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Abstract

Consider random hypergraphs on n vertices, where
each k-element subset of vertices is selected with
probability p independently and randomly as a hy-
peredge. By sparse we mean that the total number
of hyperedges is O(n) or O(n lnn). When k = 2,
these are exactly the classical Erdös-Rényi random
graphs G(n, p). We prove that with high proba-
bility, hinge width on these sparse random hyper-
graphs can grow linearly with the expected num-
ber of hyperedges. Some random constraint sat-
isfaction problems such as Model RB and Model
RD have satisfiability thresholds on these sparse
constraint hypergraphs, thus the large hinge width
results provide some theoretical evidence for ran-
dom instances around satisfiability thresholds to be
hard for a standard hinge-decomposition based al-
gorithm. We also conduct experiments on these
and other kinds of random graphs with several hun-
dreds vertices, including regular random graphs
and power law random graphs. The experimental
results also show that hinge width can grow linearly
with the number of edges on these different random
graphs. These results may be of further interests.

1 Introduction

Constraint Satisfaction Problems (CSPs) cover many impor-
tant NP-hard problems in AI research. In the past, there are
two fruitful lines of research on CSPs. One is about struc-
tural decomposition; another is about random CSPs. The start
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point of structural decomposition is to identify tractable sub-
classes of CSPs. The main results are in this form: CSPs
with constraint hypergraphs of bounded structural width are
tractable. In particular, all known structural decomposition

based solvers run in time ||I||O(w), where ||I|| is input size
and w is a structural width such as the size of minimum
loop-cutset, hinge width, tree-width, query width, (fractional)
hypertree width, spread-cut, etc. A plethora of structural
decomposition methods have been developed and compared
with each other [Gottlob et al., 2000; Cohen et al., 2008;
Greco and Scarcello, 2010]. For a recent survey, see [Dechter,
2006]. On the other hand, the start point of random CSPs is
to identify hard instances to serve as benchmarks, such as
random instances around the satisfiability threshold of ran-
dom CSPs [Cheeseman et al., 1991; Mitchell et al., 1992;
Selman et al., 1996; Cook and Mitchell, 1997; Xu and Li,
2000; Gao and Culberson, 2007; Xu et al., 2007]. The main
results are in this form: there is an easy-hard-easy transition
around the satisfiability threshold of random CSPs, and the
hardest instances are around the satisfiability thresholds. For
a recent survey, see [Gomes and Walsh, 2006].

However, a rigorous link between phase transition and
hardness of random instances is still unestablished. By rig-
orous link we mean that no polynomial time solver can exist
at the satisfiability thresholds. This is still out of our cur-
rent proof techniques. Instead, we might show some theo-
retical evidence for random instances around the satisfiability
thresholds to be hard for some specific solvers. For exam-
ple, in most structural decomposition methods, after finding a
decomposition of the given CSP instance, the join operation
is performed on constraint relations contained in each node
of the decomposition, to formulate a new solution-equivalent
tree-like CSP instance. Each decomposition of a CSP in-
stance of large (i.e. unbounded) width contains a node with
a large number of variables. Performing a join on all the
variables in such a node is typically of high computational
cost. Therefore, a large structural width around the satisfi-
ability threshold can provide some theoretical evidence for
these random instances to be hard for that kind of structural
decomposition based algorithm.

The most popular structural width is tree-width, see e.g.
[Kloks, 1994]. Gao is the first to study tree-width on ran-
dom hypergraphs from considerations of Constraint Satisfac-
tion and Bayesian Networks [Gao, 2003]. For other structural
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width related to CSPs, very little is known on random hyper-
graphs. In this paper, we show a large hinge width on sparse
random hypergraphs. Hinge decomposition was introduced
by [Gyssens and Paredaens, 1984; Gyssens et al., 1994] and
was further investigated by e.g. [Gottlob et al., 2000; 2001;
Cohen et al., 2008; Greco and Scarcello, 2010]. The stan-
dard hinge decomposition based algorithm also has a stage of
hinge decomposition and a stage of join operation. Compared
with tree-width, hinge width has two characters. First, hinge
width and tree-width are incomparable, in the sense that there
exists family of hypergraphs with bounded tree-width and un-
bounded hinge width, and vice versa [Gottlob et al., 2000].
Second, hinge width is efficiently computable [Gyssens et al.,
1994], while tree-width is not.

We show that for random hypergraphs on n vertices, where
each k-element subset of vertices is selected with probability
p independently and randomly to be a hyperedge, when the
total number of edges is O(n) or O(n lnn), the hinge width
can grow linearly with or even asymptotically equal to the
number of hyperedges. In particular, for every fixed positive
integer k ≥ 2, when p = O

(
1

nk−1

)
and the expected number

of edges m = O(n), the hinge width is Ω(m), when p =
O

(
lnn
nk−1

)
, the hinge width is m−O(m).

Some random CSPs have satisfiability thresholds on sparse
random constraint hypergraphs. Two concrete examples are
Model RB and Model RD [Xu and Li, 2000]. Benchmarks
based on Model RB and Model RD have been successfully
applied in CSP solver competitions since the year 2005, and
in many research papers on algorithms. The large hinge width
results provide further theoretical evidence on hardness of
Model RB and Model RD, besides the known results in [Xu
and Li, 2006; Xu et al., 2007].

We also conduct experiments on these and other kinds of
random graphs with several hundreds vertices, including reg-
ular random graphs and power law random graphs. The ex-
perimental results show that hinge width can also grow lin-
early with the expected number of hyperedges on these dif-
ferent random graphs and match well with our asymptotic
analysis on classical sparse random hypergraphs. These re-
sults may be of further interests such as in recent practice
[Ansótegui et al., 2007; 2008].

2 CSPs and Random Hypergraphs

A CSP instance is a triple (V ,D, C), where

• V = {v1, . . . , vn} is a set of n variables;

• D is a finite set of values called domain, whose size |D|
can be either fixed or increasing with n;

• C is a set of constraints, and each constraint Ci is a pair
(Si, Ri), where

– Si is a k-tuple of variables, called constraint scope;

– Ri is a subset of Dk , called constraint relation.

A constraint Ci = (Si, Ri) is satisfied if the k-tuple of values
assigned to variables in Si is contained in Ri. A solution to
a CSP instance is an assignment of values to all the variables
that satisfies all constraints. The constraint hypergraph of a
CSP instance is a hypergraph with variables as vertices and

constraint scopes as hyperedges. For more on CSPs, see e.g.
[Dechter, 2003; Lecoutre, 2009].

The constraint hypergraphs of random CSPs are random
hypergraphs. For any fixed k, we use G(n, p, k) to denote
the probability space of k-uniform random hypergraphs, in
which on n vertices, each k-element subset of vertices is se-
lected with probability p independently at random as a hy-
peredge. When the total number of hyperedges is O(n) or
O(n lnn), they are called sparse. G(n, p, 2) is exactly the
Classical Erdös-Rényi random graph model G(n, p) [Janson
et al., 2000]. We say events Qn occur with high proba-
bility (w.h.p.), if limn→∞ Pr (Qn) = 1, usually written as

Pr
(Qn

)
= o(1). We will need the following two lemmas.

Definition 1 Let G be a hypergraph with vertex set V (G)
and edge set E(G), then a (χ, s)-separator of G is a partition
(S,A,B) of V (G), such that

• |S| ≤ χs and |A|, |B| ≥ s;

• there is no edge connecting A and B.

Lemma 1 Let G ∈ G(n, p = c
nk−1 , k). If ε > 0, εn is

unbounded, χ > 0, s = tn, 0 < t ≤ 1
χ+2 , t may change with

n, and c > k!(χt(1−ln(χt))+(ln 2)(1−χt)+ε)
kt−(1+χ)ktk−k2t2

> 0, then with high

probability, no (χ, s)-separator of G exists.

Proof Under the given parameters, if there is a (χ, s)-
separator with |S| < χs, then we can move some vertices
from A or B to S, such that S = χs and the resulting par-
tition is still a (χ, s)-separator. Thus we only need to show
that with high probability, there is no (χ, s)-separator with
|S| = χs. Denote by P the set of all such separators.

Consider a partition W = (S,A,B) with |S| = χs and
|A| = a ≥ s. Every edge not connecting A and B is con-
tained in A∪S or B∪S. By inclusion-exclusion principle, the
number of such edges is

(
a+χs

k

)
+

(
n−a
k

)− (
χs
k

)
. Let λ(a) =(

n
k

) − (
a+χs

k

) − (
n−a
k

)
+

(
χs
k

)
be the number of edges con-

necting A and B, then Pr(W ∈ P) = (1 − p)λ(a). By union

bound, Pr(P �= ∅) ≤ 2
(
n
χs

)∑(n−χs)/2
a=s

(
n−χs

a

)
(1− p)λ(a).

Claim 1 λ(a) ≥ sknk−1
−k2s2nk−2

−(χ+1)ksk

k! for large n.

Proof Recall that nk = n(n − 1) · · · (n − k + 1). Ap-
proximating by the first two terms in expansion of nk,

we have
(
n
k

)
= nk

k! ≥ nk
−(

∑k−1

j=0
j)nk−1

k! =
nk

−(k2)n
k−1

k! .

Similarly by the first three terms of (n − a)k, we have(
n−a
k

)
= (n−a)k

k! ≤ nk
−(

∑a+k−1

j=a j)nk−1+(k2)a
2nk−2

k! ≤
nk

−(ak+(k2))n
k−1+k2a2nk−2

k! . Also
(
a+χs

k

)
= (a+χs)k

k! ≤
(a+χs)k

k! . So λ(a) ≥ aknk−1
−k2a2nk−2

−(χs+a)k

k! . For a ≥ s
and for large n, the minimum is achieved at a = s. �

Now we have
(
n
χs

) ≤
(

en
χs

)χs

which is enχt(1−ln(χt)),

2
∑(n−χs)/2

a=s

(
n−χs

a

) ≤ ∑(n−χs)
a=0

(
n−χs

a

)
= 2n−χs

which is en(ln 2)(1−χt), and (1 − p)λ(a) ≤ e−pλ(a) ≤
e−n c

k!
(kt−(1+χ)ktk−k2t2). All together, Pr(P �= ∅) ≤

en(χt(1−ln(χt))+(ln 2)(1−χt)− c
k!

(kt−(1+χ)ktk−k2t2)) ≤
e−εn = o(1). �
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Definition 2 For hypergraph G and U ⊆ V (G), we define

edges(U) = {e ∈ E(G)|e ∩ U �= ∅}.
The following lemma gives a lower bound on |edges(U)|

in terms of a lower bound on |U |. The use of Chernoff
Bound (see i.e. [Mitzenmacher and Upfal, 2005; Janson et
al., 2000]) is not necessary, but for sharp parameters.

Lemma 2 Let G ∈ G(n, p = c
nk−1 , k) and the expected

number of edges of G is m =
(
n
k

)
c

nk−1 = O(n). For any

U ⊆ V (G), if |U | ≥ n− τn, 0 < τ < 1, δ > 0, ε > 0, ετn

is unbounded and c > (1−ln τ+ε)kk

τk−1ek((1+δ) ln(1+δ)−δ)
, then w.h.p.,

|edges(U)| ≥ m(1− n−
1
3 )− (1 + δ)( τek )kcn.

Proof Let S = {S ⊆ V (G)||S| = τn}. Let XS be the
number of edges in subgraph induced by S.

Claim 2 W.h.p. for all S ∈ S, XS ≤ (1 + δ)
(
τe
k

)k
cn.

Proof The expectation of XS is E(XS) =
(
τn
k

)
p ≤(

τne
k

)k c
nk−1 =

(
τe
k

)k
cn. By the Chernoff bound, we have

Pr
(
XS > (1 + δ)

(
τe
k

)k
cn

)
<

(
eδ

(1+δ)1+δ

)( τe
k )

k
cn

. By

the union bound, Pr
(
∃S ∈ S, XS > (1 + δ)

(
τe
k

)k
cn

)
≤

(
n
τn

) (
eδ

(1+δ)1+δ

)( τe
k )

k
cn

≤ (
en
τn

)τn (
eδ

(1+δ)1+δ

)( τe
k )

k
cn

=

e

(
ln e

τ
+c τk−1ek

kk (δ−(1+δ) ln(1+δ))
)
τn

= e−ετn = o(1). �

Claim 3 |E(G)| ≥ m(1− n−
1
3 ) with high probability.

Proof Pr(|E(G)| < m(1 − n−
1
3 )) ≤ e−n−

2
3 m

2 =

e−O(n
1
3 ) = o(1) by Chernoff bound. �

By these claims and Definition 2, w.h.p., edges(U) ≥
|E(G)| −XS ≥ m(1− n−

1
3 )− (1 + δ)( τek )kcn. �

3 Hinge Width

Definition 3 [Gyssens et al., 1994; Gottlob et al., 2000] Let
G be a hypergraph, H ⊆ E(G), and F ⊆ E(G) −H .

⋃
H

is the set of all vertices in edges in H . Then F is called
connected with respect to (w.r.t.) H if, for any two edges,
e, f ∈ F , there is a sequence of edges e1, . . . , em, such that:

• e1 = e;

• ei ∩ ei+1 �⊆ ⋃
H , for i = 1, . . . ,m− 1;

• em = f .

The maximal connected subsets of E(G) − H w.r.t. H is
called connected component of E(G)−H w.r.t. H .

Definition 4 [Gyssens et al., 1994; Gottlob et al., 2000] Let
G be a hypergraph, and let H be either E(G) or a subset
of E(G) containing at least two edges. Let H1, . . . , Hm be
the connected components of E(G) − H w.r.t. H . Then H
is called a hinge if, for i = 1, . . . ,m, there exists an edge
hi ∈ H such that

(
⋃

H) ∩ (
⋃

Hi) ⊆ hi.

Definition 5 [Gyssens et al., 1994; Gottlob et al., 2000] A
hinge decomposition of hypergraph G is a tree T = (N,A),
with nodes N and labeled arcs A, such that

1. the tree nodes are minimal hinges of G;

2. each edge in E(G) is contained in at least one tree node;

3. two adjacent tree nodes share precisely one edge which
is the label of the arc connecting the two nodes; more-
over, their shared variables are precisely the members of
this edges;

4. the vertices of G shared by two tree nodes are entirely
contained in each tree node on their connecting path.

It was shown in [Gyssens et al., 1994] that the cardinality
of the largest node in any hinge decomposition of G is an
invariant of G, which is the cardinality of the largest minimal
hinge. We call it hinge width of G, and denote it by hw(G).

The following Algorithm 1 is from [Gyssens et al., 1994].

Input: A hypergraph G = (V,E)
Output: A hinge decomposition T for G

1: Mark each edge in E as unused. Set i = 0, N0 = {E}
and A0 = ∅, and mark the node in N0 as non-minimal.

2: If all nodes of Ni are marked minimal, then set T =
(Ni, Ai) and stop. Else choose a non-minimal node F
in Ni.

3: If all edges in F are marked as used, then mark F as
minimal and goto 2. Else, choose an unused edge e ∈ F
and mark e as used.

4: Let Γ = {D ∪ {e}|D is a connected component of F −
e with respect to e} and γ : F → Γ be any function such
that for all f ∈ F , f ∈ γ(f). If |Γ| = 1, then goto 3.

5: Set
Ni+1 = (Ni − {F}) ∪ Γ

Ai+1 = (Ai − {({F, F ′}, f) | ({F, F ′}, f) ∈ Ai)})
∪ {({γ(f), F ′}, f) | ({F, F ′}, f) ∈ Ai}
∪ {({γ(f), γ(e)}, e) |f ∈ F, γ(f) �= γ(e)}

and mark all nodes newly added to Ni+1 as non-minimal.
6: Increment i and goto 2.

Algorithm 1: Computing a hinge decomposition

4 Asymptotic Analysis

A complete run from steps 2 to 6 in Algorithm 1 is called a

round. For all round i, assume that Ni = {H(i)
1 , . . . , H

(i)
pi }.

Let H
(i)
max be the hinge in Ni with the maximum number of

vertices |⋃H
(i)
max|. Suppose that Algorithm 1 stops when

i = I . Then |H(I)
max| is a lower bound of hw(G).

Definition 6 When step 5 is running, the edge e in steps 3 to
5 is called a separating edge [Gyssens et al., 1994]. Denote

by ∂(H
(i)
j ) the set of all separating edges in H

(i)
j .
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Proposition 1 For all i and j, there is no edge in G connect-

ing V (G)−⋃
H

(i)
j and

⋃
H

(i)
j −⋃

∂(H
(i)
j ).

Proof By steps 4 and 5 in Algorithm 1, except possibly by a
separating edge, there is no other edge connecting vertices in⋃

H
(i)
j1

and vertices in
⋃
H

(i)
j2

for j1 �= j2. �

To lower bound |H(I)
max|, let U =

⋃
H

(I)
max −⋃

∂(H
(I)
max).

By Definition 2 and Proposition 1, edges(U) ⊆ H
(I)
max. Thus

hw(G) ≥ |H(I)
max| ≥ |edges(U)|. Below we will first get an

upper bound on I and a lower bound on |U | (Lemma 6), and
then by Lemma 2 get a lower bound on |edges(U)|.
Lemma 3 For all i, |⋃H

(i)
max| ≤ n− i.

Proof For all i, we have the following three claims.

Claim 4 For all j, |⋃H
(i)
j | ≥ k + 1.

Proof By Definition 4 about hinge, |H(i)
j | ≥ 2. Two differ-

ent k-uniform hyperedges have at least k + 1 vertices. �

Claim 5
∑pi

j=1 |
⋃

H
(i)
j | ≤ n+ (pi − 1)k.

Proof Recall that (Ni, Ai) is a tree with pi hinge nodes and
pi − 1 tree edges. By step 5 in Algorithm 1, every tree edge
is labeled by a separating edge, and every pair of hinge nodes
connected by a tree edge shares the separating edge. So in the

sum
∑pi

j=1 |
⋃
H

(i)
j |, separating edges are totally recounted

by pi−1 times and each separating edge has k vertices. �

Claim 6 pi ≥ i+ 1.

Proof By induction. When i = 0, N0 = {E}, so p0 = 1. In
each round, at step 5 in Algorithm 1, an old hinge is split into
at least two new hinges, so pi+1 ≥ pi + 1. �

Now by Claim 5,
∑pi

j=1 |
⋃
H

(i)
j | ≤ n + (pi − 1)k. By

Claim 4,
∑pi

j=2 |
⋃
H

(i)
j | ≥ (pi − 1)(k + 1). By Claim 6,

pi ≥ i + 1. Without lose of generality, we may assume that

H
(i)
max = H

(i)
1 , so |⋃H

(i)
max| = |⋃H

(i)
1 | ≤ n+ (pi − 1)k−

(pi − 1)(k + 1) = n− pi + 1 ≤ n− i. �

Lemma 4 For all i and s, if (k + 1)s ≤ |⋃H
(i)
max| ≤ n− s

and i ≤ s, then there is a (k, s)− separator in G.

Proof Let S =
⋃
∂(H

(i)
max), A =

⋃
H

(i)
max \ S, and B =

V (G) \ ⋃
H

(i)
max. Clearly, (S,A,B) is a partition of V (G).

Below we show that (S,A,B) is a (k, s)-separator of G.

Claim 7 For all i, |∂(H(i)
max)| ≤ |⋃pi

j=1 ∂(H
(i)
j )| = i.

Proof At each round, exactly one new separating edge e is

added to
⋃pi

j=1 ∂(H
(i)
j ) at steps 3 to 5 in Algorithm 1. �

Now by Claim 7 and i ≤ s, |∂H(i)
max| ≤ i ≤ s. Each

hyperedge in ∂H
(i)
max has k vertices, so |S| ≤ ks. By

|⋃H
(i)
max| ≥ (k + 1)s, |A| ≥ (k + 1)s − ks = s. By

|⋃H
(i)
max| ≤ n− s, |B| ≥ n− (n− s) = s. By Proposition

1, no edge connects A and B. �

Lemma 5 For all i and s, if |⋃H
(i)
max| < (k + 1)s < n and

i ≤ s < n
2k+3 , then there is a (k, s)− separator in G.

Proof Since |⋃pi

j=1(
⋃

H
(i)
j )| = |V (G)| = n, there is a j0

such that (k + 1)s ≤ |⋃j0
j=1(

⋃
H

(i)
j )|. Since s < n

2k+3 ,

n−s > 2(k+1)s. By |⋃H
(i)
max| < (k+1)s, we can assume

that |⋃j0
j=1(

⋃
H

(i)
j )| ≤ n − s. Let S =

⋃j0
j=1(

⋃
∂(H

(i)
j )),

A =
⋃j0

j=1(
⋃

H
(i)
j ) \ S, and B = V (G) \ ⋃j0

j=1(
⋃

H
(i)
j ).

The remaining part is similar to the proof of Lemma 4. �

Lemma 6 Let G ∈ G(n, p = c
nk−1 , k). For any s = tn and

0 < t < 1
2k+3 , if c satisfies the conditions in Lemma 1, then

I < s and |U | > n− (k + 1)s with high probability.

Proof By following three claims.

Claim 8 For all i ≤ s, |⋃H
(i)
max| > n− s with high proba-

bility.

Proof Otherwise by Lemma 4 and Lemma 5, with non-
vanishing probability there is a (k, s)-separator of G, con-
tradiction to Lemma 1. �

Claim 9 I < s with high probability.

Proof By Claim 8, |⋃H
(s)
max| > n − s. If I ≥ s, then by

Lemma 3, |⋃H
(s)
max| ≤ n− s, a contradiction. �

Claim 10 |U | > n− (k + 1)s with high probability.

Proof By Claim 9 and Claim 8, |⋃H
(I)
max| > n − s. By

Claim 7 and Claim 9, |∂(H(I)
max)| ≤ I < s. Each edge

in G has k vertices, so |⋃ ∂(H
(I)
max)| < ks. Thus, |U | =

|⋃H
(I)
max| − |⋃ ∂(H

(I)
max)| > n− (k + 1)s. �

This finishes the proof of Lemma 6. �

Theorem 1 Let G ∈ G(n, p = c
nk−1 , k) and the expected

number of edges of G is m =
(
n
k

)
c

nk−1 = O(n). If

s = tn, 0 < t ≤ 1
2k+3 , ε > 0, εtn is unbounded,

δ > 0, c > k!(kt(1−ln(kt))+(ln 2)(1−kt)+ε)
kt−(1+k)ktk−k2t2

> 0 and c >

(1−ln((k+1)t)+ε)kk

[(k+1)t]k−1ek[(1+δ) ln(1+δ)−δ] , then w.h.p., hw(G) = Ω(m).

Proof Set τ = (k + 1)t, we can easily check that the param-
eters satisfy conditions in Lemma 6 and Lemma 2. Thus by
discussions at the beginning of this section, with high proba-

bility hw(G) ≥ |H(I)
max| ≥ |edges(U)| = Ω(m). �

Theorem 2 Let G ∈ G(n, p = b lnn
nk−1 , k) and the expected

number of edges of G is m =
(
n
k

)
b lnn
nk−1 = O(n lnn). For any

b > 0, hw(G) = m− o(m) with high probability.

Proof Similar to proof of Theorem 1. First, let s = tn,

t =
(

(ln 2)(k−1)!
b + ε

)
1

lnn for any constant ε > 0, then all

conditions in Lemma 6 are satisfied. Next, let c = b lnn,

τ = (k + 1)t = d
lnn where d = (k + 1)

(
(ln 2)(k−1)!

b + ε
)

,

and δ = (lnn)k−1, then all conditions in Lemma 2 are satis-

fied. Finally, |edges(U)| ≥ m(1−n−
1
3 )−(1+δ)( τek )kcn =

m(1− n−
1
3 )− 1+(lnn)k−1

(lnn)k (dek )kcn = m− o(m). �
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5 Model RB and Model RD

Two concrete random CSPs to apply Theorem 2 are Model
RB and Model RD [Xu and Li, 2000]. Model RB is like this:

• given n variables each with domain {1, 2, ..., d}, where
d = nα and α > 0 is constant;

• select with repetition m = rn lnn random constraint
scopes, for each scope select without repetition k of n
variables, where k ≥ 2 is an integer constant;

• select uniformly at random without repetition (1− p)dk

compatible assignments for each constraint, where 0 <
p < 1 is constant.

In Model RD, in the last step above, each assignment for the
k variables is selected with probability 1 − p as compatible
independently. Model RB and Model RD have satisfiability
thresholds rcr = − α

ln(1−p)
[Xu and Li, 2000]. A large hinge

width result will provide further theoretical evidence on hard-
ness of Model RB and Model RD, besides the known results
in [Xu and Li, 2006; Xu et al., 2007].

Clearly Model RB and Model RD have the same space of
random constraint hypergraphs, with constraint scopes as hy-
peredges. Let GRB(n, r, k) denote the probability space of
these random constraint hypergraphs. We show an asymp-
totic equivalence between GRB(n, r, k) and G(n, p, k) for

p = rn lnn/
(
n
k

)
= O(lnn)/nk−1, so that Theorem 2 can

be applied to Model RB and Mode RD. We use the Ball and
Bin model [Mitzenmacher and Upfal, 2005]. Suppose that
we put a balls independently and uniformly at random into
b bins. Then the joint distribution of the number of balls in
each bin is referred to as in the exact case. In another case
called the Poisson case, the number of balls in each bin is
independent and has Poisson distribution with mean a/b.

Lemma 7 [Mitzenmacher and Upfal, 2005] Any event oc-
curring with probability p in Poisson case occurs with prob-
ability at most pe

√
a in exact case.

Lemma 8 Let Qn be an arbitrary graph property, r >
0 and p = rn lnn/

(
n
k

)
. Then PrGRB(n,r,k) (Qn) ≤

e
√
rn lnnPrG(n,p,k) (Qn).

Proof Treating edges as balls and all k-element subsets of
vertices as bins, then GRB(n, r, k) is no more than the exact

case where a = rn lnn and b =
(
n
k

)
, and Poisson case is

equivalent to G(n, p, k) with p = rn lnn/
(
n
k

)
. Then this

lemma follows from Lemma 7. �

Corollary 1 Let G ∈ GRB(n, r, k). Then for any constant
r > 0, with high probability, hw(G) = rn lnn−O(n).

Proof By Theorem 2 and the fact that all o(1)’s in its proofs

are something like e−εn, which can subsume the e
√
rn lnn

factor in the Lemma 8. �

6 Experiments

We do experiments on instances of a realistic size for different
kinds of random graphs to complement the asymptotic anal-
ysis. For simplicity, we only consider graphs, i.e. k = 2. We
let the number of vertices n increase from 10 to 300 with step
length 10, and let the (expected) number of edges m be n, 2n

and 0.4n lnn, respectively. At each pair (n,m), we generate
60 instances to average on hw/m, where hw is hinge width.
We compare the results on classical random graphs G(n, p),
regular random graphs and power law random graphs. We
use the configuration model [Janson et al., 2000] to gener-
ate regular or power law instances with a given sequence of
degrees. The results are displayed in Figures 1 to 3.
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Figure 1: Results for m = n
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Figure 2: Results for m = 2n
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Figure 3: Results for m = 0.4n lnn

From the figures, we can find that on all these random
graphs, hinge width hw grows linearly with the number of
edges m. For each pair (n,m), regular random graphs have
the largest hinge width, while power law random graphs have
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the smallest hinge width. Hinge width is also called the de-
gree of cyclicity of graphs [Gyssens et al., 1994], graphs with
more nodes of degree 1 or 2 will have smaller hinge width.
Power law graphs do have more nodes of smaller degrees than
regular graphs or G(n, p). Moreover, the experimental results
match well with asymptotic analysis on G(n, p) already on
instances of 100 to 300 vertices.

7 Conclusion and Future Work

We have shown that hinge width can grow linearly on sparse
classical random hypergraphs. This provides theoretical ev-
idence for random instances around the satisfiability thresh-
olds to be hard for the standard hinge decomposition method,
at least for Model RB and Model RD. We also conduct exper-
iments on instances of a realistic size and the results match
well with the asymptotic analysis. The hinge width in regular
random graphs is the largest among all three kinds of random
graphs, so this result supports the previous suggestions to use
balanced random instances as benchmarks [Ansótegui et al.,
2007; 2008]. More interestingly, the hinge width in power
law graphs is much lower than that in regular/classical ran-
dom graphs. Since the power law graphs are more common
in the real world, this implies that the hinge decomposition is
still of potential use in the real-world instances. Our analysis
and experiments depend essentially on the efficient hinge al-
gorithm (Algorithm 1) given by [Gyssens et al., 1994]. Thus
tools developed in structural decomposition are useful, not
only in solving restricted easy CSP instances, but also in ana-
lyzing random hard CSP instances. For other structural width,
such as (fractional) hypertree width and spread-cut, a similar
analysis or experiment on random instances should be an in-
teresting future work. But this seems to be a challenge task.
For example, we can easily handle hinge width on 1, 000 ver-
tices, but can hardly handle tree-width exactly on more than
50 vertices, due to a lack of efficient tree-width algorithms.

References
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