
Real-Time Opponent Modelling in Trick-Taking Card Games

Jeffrey Long and Michael Buro

Department of Computing Science, University of Alberta
Edmonton, Alberta, Canada T6G 2E8

{jlong1 | mburo}@cs.ualberta.ca

Abstract

As adversarial environments become more com-
plex, it is increasingly crucial for agents to ex-
ploit the mistakes of weaker opponents, particularly
in the context of winning tournaments and com-
petitions. In this work, we present a simple post
processing technique, which we call Perfect Infor-
mation Post-Mortem Analysis (PIPMA), that can
quickly assess the playing strength of an opponent
in certain classes of game environments. We apply
this technique to skat, a popular German card game,
and show that we can achieve substantial perfor-
mance gains against not only players weaker than
our program, but against stronger players as well.
Most importantly, PIPMA can model the opponent
after only a handful of games. To our knowledge,
this makes our work the first successful example of
an opponent modelling technique that can adapt its
play to a particular opponent in real time in a com-
plex game setting.

1 Introduction

Opponent modelling is the problem of predicting the actions
of other agents in an adversarial environment. Classically, the
general implicit approach to opponent modelling has been to
assume that all players are attempting to play a Nash equi-
librium — a game-theoretically optimal policy that guards
against the worst case. Such an assumption is critical to the
alpha-beta minimax search techniques that have been applied
with great success to perfect information games like chess
and checkers.

However, when adversarial environments become more
complex, notably through the inclusion of stochasticity and
imperfect information, it becomes more important to consider
different opponent models for two reasons. The first reason is
that optimal strategies in these environments are often overly
defensive — they guarantee that we cannot lose much, but
also that we cannot gain much either, no matter the actions
of the opponent. In settings such as competitive tournaments,
it is often not enough to play well against strong opposition;
potential tournament winners must also maximize their gains
against weaker, more exploitable competitors. The second

reason is that in imperfect information environments, it is of-
ten helpful to infer hidden state variables based on actions of
other agents. This, of course, requires an accurate model of
how agents behave in the environment. Thus, an appropriate
opponent model allows for an agent to explicitly exploit op-
ponent weaknesses, and to improve its own decision making
through superior inference of hidden information.

In this paper, we describe a simple post-processing analysis
technique that can be used to assess an agent’s general deci-
sion quality in certain classes of environments. We then apply
this technique to a computer player for the game of skat, Ger-
many’s national card game, and show how the agent is able
to appropriately adapt its play against varying strengths of
opponents. Most importantly, this adaptation is fast enough
to be performed in real time and requires only a handful of
encounters with a particular opponent in order to be effective.

2 Background and Related Work

Opponent modelling in adversarial settings has received some
recent attention particularly in imperfect information games,
where inference of hidden information and opponent ex-
ploitation are both problems of interest.

On the inference front, in the game of Scrabble, [Richards
and Amir, 2007] describe a method of inferring letters on
the opponent’s rack in order to bias letter distributions used
in simulations. Equipped with this inference technique,
Quackle, which at the time was the strongest Scrabble pro-
gram and had previously beaten a former human World-
champion, achieved a substantial 5.2 point score advantage
over the original Quackle version. Similarly, in the card game
of skat, [Buro et al., 2009] report that card-play search tech-
niques benefit considerably from shaping hand distributions
based on opponents’ bidding and game declarations.

Opponent modelling has also been of keen interest to the
rapidly growing body of recent computer poker research.
When research in this field first began in earnest in 2001,
the critical need for opponent modelling was cited as a key
feature that distinguished poker from more traditional per-
fect information games [Billings et al., 2002]. However, al-
though early forays into poker opponent modelling do ex-
ist [Davidson et al., 2000] [Southey et al., 2005], so far
the most successful approach to computer poker has been to
pre-compute game-theoretically optimal strategies in smaller,
abstract versions of the game and subsequently map these

617

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

strategies back into the full game [Zinkevich et al., 2008]
[Gilpin and Sandholm, 2006]. Indeed, an examination of the
top contenders of the 2010 AAAI Computer Poker compe-
tition (http://www.computerpokercompetition.
org/) shows that the clear majority are static players with
no online adaptation to a particular opponent.

There has, however, been some recent exciting progress
on this front. In 2009, [Johanson and Bowling, 2009] pro-
posed Data Biased Response (DBR), an opponent modelling
technique that balances an agent’s ability to exploit an op-
ponent while avoiding being exploited itself. Most im-
pressively, DBR comes with theoretical guarantees that the
trade-off it achieves between opponent-exploitation and self-
exploitability is optimal. However, there are two significant
caveats: first, DBR still requires on the order of thousands of
observations to begin significantly exploiting the opponent,
and second, computing the DBR strategy itself once given its
observations is much too slow to be done in real time. It is
fair to say that real-time, online opponent modelling remains
an open question in computer poker research.

3 Methodology

In his seminal work on building a champion-calibre com-
puter bridge player, Ginsberg remarks that both human bridge
experts and his program GIB have an extraordinarily low
“double-dummy mistake rate” [Ginsberg, 2001]. What he
means by this is that if one were to compute the perfect in-
formation value of the game — the final resulting game value
under the assumption that the location of all cards is known to
all players, and all players play perfectly from that point on-
wards — that value would rarely change following any play
by a human expert or by his program.

Ginsberg does not dwell on this observation, other than
to consider it as supporting evidence that his program GIB
has reached or surpassed human expert level playing strength.
For us, this observation will form the foundation of our mod-
elling approach, which we describe below.

3.1 Perfect Information Post-Mortem Analysis

We will refer to our approach as Perfect Information Post-
Mortem Analysis, or PIPMA. The procedure is intended to
be called at the conclusion of each episode in an environment
of interest and to incrementally update a mistake rate for each
agent involved in the episode. This is done by examining each
state in which an agent acted and computing the perfect infor-
mation value of that state before and after the agent’s move.
If there is a difference, the agent’s move is flagged as a mis-
take. It is also necessary to determine whether it was even
possible to make a mistake, which in the worst case, requires
examining every available move. States where a mistake was
not possible are discarded from the analysis. The agent’s fi-
nal mistake rate is defined as the ratio of mistakes to mistake
opportunities. Pseudo-code for the PIPMA process is shown
in Figure 1.

We note that PIPMA requires two assumptions about the
environments to which it can be applied. The first is that by
the end of each environmental episode, all previously hidden
information from the environment must have become public

Algorithm 1 PIPMA post-game update procedure for a single
player. Winning positions have value 1 and losing positions,
value -1; we assume here that there are no other values.
Require: completed episode E, agent p

for each state s in E for which p is to move do
Win ← ∅
Lose ← ∅
for each action a available in s do

compute value(a)
{Returns the Perfect Information game value of se-
lecting a at s}
if value(a) = 1 then
Win ← Win ∪ {a}

else
Lose ← Lose ∪ {a}

end if
end for
if Win �= ∅ AND Lose �= ∅ then

mistakeOpps(p) ← mistakeOpps(p) + 1
{p’s opportunies to make mistakes, maintained glob-
ally}
if p’s chosen action in s ∈ Lose then
mistakes(p) ← mistakes(p) + 1
{p’s total mistakes made, maintained globally}

end if
end if

end for

for all agents. The second is that perfect information values
must be relatively easy to compute for all states in the envi-
ronment. These assumptions hold in most trick-taking card
games, such as bridge as studied by Ginsberg, and skat, the
test domain for our work here.

3.2 Theoretical and Empirical Properties of
PIPMA

PIPMA assumes that the actions it identifies as mistakes in
the perfect information version of an environment are actu-
ally undesirable in the original imperfect information setting
and should be avoided by rational players. It is simple to
show that there is no theoretical guarantee that this will be the
case. In fact, PIPMA can, in principle, consider an optimal
move to be a perfect information mistake. We demonstrate
this through means of the example shown in Figure 1.

In this example, there are two players, MAX (represented
by circles) and MIN (represented by squares), who are play-
ing an imperfect information game. There are four possible
worlds, determined secretly at the start of the game. MAX
is to move at the root and can go either right or left. If she
goes left, then she is to move again. Now she has four op-
tions, each one of which wins in exactly one distinct world
and loses in the other three. Because MAX does not know
which is the true world, she must simply pick a move at ran-
dom, and achieve a payoff of 1 with probability 0.25 and -1
otherwise. Alternatively, if MAX goes right at the root, she
can foist the guess onto MIN, and therefore achieve the pos-
itive payoff with probability 0.75. Clearly, then, MAX’s best
move is to go to the right. However, from a perfect informa-

618

tion perspective, where all players know the true world, going
to the right is a mistake for MAX, since MIN has no need to
“guess” in this game’s perfect information variant. Therefore,
MAX moving right will be flagged as a mistake by PIPMA,
even though it is the clear optimal move in the real game.

In spite of this theoretical caveat, it seems that pathological
cases like those shown in Figure 1 rarely occur, at least in the
environments where PIPMA has been examined. Ginsberg
shows that in bridge, human world experts have a PIPMA
mistake rate of approximately 2% while leading the first trick
of the game, and this rate goes steadily down as the game
progresses. In skat, we measured card-play mistake rates for
a collection of sixty-five randomly selected human players,
each of whom had played at least 2000 games on an online
skat server. We plot these mistake rates against the players’
average score-per-list — the standard scoring metric in skat
— in Figure 2. Although, as we will see below, card-play
strength is only one aspect of playing good skat, the gen-
eral trend is clear: higher-scoring players tend to have lower
PIPMA mistake rates. We also show skat data in Figure 3
indicating how PIPMA mistake error declines as a function
of the number of tricks played so far. On this plot, Kermit
is a computer player by [Buro et al., 2009] that we will dis-
cuss further below, Ron Link is a high-ranked human expert,
and the third player is an arbitrarily selected amateur human
player. Although overall mistake rates appear to be higher in
skat than in bridge, we see a trend similar to Ginsberg’s ob-
servation, namely that the mistake rate declines as the game
progresses.

Finally, we note that PIPMA is relatively difficult for a
canny human (or other opponent-modelling computer) player
to exploit, so long as cases such as described in Figure 1 are
indeed rare (and it is likely inadvisable to use PIPMA at all in
environments where they are not). In order to be unduly “un-
derestimated” by PIPMA, a player must intentionally throw
away games that, from a perfect information perspective, she
has already won. It seems exceedingly unlikely that forfeit-
ing guaranteed wins frequently enough to cause PIPMA to
make a serious misestimation of a player’s skill could result
in a significant long-term advantage. However, this is true if
PIPMA flags only mistakes that change the game value from
a win to loss. If, for example, PIPMA considers a move that
loses points according to some heuristic function — say, fail-
ing to maximize tricks taken in bridge beyond what is needed
to win the contract — to be a “mistake,” then it could be-
come vulnerable to an exploitative opponent. On the other
hand, if most of these mistakes are genuine, flagging them
with PIPMA could decrease the amount of data to form an
accurate opinion of the opponent’s mistake rate.

3.3 Applying Perfect Information Post-Mortem
Analysis to Skat

In this section we describe how we use the PIPMA technique
described above to add a real-time opponent modelling com-
ponent to a computer player for the game of skat.

Skat is a trick-taking card game for three players. It is most
widely played in Germany, but skat clubs exist all over the
world. For the purposes of this paper, the full rules of the
game are not important; what is important is that a hand of

MAX

MAX MIN

a

cb

2
3
4

1W +1 −1 −1 −1
W −1 +1 −1 −1
W −1 −1 +1 −1
W −1 −1 −1 +1

−1 +1 +1 +1
+1 −1 +1 +1
+1 +1 −1 +1
+1 +1 +1 −1

Figure 1: A synthetic zero-sum game in which PIPMA flags
the optimal move (a-c) as a mistake. The payoffs at the leaves
in each world Wi are given in view of player MAX.

 0.12
 0.13
 0.14
 0.15
 0.16
 0.17
 0.18
 0.19

 0.2
 0.21
 0.22

 500 600 700 800 900 1000 1100

M
is

ta
ke

 R
at

e

Average Score per List

Figure 2: PIPMA mistake rate plotted against average score-
per-list for sixty-five human skat players.

skat consists of two phases, bidding and then card-play. Dur-
ing the bidding phase, players compete in an auction to be-
come the soloist for the duration of the hand. The soloist
has the potential to gain many points but can also lose points
as well, so it is an inherently risky position. The two play-
ers who lose the bid become defenders and form a temporary
coalition against the soloist for the card-play phase. The de-
fenders can win a small number of points if they defeat the
soloist during card-play, but cannot lose points in any way.
The objective of all players is to score as many points as
possible over a series of hands. For more complete infor-
mation on the game rules, we refer the interested reader to
http://www.davidparlett.co.uk/skat.

As a basis for our computer skat player, we will use a
player called Kermit, as described by [Buro et al., 2009].
Kermit uses two distinct techniques to deal with the two dif-
ferent phases of skat. For card-play, Kermit uses Perfect In-
formation Monte Carlo (PIMC) search, as first used by Gins-
berg in bridge [Ginsberg, 2001]. For bidding, Kermit uses

619

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 1 2 3 4 5 6 7 8 9 10

M
is

ta
ke

 R
at

e

Trick

Kermit

Amateur Human

Ron Link

Figure 3: PIPMA mistake rate plotted as a function of the
current trick in skat for three players. Kermit is a computer
player, Ron Link is a high-ranked human expert and the third
player is an arbitrary human of roughly average strength.

a static evaluation function learnt from millions of games of
human data that assigns to a hand a winning probability for
the soloist. If this probability is greater than a static threshold,
then Kermit continues to bid, otherwise, the program passes.

Our new program, which we will refer to as the Count
(perhaps due to the program’s manic obsession with counting
points and moves of the other players), is identical to Kermit,
except that after every hand, it post-processes the card-play
moves of all players involved using PIPMA and updates their
mistake rates. This post-processing takes approximately one
second after each game, and is therefore practical even for
real-time play against humans. The Count then uses this in-
formation to dynamically adjust its bidding threshold during
the bidding phase of future games.

The basic intuition behind this threshold adjustment is sim-
ple: bid more aggressively against weak players (players with
a high mistake rate), and less aggressively against stronger
ones. The problem that remains is exactly how much to ad-
just this bidding threshold based on the observed mistake
rates of the opponents. To gain insight into this decision, we
constructed a synthetic skat player that is directly defined in
terms of its mistake rate m as follows: Whenever the player
is to move, it is explicitly informed of the true world, and
computes the sets of winning and losing moves for the cur-
rent (perfect information) position. Then, assuming both sets
are non-empty, with probability 1−D(m) the player chooses
a winning move to play, using Kermit’s PIMC search proce-
dure (and thus for this purpose ignoring that the player knows
the true world) to break ties if necessary. D(m) is a function
that maps the player’s global mistake rate to a local one that
is dependent on the current stage of the game. With proba-
bility D(m), the player is forbidden from selecting a winning
move and must play a losing move (e.g. make a mistake) in-
stead, again using PIMC search to break ties among candidate
losing moves. We chose D(m) = m + 0.07 for the game’s
first trick and D(m) = max(0, (m − (0.01(trick − 1))))

Mistake Rate 1

M
is

ta
ke

 R
at

e
2

0.05

0.10

0.15

0.20

0.05 0.10 0.15 0.20

P(win) Offset

−0.05

0.00

0.05

0.10

0.15

Figure 4: Synthetic tournament results displaying the average
P(win) estimation error in Kermit’s bidding-phase hand eval-
uator, plotted as a function of the mistake rates of Kermit’s
two opponents.

for subsequent tricks. These choices were based on the ap-
proximate observed rate at which Kermit’s own mistake rate
declined as a function of the current trick, and so that empiri-
cally the synthetic player’s global mistake rate ends up being
very close to m.

We then played a series of games between Kermit and syn-
thetic players of varying strength. For each series, we record
the average error in Kermit’s bidding evaluation function over
all games in which Kermit played as soloist, where the error
for an individual game G is defined as follows:

error(G) = win(G)− pWin(G) (1)

win(G) is 1 if Kermit won in G as soloist and 0 otherwise,
while pWin(G) is the winning probability for G as computed
by Kermit’s evaluation function. The results of these experi-
ments are shown in Figure 4.

Note that, while useful, these synthetic results do not take
account of more complex factors, such as a player’s poten-
tial to win extra points as a defender due an opponent’s high
error rate. However, using these as a starting point, we per-
formed some empirical tuning and ultimately chose the for-
mula shown in Equation (2) to use for the Count, where
m(p1, p2) is simply the average of the individual mistake
rates of the two opponents, p1 and p2. Recall that this is an
offset to the Count’s bidding threshold, so that a positive off-
set increases the threshold, making the program more conser-
vative, while a negative offset decreases the threshold, mak-
ing the program bid on riskier games.

offset(p1, p2) =
{

0.1−m(p1, p2) if m(p1, p2) ≤ 0.1
0.05− 0.5m(p1, p2) otherwise

(2)

4 Experimental Results

4.1 Computer Player Tournaments

To assess the strength of our PIPMA modelling approach in
a real game environment, we ran a series of skat tournaments

620

Table 1: Tournament results between players, all performed on the same set of 2000 deals. In each match, the column player
played against two clones of the row player. We report the average score-per-list difference (row-column) and score-per-list
(standard deviation in brackets) for row and column players in each match-up.

row \ col Kermit Tracker Tracker-rm36 theCount theCount-rm36
r-c row col r-c row col r-c row col r-c row col r-c row col

Mistake0.03 379 874(46) 495(55) 344 812(47) 468(55) 262 756(48) 494(50) 108 756(48) 648(48) 133 761(48) 628(46)
Mistake0.10 -213 634(48) 847(48) -90 693(48) 783(52) 47 684(48) 637(53) -161 660(48) 821(48) -144 662(49) 806(48)
Mistake0.25 -638 460(52) 1098(45) -726 460(50) 1186(48) -498 468(49) 966(56) -618 511(50) 1129(52) -564 493(52) 1057(53)
XSkat -741 648(42) 1389(47) -826 612(36) 1438(39) -662 594(31) 1256(63) -818 630(39) 1448(52) -808 623(39) 1431(39)

between computer players. Our goal is to compare the per-
formance of three different candidate players: Kermit, the
Count and a player we call Tracker. Kermit is the static, non-
adaptive skat player described in [Buro et al., 2009]. The
Count is a modification of Kermit that uses PIPMA to adjust
its bidding behaviour, as described in Section 3. Tracker is a
“naive” adaptive player also based on Kermit that tracks only
its own performance as soloist in the context of its current
opponent match-up: after each soloist game played, Tracker
updates its perceived error in its bidding evaluation function
according to Equation (1) from Section 3. It then uses the av-
erage accumulated error as an offset to its bidding threshold
in future games. Tracker’s final adjusted bidding threshold
is capped at 0.75, so as to prevent the program from believ-
ing that all soloist games are unwinnable (and therefore never
playing as soloist again to gather more data) after a particu-
larly unlucky streak.

We note that the card-play strength of our three candidate
players is identical. Furthermore, the adaptive bidding of
Tracker and the Count is such that against an opponent of
equal card-play strength, the bidding of these two programs
is nearly identical to Kermit’s. Therefore, comparing these
programs by playing them against each other would be futile.

Instead, we play each of these candidates against a set of
benchmark players. Three of these are synthetic players, as
described in Section 3, using mistake rates of 0.03, 0.1 and
0.25. The fourth benchmark player is a rule-based program
called XSkat, which is free software written by Gunter Ger-
hardt. XSkat has previously been shown to be substantially
weaker than Kermit [Buro et al., 2009], but serves as a useful
example of a player that is very different from the synthetic
players and our candidate players.

In our experiments, each candidate played the same set of
2000 skat deals against two clones of each of the benchmark
players (although the candidate players were not aware that
their two opponents were identical for the purpose of mod-
elling). All experiments were run on computers with eight
2.5 GHz Intel Xeon E5420 CPUs with 16 GB of RAM.

We show results of these tournaments in Table 1. The dis-
played score represents average points earned per 36 games,
which is the length of a standard match (or “list”) in most
skat clubs and tournaments. The candidate players Tracker
and the Count have two types of entries in this table: one
with the suffix “rm 36” and one without. The “rm 36” ver-
sion of each program deletes all of its opponent modelling
data every 36 games; the non-suffixed version keeps its data

for the duration of the 2000 game run.

Discussion

In opponent modelling, the general goal is to improve perfor-
mance against some opponents without losing in self-play or
becoming vulnerable to exploitation by an adaptive adversary.
Our experiments against the candidate players were designed
to test the first two of these three criteria and we will discuss
the results in that light.

Against the Mistake0.1 player, we see little difference be-
tween Kermit and the Count; in fact, Kermit performs slightly
better. This is not unexpected, because Kermit’s own global
error rate is very close to 0.1, and therefore this result approx-
imates a ’self-play’ match. Since Kermit is tuned to perform
well in self-play, the best the Count could hope for in this
match-up is to tie Kermit’s performance, which it effectively
does.

Meanwhile, the Count achieves a modest but, in skat
terms, still substantial gain against XSkat, and a dramatic
gain against the exceptionally strong Mistake0.03 player.
The Count’s somewhat weak performance against the Mis-
take0.25 player was more of a surprise. Although the Count
still outperforms Kermit in the long run, this advantage is
slight enough that it disappears when the Count is forced
to erase its modelling data. This appears to be because al-
though the synthetic player’s cardplay is quite weak, it still
bids as aggressively as Kermit, meaning that Kermit earns
many points on defense and would achieve little by increas-
ing its own bidding aggressiveness (as the Count tries to do).
XSkat, while of similar card-play strength to the Mistake0.25
player, is more conservative in its bidding. A follow-up ex-
periment where the Mistake0.25 player’s bidding threshold
was increased from 0.6 to 0.7 seemed to confirm the role of
the bidding behaviour; in this setting, the Count (with ”rm36”
enabled) exceeds Kermit’s list-average by 57 points.

Finally, we compare the Count to the Tracker player. Our
objective in including Tracker among our candidate players
was to compare the amount of data needed to perform suc-
cessful opponent modelling by a naive approach against the
amount needed by the Count’s PIPMA. In nearly all cases, we
see that Tracker performs quite similarly to the Count in the
long run. However, when it is forced to delete its modelling
data every 36 games, the performance of Tracker degrades
quickly, becoming weaker than both Kermit and the Count
against all the benchmark players except Mistake0.03, where
it is roughly even with Kermit. The Count, on the other hand,
becomes only very slightly weaker when it deletes its data.

621

Effectively, Tracker is not able to accurately model its oppo-
nents in a short period of time using only end-of-game results
whereas the Count gains considerably more information per
game by examining the individual moves made by all players.
This appears to allow the Count to model its opponents suffi-
ciently quickly inside a 36 game window to make a positive
difference in its play.

4.2 Online Play

In addition to the tournaments between computer players de-
scribed above, the Count has been playing on ISS, an online
skat server (http://www.skatgame.net/iss/). The
population of this server consists of a few computer play-
ers (including Kermit and XSkat) as well as over 100 hu-
man players of varying playing strengths. Since being in-
troduced to the server, the Count has played 14415 games
and has achieved a list-average of 1000 (standard deviation of
18). The non-adaptive player Kermit had previously played
over 280,000 games on this server, with a list average of 940
(standard deviation of 5). As Kermit is one of the top-ranked
players on the server, a difference of 60 points is quite consid-
erable, and strongly suggests that the Count’s modelling ap-
proach works well against human players in addition to syn-
thetic ones. As humans are typically good at exploitative play,
this result also suggests that the Count’s PIPMA approach is
indeed robust against exploitation in practice, as suggested by
our arguments in Section 3.

5 Conclusion

In this paper, we proposed Perfect Information Post-Mortem
analysis as a simple tool for quickly assessing opponent
decision-making abilities in certain classes of environments,
notably trick-taking card games. We then used this technique
to create the Count, a computer skat player that adjusts its
bidding behaviour in real time in response to the card-playing
strength of its opponents. We presented experimental results
showing that the Count generally performs approximately as
well or better — and in some cases, substantially better —
as a non-adaptive player against several opponent types. Fi-
nally, the Count is able to successfully model its opponents in
fewer than 36 games, the length of a standard skat tournament
match, making it practical for real-time play against humans.

In pursuing the work we have described here, we have ef-
fectively been dealing with two separate questions: first, can
we capture some model of the opponent’s behaviour, and sec-
ond, if so, what should we do about it. PIPMA is a relatively
general technique that addresses the first of those questions in
environments that are easier to deal with “in hindsight” than
they were at the time that actual decisions were being made.
However, PIPMA need not be restricted to measuring an op-
ponent’s global mistakes; the analysis could be partitioned in
a number of different ways in an attempt to uncover much
more specific opponent weaknesses. For example, in skat,
one could distinguish between an opponent’s mistakes as de-
fender versus soloist, or mistakes made in early game stages
versus those made later, and perhaps this information could
be used to to exploit the opponent further.

The second question, how to appropriately react to a known
opponent mistake rate, seems considerably more domain spe-

cific. In skat, we were fortunate in that a general approach to
this question — adjusting bidding rate — seemed immedi-
ately apparent. However, although we performed various ex-
periments to explore how the bidding rate should be adjusted,
our final approach is still somewhat ad hoc and could likely
be improved in future. In other domains, it is less apparent
what the first steps should be in reacting to a known general
opponent weakness.

Finally, we note that our focus here has been on oppo-
nent modelling in an adversarial setting. However, there are
numerous non-adversarial contexts in which a PIPMA-style
assessment of agent decision quality could be useful. Take,
for instance, a card-game tutorial program that might wish to
match a novice human player against computer players of an
appropriate skill level. In fact, PIPMA may be even more
easily applicable in such domains, since an administrating
program can have access to full post-game hidden informa-
tion even if the players involved normally would not. Thus,
non-adversarial settings are another promising avenue along
which this work could be further explored.

6 Acknowledgements

The authors would like to acknowledge GRAND NCE for
their financial support.

References
[Billings et al., 2002] Darse Billings, Aaron Davidson, Jonathan

Schaeffer, and Duane Szafron. The Challenge of Poker. Arti-
ficial Intelligence, 134(1-2):201–240, 2002.

[Buro et al., 2009] Michael Buro, Jeffrey R. Long, Timothy Furtak,
and Nathan R. Sturtevant. Improving state evaluation, inference,
and search in trick-based card games. In IJCAI, pages 1407–
1413, 2009.

[Davidson et al., 2000] A. Davidson, D. Billings, J. Schaeffer, and
D. Szafron. Improved opponent modeling in poker. In Proceed-
ings of the 2000 International Conference on Artificial Intelli-
gence, pages 1467–1473. Citeseer, 2000.

[Gilpin and Sandholm, 2006] A. Gilpin and T. Sandholm. Finding
equilibria in large sequential games of imperfect information. In
ACM Conference on Electronic Commerce, 2006.

[Ginsberg, 2001] Matthew Ginsberg. GIB: Imperfect Information
in a Computationally Challenging Game. Journal of Artificial
Intelligence Research, pages 303–358, 2001.

[Johanson and Bowling, 2009] Michael Johanson and Michael
Bowling. Data biased robust counter strategies. In Proceedings
of the Twelfth International Conference on Artificial Intelligence
and Statistics (AISTATS), pages 264–271, 2009.

[Richards and Amir, 2007] Mark Richards and Eyal Amir. Oppo-
nent modeling in scrabble. In Manuela M. Veloso, editor, IJCAI,
pages 1482–1487, 2007.

[Southey et al., 2005] Finnegan Southey, Michael Bowling, Bryce
Larson, Carmelo Piccione, Neil Burch, Darse Billings, and Chris
Rayner. Bayes’ bluff: Opponent modelling in poker. In Proceed-
ings of the Twenty-First Conference on Uncertainty in Artificial
Intelligence (UAI), pages 550–558, 2005.

[Zinkevich et al., 2008] Martin Zinkevich, Michael Johanson,
Michael Bowling, and Carmelo Piccione. Regret Minimization
in Games with Incomplete Information. In Advances in Neural
Information Processing Systems 20, pages 1729–1736, 2008.

622

