and (P(N))l \ R. If φ is a first-order formula that defines
a relation R over S, and f preserves (strongly preserves) R,
then we also say that f preserves (strongly preserves) φ.

Note that if a relation R is (strongly) preserved by e and by
i, then it is also (strongly) preserved by their composition ei.

Definition 4. The set of all relations with a quantifier-free
first-order definition over S that are preserved by the opera-
tion ei is denoted by EI .

Proposition 9 shows that EI has a large subclass, called
Horn-Horn, which has an intuitive syntactic description. In
Section 5 we also present many examples of relations that are
from EI and of relations that are not from EI . Before, we
have to verify some properties of the functions i and e.

Proposition 5. The mapping i is an isomorphism between
S

2 and S.

We write x � y as a shortcut for x � y = x.

Proposition 6. The function e has the following properties.

• e is injective,

• e strongly preserves {1}, {0}, and �, and

• e forgets unions, i.e., for all x, y, z ∈ P(N) such that
x � y = z, not x � y, and not y x, we have that
e(x) � e(y) e(z).

Note that in particular e preserves �, and that e(c(x)) �
c(e(x)).

512

�



5 Horn-Horn Set Constraints

A large and important subclass of EI set constraints is the
class of Horn-Horn set constraints.

Definition 7. A quantifier-free first-order formula is called
Horn-Horn if

• every outer clause is Horn, i.e., contains at most one pos-
itive outer literal;

• every inner clause is Horn, i.e., contains at most one pos-
itive inner literal.

Relations defined by a conjunction of outer Horn clauses are
also called Horn. Relations defined by a Horn-Horn formula
over S are also called Horn-Horn.

Proposition 8. Every Horn relation is preserved by i.

Proposition 9. Every Horn-Horn relation is preserved by e
and i; in particular, it is from EI .

Proof. Suppose that R has a Horn-Horn definition φ over S
with variables V . Since R is in particular Horn, it is preserved
by i by Proposition 8.

Now we verify that R is preserved by e. Recall that the
operation e preserves � and is injective (Proposition 6). Note
that the formula x � y1 � · · · � yl = 1 can be equivalently
written as x � y1 � · · · � yl = y1 � · · · � yl. By an easy
induction, one shows that e also preserves this clause, and by
injectivity it even strongly preserves this clause. It follows
that e preserves formulas of the form t = 1 when all inner
clauses of t are Horn, and similarly that e also preserves for-
mulas of the form t �= 1 when all inner clauses of t are Horn.
Now, every tuple t ∈ R must satisfy at least one literal in
each outer clause of φ, and hence e(t) satisfies the same outer
clause, which is what we had to show.

Examples.

1. The disjointness relation || is Horn-Horn: it has the def-
inition x̄ � ȳ = 1.

2. The relation {(x, y, u, v) | x �= y∨u = v} can easily be
seen to be Horn-Horn as well.

3. The ternary relation {(x, y, z) | x ∩ y ⊆ z}, which we
have encountered above, has the Horn-Horn definition
x̄ � ȳ � z = 1.

4. Examples of relations that are clearly not Horn-Horn:
{(x, y) | x � y = 1} is violated by e, and
{(x, y, z) | (x = y) ∨ (y = z)} is violated by i.

5. The formula

(x � y �= x) ∧ (x � y �= y)

∧ (v = 1 ∨ u = 1 ∨ x � y �= 1)

is not Horn-Horn; more interestingly, it can be shown
that it is from EI, but there is no equivalent Horn-Horn
formula, since the relation is not preserved by i.

Combining the last example with Proposition 9, we get the
following result.

Corollary 10. The set of relations admitting a Horn-Horn
definition is strictly contained in EI .

We prepare now some results that can be viewed as a partial
converse of Proposition 9.

Definition 11. A quantifier-free first-order formula φ is
called reduced if it is in conjunctive normal form (CNF) and
if every formula obtained from φ by removing an outer literal
or an inner literal is not equivalent to φ over S.

Lemma 12. Every quantifier-free formula is over S equiva-
lent to a reduced formula.

We first prove the converse of Proposition 8.

Proposition 13. Let φ be a reduced formula that is preserved
by i. Then each outer clause of φ is Horn.

Definition 14. Let φ be a formula with variable set V , and
let s : V → P(N) be a mapping. Then an assignment of
the form x �→ e(s(x)) is called a core assignment (for V ).
A reduced formula φ with variable set V is called strongly
reduced if

• all negative outer literals are of the form x �= 1 or x �= 1,
where x is a variable,

• every outer clause is Horn, and

• wheneverφ′ is obtained from φ by removing an inner lit-
eral or an outer literal from φ, there is a core assignment
that satisfies φ but not φ′.

Lemma 15. For every quantifier-free formula φ there exists
a strongly reduced formula φ′ with the same set of variables
V such that φ and φ′ have the same core assignments.

For every quantifier-free formula φ, we call a strongly re-
duced formula φ′ as constructed in Lemma 15 from φ a core
formula for φ.

Proposition 16. Let φ be a formula preserved by ei, and let
φ′ be a core formula for φ. Then φ′ is Horn-Horn.

Proposition 17. Let Γ be a finite set constraint language from
EI . Then CSP(Γ) can be reduced in linear time to the prob-
lem to find a satisfying assignment for a given set of Horn-
Horn clauses.

Proof. Let Φ be an instance of CSP(Γ), and let V be
the set of variables that appear in Φ. For each constraint
R(x1, . . . , xk) from Φ, let φR be a reduced formula that de-
fines R over S (which exists by Lemma 12), and let ψR be
the core formula for φR (which exists by Lemma 15). By
Proposition 16, the formula ψR is Horn-Horn.

We claim that Φ is a satisfiable instance of CSP(Γ) if and
only if the set Ψ of all Horn-Horn clauses of formulas ψR

obtained in the described manner is satisfiable.

If Φ has a solution s : V → P(N), then the core assign-
ment x �→ ei(s(x), s(x)) is also a solution because Γ is pre-
served by ei; but then for each R the core-formula ψR is sat-
isfied by this assignment. We have thus found an assignment
that satisfies Ψ. Conversely, if Ψ has an assignment, then it
also has a core assignment, since Ψ is Horn-Horn and there-
fore preserved by e. Then the same assignment will also sat-
isfy all the formulas φR, and therefore is a solution to Φ.

513



6 Algorithm for Horn-Horn Constraints

This section concludes the proof that CSP(Γ) is tractable
when all relations in Γ are from EI . By Proposition 17, it
suffices to give an efficient algorithm that takes as input a set
Φ of Horn-Horn clauses and decides satisfiability of Φ over
S = (P(N);�,�, c,0,1). We first discuss an important sub-
routine of our algorithm, which we call the inner resolution
algorithm.

Inner-Res(Φ)
// Input: A finite set Φ of inner Horn clauses
// Accepts iff Φ is satisfiable
During the entire algorithm:

if Φ contains an empty clause, then reject.
Repeat

If Φ contains a positive unit clause {x} then
Remove all clauses where the literal x occurs.
Remove the literal x̄ from all clauses.

End if
Until no clause changes.
Accept

Figure 1: Inner Resolution Algorithm.

Lemma 18. Let Ψ be a set of inner Horn clauses. Then
Inner-Res(Ψ ∪ {x1 = 1, . . . , xk = 1, y0 = 1, . . . , yl = 1})
rejects if and only ifΨ implies that x1�· · ·�xk�y1�· · ·�yl =
1.

Outer-Res(Φ)
// Input: A finite set Φ of Horn-Horn clauses
// Accepts iff Φ is satisfiable over (P(N);�,�, c, 0,1)
During the entire algorithm:

if Φ contains an empty outer clause, then reject.
Repeat

Let Ψ be the set of all inner Horn clauses of terms t
from positive unit clauses {t = 1} in Φ.
If Inner-Res rejects Ψ, then reject.

For each negative literal t �= 1 in clauses from Φ
For each inner clause D = {x1, . . . , xk, y1, . . . , yl} of t

Call Inner-Res on
Ψ ∪ {x1 = 1, . . . , xk = 1, y0 = 1, . . . , yl = 1}

If Inner-Res rejects then remove clause D from t

End for
If all clauses in t have been removed, then

Remove outer literal t �= 1 from its clause
End for

Until no outer literal is removed
Accept

Figure 2: Outer Resolution Algorithm.

Theorem 19. The algorithm ‘Outer-Res’ in Figure 2 decides
satisfiability for sets of Horn-Horn clauses in quadratic time.

Proof. We first argue that if the algorithm rejects Φ, then Φ
has indeed no solution. The algorithm only rejects when it
detects an empty clause. Observe that only negative literals
get removed from clauses, and that a negative literal t �= 1

only gets removed from a clause when Inner-Res rejects Ψ ∪
{x1 = 1, . . . , xk = 1, y0 = 1, . . . , yl = 1} for each inner
clause {x1, . . . , xk, y1, . . . , yl} of t. By Lemma 18, if Inner-
Res rejects Ψ ∪ {x1 = 1, . . . , xk = 1, y0 = 1, . . . , yl = 1}
then Ψ implies that x1 � · · · �xk � y1 � · · · � yl = 1. Hence,
the positive unit clauses imply that t = 1 and therefore the
literal t �= 1 can be removed from the clause without affecting
satisfiability.

Thus, it suffices to construct a solution when the algorithm
accepts. Let Ψ be the set of all inner clauses of terms from
positive unit clauses at the final stage, when the algorithm ac-
cepts. For each remaining negative outer literal {t �= 1} and
each remaining inner clause D = {x1, . . . , xk, y1, . . . , yl} of
t there exists an assignment αD from V → P(N) that sat-
isfies Ψ ∪ {x1 � · · · � xk � y1 � · · · � yl �= 1}: otherwise,
by Lemma 18, the inner resolution algorithm would have re-
jected Ψ ∪ {x1 = 1, . . . , xk = 1, y0 = 1, . . . , yl = 1}, and
would have removed {t �= 1} from Φ. Let D1, . . . , Ds be an
enumeration of all remaining inner clauses D that appear in
all remaining negative outer literals.

We claim that the core assignment s : V → P(N) given by

x �→ e(i(αD1
(x), i(αD2

(x), . . .

i(αDs−1
(x), αDs

(x)) . . . )))

satisfies all clauses in Φ (where i is as in Proposition 5 and e
is as in Proposition 6). Let C be a clause fromΦ. By assump-
tion, at the final stage of the algorithm, the clause C is still
non-empty. Also note that since all formulas in the input were
Horn-Horn, they contain at most one positive literal (Propo-
sition 13). This holds in particular for C, and we therefore
only have to distinguish the following cases:

• At the final state of the algorithm, C still contains a
negative literal t �= 1. Since t �= 1 has not been re-
moved, there must be a remaining inner clause D =
{x1, . . . , xk, y1, . . . , yl} of t. Observe that s(x0) �

· · · � s(xk) � s(y1) � · · · � s(yl) = 1 if and only if

αDj
(x0)�· · ·�αDj

(xk)�αDj
(y1)�· · ·�αDj

(yl) = 1

for all 1 ≤ j ≤ s. Hence, and since αD(x0) � · · · �

αD(xk)�αD(y1)� · · · �αD(yl) �= 1, s satisfies t �= 1.
This shows that s satisfies C.

• All negative literals have been removed from C during
the algorithm. The positive literal t0 = 1 of C is such
that the inner clauses of t0 are Horn. They will be part
of Ψ, and therefore t0 = 1 is satisfied by s.

We conclude that s is a solution to Φ.

Combining Proposition 17 with Theorem 19, we obtain:

Theorem 20. Let Γ be a finite set constraint language from
EI . Then CSP(Γ) can be solved in quadratic time.

7 Maximality

The tractability result Theorem 20 may be complemented by
a hardness result. Indeed, the class EI is a maximal tractable
set constraint language in the sense of the following theorem.

Theorem 21. Let Γ be a set constraint language. Suppose
that Γ contains all relations from EI , and also contains a

514



relation that is not from EI . Then there is a finite sublanguage
Γ′ of Γ such that CSP(Γ′) is NP-hard.

The proof of Theorem 21 uses the so-called universal-
algebraic approach to the complexity of CSPs, as presented
in [Bulatov et al., 2005] for finite domain constraint satis-
faction. This requires that we re-formulate set CSPs as con-
straint satisfaction problems for ω-categorical structures (see
e.g. [Bodirsky and Kára, 2009]).

Because of the space limits, we cannot present the proof of
Theorem 21 in this extended abstract. (We refer to the long
version of this paper [Bodirsky et al., 2011] for the proof.)

8 Concluding Remarks

We have introduced the powerful set constraint language of
EI set constraints, which in particular contains all Horn-Horn
set constraints and all previously studied tractable set con-
straint languages. Constraint satisfaction problems over EI
can be solved in polynomial – even quadratic – time. Our
tractability result is complemented by a complexity result
which shows that tractability of EI set constraints is best-
possible within a large class of set constraint languages.

Acknowledgement

Manuel Bodirsky has received funding from the ERC under
the European Community’s Seventh Framework Programme
(FP7/2007-2013 Grant Agreement no. 257039).

References

[Aiken, 1994] Alexander Aiken. Set constraints: Results, ap-
plications, and future directions. In PPCP, pages 326–335,
1994.

[Baader et al., 2005] Franz Baader, Sebastian Brandt, and
Carsten Lutz. Pushing the EL envelope. In IJCAI, pages
364–369, 2005.

[Barto and Kozik, 2009] L. Barto and M. Kozik. Constraint
satisfaction problems of bounded width. In Proceedings of
FOCS’09, 2009.

[Bodirsky and Kára, 2009] Manuel Bodirsky and Jan Kára.
The complexity of temporal constraint satisfaction prob-
lems. Journal of the ACM, 57(2), 2009.

[Bodirsky and Kutz, 2007] Manuel Bodirsky and Martin
Kutz. Determining the consistency of partial tree descrip-
tions. Artificial Intelligence, 171:185–196, 2007.

[Bodirsky et al., 2011] M. Bodirsky, M. Hils, and
A. Krimkevich. Tractable set constraints. Preprint,
arXiv:1104.1045v1 [cs.AI], 2011.

[Boole, 1847] G. Boole. An Investigation of the Laws of
Thought. Walton, London, 1847. Reprinted by Philisoph-
ical Library, New York, 1954.

[Broxvall et al., 2002] M. Broxvall, P. Jonsson, and J. Renz.
Disjunctions, independence, refinements. Artificial Intel-
ligence, 140(1/2):153–173, 2002.

[Bulatov and Dalmau, 2006] Andrei A. Bulatov and Vı́ctor
Dalmau. A simple algorithm for Mal’tsev constraints.
SIAM J. Comput., 36(1):16–27, 2006.

[Bulatov et al., 2005] Andrei Bulatov, Andrei Krokhin, and
Peter G. Jeavons. Classifying the complexity of con-
straints using finite algebras. SIAM Journal on Computing,
34:720–742, 2005.

[Bulatov, 2003] A. Bulatov. Tractable conservative con-
straint satisfaction problems. In Proceedings of LICS’03,
pages 321–330, 2003.

[Bulatov, 2006] Andrei Bulatov. A dichotomy theorem for
constraint satisfaction problems on a 3-element set. Jour-
nal of the ACM, 53(1):66–120, 2006.

[Cohen et al., 2000] David Cohen, Peter Jeavons, Peter Jon-
sson, and Manolis Koubarakis. Building tractable dis-
junctive constraints. Journal of the ACM, 47(5):826–853,
2000.

[Drakengren and Jonsson, 1998] Thomas Drakengren and
Peter Jonsson. Reasoning about set constraints applied to
tractable inference in intuitionistic logic. J. Log. Comput.,
8(6):855–875, 1998.

[Hodges, 1993] Wilfrid Hodges. Model theory. Cambridge
University Press, 1993.

[Idziak et al., 2007] Pawel M. Idziak, Petar Markovic,
Ralph McKenzie, Matthew Valeriote, and Ross Willard.
Tractability and learnability arising from algebras with few
subpowers. In Proceedings of LICS’07, pages 213–224,
2007.

[Jonsson and Bäckström, 1998] Peter Jonsson and Christer
Bäckström. A unifying approach to temporal constraint
reasoning. Artif. Intell., 102(1):143–155, 1998.

[Koubarakis, 2001] M. Koubarakis. Tractable disjunctions
of linear constraints: Basic results and applications to tem-
poral reasoning. Theoretical Computer Science, 266:311–
339, 2001.

[Krötzsch et al., 2006] Markus Krötzsch, Sebastian
Rudolph, and Pascal Hitzler. On the complexity of
Horn description logics. In OWLED, 2006.

[Kuncak and Rinard, 2007] Viktor Kuncak and Martin C. Ri-
nard. Towards efficient satisfiability checking for boolean
algebra with presburger arithmetic. In CADE, pages 215–
230, 2007.

[Kuncak et al., 2006] Viktor Kuncak, Huu Hai Nguyen, and
Martin C. Rinard. Deciding boolean algebra with pres-
burger arithmetic. J. Autom. Reasoning, 36(3):213–239,
2006.

[Küsters and Molitor, 2002] Ralf Küsters and Ralf Molitor.
Approximating most specific concepts in description log-
ics with existential restrictions. AI Commun., 15(1):47–59,
2002.

[Marriott and Odersky, 1996] Kim Marriott and Martin
Odersky. Negative boolean constraints. Theor. Comput.
Sci., 160(1&2):365–380, 1996.

[Schaefer, 1978] Thomas J. Schaefer. The complexity of sat-
isfiability problems. In Proceedings of the Symposium on
Theory of Computing (STOC), pages 216–226, 1978.

515




