
A Hybrid Recursive Multi-Way
Number Partitioning Algorithm

Richard E. Korf

Computer Science Department
University of California, Los Angeles

Los Angeles, CA 90095
korf@cs.ucla.edu

Abstract

The number partitioning problem is to divide a
given set of n positive integers into k subsets, so
that the sum of the numbers in each subset are
as nearly equal as possible. While effective algo-
rithms for two-way partitioning exist, multi-way
partitioning is much more challenging. We intro-
duce an improved algorithm for optimal multi-way
partitioning, by combining several existing algo-
rithms with some new extensions. We test our al-
gorithm for partitioning 31-bit integers from three
to ten ways, and demonstrate orders of magnitude
speedup over the previous state of the art.

1 Introduction and Applications

Given a multiset of positive integers, the number-partitioning
problem is to divide them into a set of mutually exclusive and
collectively exhaustive subsets so that the sum of the numbers
in each subset are as nearly equal as possible. For example,
given the integers {8,7,6,5,4}, if we divide them into the sub-
sets {8,7} and {6,5,4}, the sum of the numbers in each subset
is 15. This is optimal, and in fact a perfect partition. If the
sum of the numbers is not divisible by the number of subsets,
the subset sums in a perfect partition will differ by one. We
focus here on optimal solutions, but the algorithms we discuss
here are anytime algorithms, returning solutions immediately,
and finding better solutions as they continue to run.

Number partitioning is perhaps the simplest NP-complete
problem to describe. One application is multi-processor
scheduling [Garey and Johnson, 1979]. Given a set of jobs,
each with an associated completion time, and two or more
identical processors, assign each job to a processor to com-
plete all the jobs as soon as possible. Another application of
number partitioning is in voting manipulation [Walsh, 2009].

There are three natural objective functions for number par-
titioning: 1) minimizing the largest subset sum, 2) maximiz-
ing the smallest subset sum, and 3) minimizing the differ-
ence between the largest and smallest subset sums. For two-
way partitioning, all these objective functions are equivalent,
but for multi-way partitioning, no two of them are equivalent
[Korf, 2010]. We choose to minimize the largest subset sum,
which corresponds to minimizing the total time in a schedul-
ing application. An analogous set of algorithms can be used

to maximize the smallest subset sum, which is the objective
function for the voting manipulation application.

Minimizing the largest subset sum also allows our number-
partitioning algorithms to be directly applied to bin packing.
In bin packing, each of a set of numbers is assigned to a bin of
fixed capacity, so that the sum of the numbers in each bin do
not exceed the bin capacity, while minimizing the number of
bins used. In practice, heuristic approximations for bin pack-
ing, such as best-fit decreasing, use only a few more bins than
a simple lower bound, such as the sum of all numbers divided
by the bin capacity. Thus, an effective bin-packing strategy
is to allocate a fixed number of bins, and then to iteratively
reduce the number of bins until a solution is no longer possi-
ble, or a lower bound is reached. Our number-partitioning al-
gorithms are branch-and-bound algorithms that keep track of
the largest subset sum in the best solution found so far. Thus,
we could solve a bin-packing problem with a fixed number
of k bins by partitioning the numbers into k subsets with a
maximum subset sum equal to the bin capacity.

2 Prior Work

First we describe existing algorithms for number partitioning,
both to establish the state of the art, and because our new
algorithm incorporates most of them as components.

2.1 Complete Greedy Algorithm (CGA)

The greedy heuristic for this problem sorts the numbers in
decreasing order, and then assigns each number in turn to a
subset with the smallest sum so far. This heuristic can be ex-
tended to a Complete Greedy Algorithm (CGA) [Korf, 1998]
by sorting the numbers in decreasing order, and searching a
tree, where each level corresponds to a different number, and
each branch assigns that number to a different subset. To
avoid duplicate solutions that differ only by a permutation
of the subsets, a number is never assigned to more than one
empty subset. We keep track of the largest subset sum in the
current best solution, and if the assignment of a number to a
subset causes its sum to equal or exceed the current bound,
that assignment is pruned. If a perfect partition is found, or
one in which the largest subset sum equals the largest number,
the search returns it immediately. Without a perfect partition,
the asymptotic time complexity of CGA is only slightly better
than O(kn), but it has very low overhead per assignment.

591

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence



2.2 Karmarkar-Karp Heuristic (KK)

The Karmarkar-Karp [Karmarkar and Karp, 1982] (KK)
heuristic is a polynomial-time approximation algorithm for
this problem. It applies to any number of subsets, but is sim-
plest for two-way partitioning. It sorts the numbers in de-
creasing order, then replaces the two largest numbers in the
sorted order by their difference. This is equivalent to sepa-
rating them in different subsets. This is repeated until only
one number is left, which is the difference between the final
two subset sums. Adding the difference to the sum of all the
numbers, then dividing by two, yields the larger subset sum.

2.3 Complete-Karmarkar-Karp (CKK) Algorithm

The KK heuristic can be extended to a “Complete Karmarkar-
Karp” (CKK) algorithm [Korf, 1998]. We explain the two-
way version here, but it also applies to multi-way partitioning.
While the KK heuristic separates the two largest numbers in
different subsets, the only other option is to assign them to the
same subset, by replacing them by their sum. CKK searches
a binary tree where the left branch of a node replaces the two
largest numbers by their difference, and the right branch re-
places them by their sum. If the largest number equals or ex-
ceeds the sum of the remaining numbers, they are all placed in
a separate subset. The first solution found is the KK solution,
but CKK eventually finds and verifies an optimal solution.

2.4 Subset Sum Problem

The subset sum problem is to find a subset of a given set of
numbers whose sum is closest to a given target value. Two-
way partitioning is equivalent to a subset sum problem where
the target value is half the sum of all the numbers. We next
present two algorithms for the subset sum problem.

Horowitz and Sahni (HS)

The Horowitz and Sahni (HS) algorithm [Horowitz and
Sahni, 1974] divides the n numbers into two half sets of size
n/2, generates all possible subsets from each half, includ-
ing the empty set, and sorts them in increasing order of their
sums. Any subset of the original numbers must consist of a
subset from the first half plus a subset from the second half.

The algorithm maintains two pointers, one into each sorted
list of subset sums. The first pointer starts at the smallest sum
in the first list, and the second pointer starts at the largest sum
in the second list. It adds the two sums pointed to. If the sum
equals the target value, the search terminates. If the sum is
less than the target, the first pointer is incremented by one po-
sition. If the sum is greater than the target, the second pointer
is decremented by one position. The algorithm increments
the first pointer and decrements the second pointer, until the
target value is found, or either pointer exhausts its list, and
returns the subset sum closest to the target value.

The running time of HS is O(n2n/2), due to the time to
sort the lists of subsets. Its main drawback is the space to
store these lists, each of length 2n/2.

Schroeppel and Shamir (SS)

The Schroeppel and Shamir (SS) algorithm [Schroeppel and
Shamir, 1981] uses less memory than HS. HS accesses the

two lists of subset sums in sorted order. Rather than precom-
puting and sorting these lists, SS generates them in order.

To generate all subset sums from the first half list in or-
der, SS divides the list into two lists a and b, each of size n/4,
generates all subsets from each list, and sorts them in increas-
ing order of their sums. Then, a min heap is constructed of
pairs of subsets from a and b. Initially, the heap includes all
pairs of the form (a1, bj), with (a1, b1) on top. As each sub-
set from the combined list of a and b is needed, it is removed
from the top of the heap. This element (ai, bj) is replaced in
the heap with the pair (ai+1, bj). This generates all pairs of
subsets from a and b in increasing order of their total sum.

Similarly, all subsets from the second half list of numbers
are generated in decreasing order of their sum using a max
heap. We then use the HS scheme to generate the subset
whose sum is closest to the target value. The running time
of SS is O(n2n/2), and the memory required is O(2n/4),
making time the limiting resource. With three gigabytes of
memory, SS can solve problems of up to about 100 numbers,
including space to store the subsets and their sums. In addi-
tion to using less memory, SS often runs faster than HS.

2.5 Recursive Number Partitioning (RNP)

The previous best algorithm for multi-way partitioning is Re-
cursive Number Partitioning (RNP) [Korf, 2009]. RNP first
runs the KK heuristic to generate an initial solution. If k is
odd, it generates all first subsets that could be part of a k-way
partition better than the current best. For each, it optimally
partitions the remaining numbers k − 1 ways. If k is even,
it generates all possible two-way partitions of the numbers,
such that subpartitioning each subset k/2 ways could result
in a k-way partition better than the current best. It then opti-
mally partitions the first subset k/2 ways, and if the resulting
maximum subset sum is less than that of the current best so-
lution, it optimally partitions the second subset k/2 ways.

To generate the first subsets for odd k, or to partition the
numbers two ways for even k, RNP sorts the numbers in de-
creasing order, and then searches an inclusion-exclusion bi-
nary tree. Each level in the tree corresponds to a different
number, and at each node one branch includes the number in
the subset, and the other branch excludes it. Pruning is per-
formed to eliminate subsets whose sum would fall outside of
specified bounds, to be discussed below. For optimal two-
way partitioning, RNP uses the CKK algorithm.

3 Improved Recursive Number Partitioning

We now present our new algorithm, which we call Improved
Recursive Number Partitioning (IRNP). It takes a list of n
integers, and returns an optimal partition into k subsets. Like
RNP, IRNP is an anytime branch-and-bound algorithm that
first computes the KK approximation, then continues to find
better solutions until it finds and verifies an optimal solution.
If it finds a perfect partition, or one whose maximum subset
sum equals the largest number, it returns it immediately.

3.1 Greedy is Optimal for n ≤ k + 2

It is easy to show that if n ≤ k+2, the greedy heuristic returns
optimal solutions, and is used in these cases. For larger n,

592



there are instances where neither greedy nor KK are optimal.
A proof of this is available from the author upon request.

3.2 Partitioning Small Sets of Numbers

For optimal two-way partitioning for n ≥ 5, we use CKK
for n ≤ 16, and SS for n > 16. This is because CKK runs
in O(2n) time, and SS runs in O(n2n/2) time, but the con-
stant overhead of SS is much greater than for CKK. For parti-
tioning more than two ways, CKK is much less efficient than
CGA. Thus, for k > 2 and small values of n > k + 2, we
use CGA to compute optimal partitions. Table 1 shows the
largest values of n for which CKK (n = 2) or CGA (n > 2)
are faster than IRNP. They were determined experimentally.

k 2 3 4 5 6 7 8 9 10
n 16 12 14 16 19 21 25 27 31

Table 1: Largest n for Which CKK or CGA is Fastest

3.3 Recursive Principle of Optimality

For larger values of n, our algorithm relies on a principle of
optimality, which we define and prove here. First, we define
a decomposition of a partition as a two-way partition of the
subsets of the partition. For example, there are three different
decompositions of a three-way partition, one for each divi-
sion into one set vs. the other two sets. Similarly, there are
seven different decompositions of a four-way partition, four
of which decompose it into one set vs. the other three, and
three of which decompose it into two sets vs. two sets.

Given this definition, and an objective function that mini-
mizes the largest subset sum in a partition, we can state and
prove the following theorem: Given any optimal k-way parti-
tion, and any decomposition of that partition into k1 sets and
k2 sets such that k1 + k2 = k, then any optimal partition of
the numbers in the k1 sets into k1 sets, combined with any
optimal partition of the numbers in the k2 sets into k2 sets,
results in an optimal k-way partition.

The proof of this theorem is very simple. Given a collec-
tion of k1 subsets, optimally partitioning the numbers in those
subsets k1 ways can only leave their maximum subset sum the
same, or reduce it, but it cannot increase it. Thus, given an
optimal k-way partition, optimally partitioning the numbers
in the k1 subsets and the k2 subsets in k1 ways and k2 ways,
respectively, cannot increase the maximum subset sum. Thus,
the new k-way partition must also be optimal.

The value of this principle, for example, is that given any
two-way partition of all the numbers, we can compute the
best four-way partition that respects that two-way partition by
optimally subpartitioning each of the two subsets two ways.

This principle of optimality is also valid for the objective
function that maximizes the smallest subset sum, by a com-
pletely symmetric argument. It is not valid for the objective
function that minimizes the difference between the largest
and the smallest subset sum, however [Korf, 2010].

3.4 Generating all Subset Sums in a Given Range

For three-way partitioning of more than twelve numbers, like
RNP, IRNP generates all subsets that could be part of a par-
tition better than the current best, and for each it optimally

partitions the remaining numbers two ways. This requires
generating all subsets with sums in a given range, the bounds
of which will be described below. While RNP generates
these subsets by searching an inclusion-exclusion binary tree,
IRNP uses a new algorithm which is an extension of the SS
algorithm. This extension is necessary because SS only re-
turns a single subset whose sum is closest to a specified target
value. For simplicity, we first describe our extension to HS.

Extending Horowitz and Sahni (EHS)

HS maintains two pointers, a first pointer into the first list of
subsets and a second pointer into the second list. In our ex-
tended HS algorithm (EHS), we replace the second pointer
with two pointers into the second list, which we call low and
high. At any given time, low is the largest index such that
the sum of the subsets pointed to by first and low is less than
or equal to the lower bound. Similarly, high is the small-
est index such that the sum of the subsets pointed to by first
and high is greater than or equal to the upper bound. First is
incremented, and low and high are decremented to maintain
this invariant, thereby generating all subsets whose sums lie
within the lower and upper bounds.

Extending Schroeppel and Shamir (ESS)

Extending SS to generate all subsets whose sums are within
a given range is a little more complex. The top of the min
heap corresponds to the subset pointed to by the first pointer
in HS, and the top of the max heap corresponds to the subset
pointed to by the second pointer. To extend this to a range
of subsets, we explicitly store on a separate list those subsets
whose sums fall between those pointed to by the low and high
pointers in EHS. The first subset on this list corresponds to the
subset pointed to by the low pointer in EHS, and the last sub-
set corresponds to the subset pointed to by the high pointer in
EHS. At any given time, the subsets whose sums are within
the bounds are the subsets on this list, combined with the sub-
set at the top of the min heap. As we pop subsets off the
min heap, corresponding to incrementing the first pointer in
EHS, we add subsets with smaller sums to the list by popping
them off the max heap, corresponding to decrementing the
low pointer, and discard subsets from the list whose sums ex-
ceed the upper bound when combined with that on top of the
min heap, corresponding to decrementing the high pointer.
This list of subsets is implemented as a circular buffer with
pointers to the head and tail, corresponding to the low and
high pointers of EHS. This modification increases the space
needed by SS, but in all our experiments, a list of a hundred
thousand subsets was more than sufficient.

3.5 Tighter Bounds on Subset Sums

ESS generates all subsets whose sums are within specified
bounds. For simplicity we describe those bounds for three-
way partitioning, but they generalize in a straightforward way
to k-way partitioning. Let m be the maximum subset sum
in the current best solution, and let s be the sum of all the
numbers. Each subset sum must be less than m, and thus
m− 1 is an upper bound on all subsets. The first subset sum
must also be large enough that the remaining numbers can
be partitioned into two subsets with both sums less than m.
Thus, s− 2(m− 1) is a lower bound on the first subset.

593



We can tighten these bounds by eliminating duplicate par-
titions that differ only by a permutation of the subsets. In any
three-way partition, there must be at least one subset whose
sum is less than or equal to �n/3�. Thus, RNP uses a lower
bound of s− 2(m− 1), and an upper bound of �n/3� for the
first subset in a three-way partition.

IRNP tightens these bounds even further. In any three-way
partition there must be at least one subset sum greater than or
equal to �n/3�. IRNP uses a lower bound of �n/3� and an
upper bound of m− 1 on the first subset. For three-way par-
titioning, the difference between the lower and upper bounds
of IRNP is half that of RNP, leading to the generation of about
half as many first subsets as RNP.

3.6 Top-Level Decomposition

For even values of k and values of n greater than those in Ta-
ble 1, IRNP generates all two-way decompositions that could
lead to a k-way partition better than the current best. This is
done by using ESS to generate a subset with a lower bound of
�s/(k/2)� on its sum and an upper bound of (k/2)(m − 1),
and then optimally partitioning this subset and its comple-
ment k/2 ways. As a heuristic, the subset with fewer numbers
is partitioned first, and only if all its subset sums are less than
m is the subset with more numbers partitioned. RNP uses the
same top-level decomposition for even k, but a different set
of bounds, with the same difference between them.

For odd values of k, RNP generates all first subsets that
could lead to a better solution, and for each optimally parti-
tions the remaining numbers k − 1 ways. For example, for
five-way partitioning, RNP generates single subsets and then
optimally partitions the remaining numbers four ways. By
contrast, for odd k, IRNP decomposes the numbers into two
subsets, one of which is subpartitioned into �k/2� subsets,
and the other is subpartitioned into �k/2� subsets. For five-
way partitioning, for example, IRNP decomposes the num-
bers into a subset to be subpartitioned two ways, with its com-
plement to be subpartitioned three ways. The lower bound on
the sum of this first set is �k/2�(s/k), and the upper bound
is �k/2�(m − 1). While either strategy ultimately results in
k − 1 partitionings, the IRNP strategy is much more efficient
for odd values of k greater than three. Given a top-level de-
composition, it is usually more efficient to first subpartition
the subset with the fewest numbers, even if it is partitioned
more ways. Again, the larger subset is only partitioned if ev-
ery subset of the smaller subset has a sum less than m.

4 How IRNP Differs from RNP

While both IRNP and RNP use recursive decomposition,
there are significant differences between them. The first is
that RNP is purely recursive for k > 2, and uses CKK for all
optimal two-way partitions, while IRNP is a hybrid. For op-
timal two-way partitioning of small sets IRNP uses CKK, but
for larger sets it uses SS. For partitioning more than two ways,
IRNP uses CGA for small sets, and recursive decomposition
for large sets. The second is that RNP searches an inclusion-
exclusion tree to generate all subsets in a given range, while
IRNP uses our extension of SS (ESS) for this. Both algo-
rithms use the same top-level decomposition for even values

of k, but they differ significantly for odd k. In particular, RNP
generates first subsets and then recursively partitions the re-
maining numbers k − 1 ways, while IRNP divides the num-
bers into subsets which are subpartitioned �k/2� and �k/2�
ways. Finally, IRNP uses lower and upper bounds on the sub-
set sums with a smaller range than those of RNP for odd k.

Another difference is that RNP was originally imple-
mented to minimize the difference between the largest and
smallest subset sums, while IRNP minimizes the largest sub-
set sum. While our principle of optimality does not apply
to the former objective function [Korf, 2010], it was easy to
modify our RNP code to minimize the largest subset sum, al-
lowing the direct experimental comparisons described below.

5 Experimental Results

Our experimental results are shown in Tables 2 and 3, which
show three through six-way partitioning, and seven through
ten-way partitioning, respectively. These are the first pub-
lished results for optimal partitioning into more than five sets.

In each case, we compare IRNP to RNP. We originally
wrote separate RNP programs for three, four, and five-way
partitioning. In each case, we modified those programs to
minimize the largest subset sum. For partitioning more than
five ways, we implemented a general-purpose version of
RNP, minimizing the largest subset sum.

The first column (n) shows the number of numbers par-
titioned. For each value of k, we show in three successive
columns the running times for RNP, IRNP, and the ratio of
the two. Each running time is the average of 100 random
instances, and is displayed either as a decimal fraction of a
second, or as hours:minutes:seconds. The ratios are based on
the total running times for all 100 instances in microseconds.

In each case, we chose random numbers uniformly dis-
tributed from 0 to 231 − 1. This is the precision of the stan-
dard random number generator in the Linux C library, and is
equivalent to one second in over 68 years, in problems such
as multiprocessor scheduling. The precision of the numbers
only affects the performance of the algorithms when perfect
partitions exist, since once one is found, both algorithms re-
turn it immediately. For the values of n that we ran, this only
occurred with three and four-way partitioning.

For three-way partitioning, the running times of both algo-
rithms increase with n, and then decrease. This is due to the
presence of perfect partitions, near what is called the “phase
transition”. For n = 44, the hardest problems for RNP, IRNP
runs almost 900 times faster. This is due to the tighter bounds
discussed above, our ESS algorithm for generating first sub-
sets, and SS for two-way partitioning of more than 16 num-
bers. IRNP solved these problems in less than a second on
average. The increase in the running time of IRNP for prob-
lems larger than 48 is due to the fact that our implementation
was not optimized for problems with perfect partitions.

For four-way partitioning, the running time of IRNP in-
creases with n, reaching a peak at n = 51, again due to the
appearance of perfect partitions at the phase transition. The
ratio of the speed of IRNP to RNP increases monotonically,
and should continue to increase until n = 51. For n = 48,
IRNP is almost 300 times faster than RNP. This is due to ESS,

594



k Three Way Four Way Five Way Six Way
n RNP IRNP Ratio RNP IRNP Ratio RNP IRNP Ratio RNP IRNP Ratio
25 .015 .001 13 .017 .004 5 .117 .013 9 .227 .160 1
26 .027 .002 16 .029 .006 5 .210 .019 9 .381 .237 2
27 .049 .002 21 .050 .009 6 .418 .030 13 .616 .367 2
28 .087 .004 24 .086 .014 6 :01 .044 16 :01 .567 2
29 .158 .005 34 .148 .021 7 :01 .064 23 :02 :01 2
30 .279 .007 39 .278 .036 8 :03 .099 30 :04 :01 3
31 .500 .009 54 .474 .052 9 :05 .150 35 :06 :02 3
32 .939 .015 62 .831 .081 10 :11 .244 45 :12 :04 3
33 :02 .020 83 :02 .132 12 :22 .374 58 :20 :06 3
34 :03 .030 99 :03 .209 14 :43 .645 66 :38 :10 4
35 :06 .039 140 :05 .289 18 1:44 :01 97 1:07 :15 4
36 :10 .064 159 :09 .443 21 3:28 :02 124 2:23 :26 5
37 :19 .084 222 :17 .668 26 8:25 :03 178 3:55 :42 6
38 :35 .128 272 :32 .979 33 14:31 :04 202 7:34 1:10 7
39 1:03 .167 376 1:00 :01 42 40:06 :08 318 13:43 1:48 8
40 1:55 .259 445 1:52 :02 49 1:31:09 :12 465 26:23 3:10 8
41 3:00 .309 582 3:31 :04 59 2:45:37 :17 585 47:49 5:10 9
42 4:40 .428 655 6:29 :06 69 5:50:09 :30 695 1:30:26 8:27 11
43 6:23 .457 837 11:44 :08 91 :44 13:59
44 6:32 .440 888 22:20 :12 116 1:07 22:47
45 5:07 .410 748 42:18 :18 143 1:49 37:53
46 1:15 .246 304 1:20:10 :27 175 2:48
47 1:01 .304 199 2:32:19 :39 234 4:12
48 :48 .304 158 4:43:31 :57 299 7:07
49 :34 .395 85 1:10 10:56
50 :25 .372 68 1:27 18:20
51 :21 .630 33 1:42 27:46
52 :16 .642 25 1:27 42:06

Table 2: Average Time to Optimally Partition 31-bit Integers Three, Four, Five, and Six Ways

and SS for optimal two-way partitioning.
For five-way partitioning, we see a monotonic increase in

running time, since perfect partitions don’t appear in prob-
lems of this size. Here we see the effect of IRNP’s top-level
decomposition for odd k > 3, as well as its tighter bounds,
and the use of ESS. The effect of SS for two-way partition-
ing diminishes with increasing k, since a smaller percentage
of two-way partitions involve more than 16 numbers. For 42
numbers, IRNP is almost 700 times faster than RNP.

The smallest speedups we see are for six and eight-way
partitioning. We eventually see a monotonic increase in the
ratios, but the speedups are only one order of magnitude for
six-way partitioning, and a factor of seven for eight-way par-
titioning. The reason is that in neither case does our new
top-level decomposition come into play, nor is there much ef-
fect from SS, since most of the two-way subproblems have
less than 17 numbers. Thus, most of the improvement is due
to ESS, and the tighter bounds on the three-way subproblems
generated by six-way partitioning. The observed speedups
are limited by the time to run RNP on larger problems.

Table 3 shows an effect we don’t see in Table 2. The
speedup ratios start high, and then decrease, before increasing
again. This is due to the use of CGA for partitioning small
sets. For values of n above the horizontal lines, IRNP just
calls CGA. The enormous speedup ratios shown, over eight

million for ten-way partitioning of 21 values for example, in-
dicate that CGA is dramatically more efficient than RNP for
these problems. As shown in [Korf, 2009], however, CGA is
many orders of magnitude slower than RNP for large values
of n. CGA has a higher asymptotic complexity than RNP, but
much lower constant factor overhead. This is the reason that
the ratios initially decrease with increasing n. For seven and
eight-way partitioning, we see these ratios eventually bottom
out, and then increase almost monotonically with increasing
n. For seven-way partitioning of 32 numbers, for example,
IRNP is over 900 times faster than RNP. We see a similar pat-
tern for nine-way partitioning and would expect it for ten-way
partitioning as well.

6 Conclusions and Further Work

We presented an improved algorithm (IRNP) for multi-way
number partitioning. It’s an anytime algorithm that returns an
approximate solution immediately, and continues to find bet-
ter solutions until it finds and verifies an optimal solution. It
uses several existing algorithms, including KK, CKK, CGA,
and SS. It also uses a new algorithm (ESS) we developed
which extends the SS algorithm to return all subsets within
a specified set of bounds. We stated and proved a general
principle of optimality upon which IRNP is based. IRNP out-
performs RNP, the previous best algorithm for this problem,

595



n Seven Way Eight Way Nine Way Ten Way
RNP IRNP Ratio RNP IRNP Ratio RNP IRNP Ratio RNP IRNP Ratio

20 :05 .005 969 :02 .001 2232 :59 .000 2957701 :57 .000 5675522
21 :06 .012 472 :03 .007 401 2:30 .001 283296 1:27 .000 8737230
22 :10 .038 253 :07 .020 356 6:20 .005 76928 6:25 .001 653132
23 :05 .062 76 :06 .068 88 12:11 .076 9562 9:50 .011 53964
24 :08 .131 61 :10 .339 39 25:27 .206 7425 23:18 .041 34199
25 :23 .235 97 :10 .937 10 50:32 .438 6928 32:51 .061 32478
26 :54 .435 123 :14 :02 7 55:01 :01 2387 :01
27 1:45 .791 132 :12 :04 3 41:31 :05 507 :02
28 4:12 :01 186 :23 :09 2 1:00:32 :11 332 :08
29 10:07 :03 232 :34 :21 2 3:27:13 :46 272 :28
30 22:25 :04 356 1:08 :37 2 5:50:21 :59 357 1:10
31 34:06 :06 346 1:42 :48 2 1:43 11:33
32 2:26:43 :09 941 3:38 1:16 3 7:01 15:17
33 :16 6:05 2:07 3 7:13 40:07
34 :36 11:59 3:13 4 10:53 1:07:59
35 :42 21:54 5:15 4 15:18 1:53:57
36 1:14 44:48 8:24 5 25:29
37 1:56 1:26:27 13:40 6 38:18
38 3:24 2:59:12 24:49 7 1:16:30
39 5:11 42:36 2:03:13
40 8:59 1:20:43

Table 3: Average Time to Optimally Partition 31-bit Integers Seven, Eight, Nine, and Ten Ways

by orders of magnitude in practice. For three-way partition-
ing of 31-bit numbers, IRNP solves the hardest problem in-
stances in less than a second on average. For four-way par-
titioning of 31-bit integers, it solves the hardest instances in
less than two minutes on average. We have proven that for
n ≤ k+2, the greedy heuristic returns optimal solutions. We
also presented the first data on optimally partitioning num-
bers more than five ways. One of the surprising results of this
work is that for partitioning 31-bit integers into more than
ten subsets, for problem sizes that can be solved optimally
in reasonable time on current machines, the simplest optimal
algorithm, CGA, may also be the fastest.

The precision of the numbers affects the existence of per-
fect partitions. For a given number of subsets, decreasing the
precision increases the density of perfect partitions, making
such problems easier to solve. In the absence of perfect par-
titions, however, the performance of all these algorithms is
unaffected by the precision. Without perfect partitions, the
speedup of IRNP compared to RNP appears to increase with-
out bound, with the observed speedups limited only by the
time available to run RNP on larger problems.

We also pointed out a connection between number parti-
tioning and bin packing. In particular, any branch-and-bound
algorithm for number partitioning that minimizes the largest
subset sum can be directly applied to bin packing. In future
work, we plan to study whether our number-partitioning al-
gorithms can also improve the state of the art for bin packing.

Acknowledgments

This work was supported by NSF grant IIS-0713178. Thanks
to Satish Gupta and IBM for the computer the experiments
were run on, and thanks to Eli Gafni for suggesting a shorter

proof that greedy is optimal for n ≤ k + 2.

References

[Garey and Johnson, 1979] Garey, M. R., and Johnson, D. S.
1979. Computers and Intractability: A Guide to the The-
ory of NP-Completeness. New York, NY: W. H. Freeman.

[Horowitz and Sahni, 1974] Horowitz, E., and Sahni, S.
1974. Computing partitions with applications to the knap-
sack problem. Journal of the ACM. 21(2):277–292.

[Karmarkar and Karp, 1982] Karmarkar, N., and Karp,
R. M. 1982. The differencing method of set partition-
ing. Technical Report UCB/CSD 82/113, Computer Sci-
ence Division, University of California, Berkeley.

[Korf, 1998] Korf, R. E. 1998. A complete anytime al-
gorithm for number partitioning. Artificial Intelligence
106(2):181–203.

[Korf, 2009] Korf, R. E. 2009. Multi-way number partition-
ing. In Proceedings of IJCAI-09, 538–543.

[Korf, 2010] Korf, R. E. 2010. Objective functions for multi-
way number partitioning. In Proceedings of the Sympo-
sium on Combinatorial Search (SOCS-10).

[Schroeppel and Shamir, 1981] Schroeppel, R., and Shamir,
A. 1981. A T = O(2n/2), S = O(2n/4) algorithm for cer-
tain NP-complete problems. SIAM Journal of Computing
10(3):456–464.

[Walsh, 2009] Walsh, T. 2009. Where are the really hard ma-
nipulation problems? The phase transition in manipulating
the veto rule. In Proceedings of IJCAI-09, 324–329.

596




