
Nested Rollout Policy Adaptation
for Monte Carlo Tree Search

Christopher D. Rosin

Parity Computing, Inc.
San Diego, California, USA

christopher.rosin@gmail.com

Abstract

Monte Carlo tree search (MCTS) methods have had
recent success in games, planning, and optimiza-
tion. MCTS uses results from rollouts to guide
search; a rollout is a path that descends the tree
with a randomized decision at each ply until reach-
ing a leaf. MCTS results can be strongly influ-
enced by the choice of appropriate policy to bias
the rollouts. Most previous work on MCTS uses
static uniform random or domain-specific policies.
We describe a new MCTS method that dynamically
adapts the rollout policy during search, in deter-
ministic optimization problems. Our starting point
is Cazenave’s original Nested Monte Carlo Search
(NMCS), but rather than navigating the tree directly
we instead use gradient ascent on the rollout policy
at each level of the nested search. We benchmark
this new Nested Rollout Policy Adaptation (NRPA)
algorithm and examine its behavior. Our test prob-
lems are instances of Crossword Puzzle Construc-
tion and Morpion Solitaire. Over moderate time
scales NRPA can substantially improve search ef-
ficiency compared to NMCS, and over longer time
scales NRPA improves upon all previous published
solutions for the test problems. Results include a
new Morpion Solitaire solution that improves upon
the previous human-generated record that had stood
for over 30 years.

1 Introduction

Monte Carlo tree search (MCTS) methods have had substan-
tial recent success in two-player games [Gelly et al., 2007;
Finnsson et al., 2010], planning [Nakhost et al., 2009; Silver
et al., 2010], optimization and one-player games [Cazenave,
2009; Rimmel et al., 2011; Méhat et al., 2010] and practi-
cal applications [de Mesmay et al., 2009; Cazenave et al.,
2009]. In this paper, we focus on deterministic optimization
problems. For these, nested Monte Carlo search has been
particularly successful, with world-record results in several
problems [Cazenave, 2009; Bjarnason et al., 2007].

MCTS guides search using results from rollouts. The base
rollout policy is a key factor in MCTS success. Most prior
MCTS work uses static policies, but some work has appeared

on adapting rollout policies in two-player games [Silver et al.,
2009; Tesauro et al., 1996; Finnsson et al., 2010]. One re-
cent study uses an evolutionary algorithm to choose policy
parameters [Rimmel et al., 2011]. Methods for adapting roll-
out policies also exist in control and reinforcement learning
[Bertsekas, 1997; Fern et al., 2003; Veness et al., 2011].

In this paper, we describe a new MCTS algorithm
that adapts its rollout policy during search. It resembles
Cazenave’s Nested Monte Carlo Search (NMCS) [Cazenave,
2009], in that every search step advances towards the current
best known solution. But whereas NMCS makes these moves
directly on the search tree, here we instead adapt a rollout
policy towards the current best solution.

Section 2 describes the new algorithm. Section 3 describes
the test problems: two Crossword Puzzle Construction in-
stances for which the search tree has large branching factor
but relatively small depth, and two versions of Morpion Soli-
taire with lower branching factor but larger depth. Section 4
has experimental results and comparison to NMCS.

2 Algorithm

We start with Cazenave’s Nested Monte Carlo Search
(NMCS) [Cazenave, 2009], and then proceed to the new
Nested Rollout Policy Adaptation (NRPA) algorithm. For
both, search is initiated at a nesting level n, which is the depth
of recursion for the nested search. At each nesting level, the
algorithm searches for a solution sequence (a sequence of
child selections defining a path descending the tree to a leaf).
In searching for improvements to its current best sequence,
nesting level n makes recursive calls to nesting level n − 1,
bottoming out in the base rollout policy at level 0. When
nesting succeeds, level n returns substantially higher-quality
solutions than level n− 1 [Cazenave, 2009].

2.1 Nested Monte Carlo Search

Fig. 1 shows NMCS. Lines 2-9 are the level 0 rollout from
a given node of the search tree; a uniform random policy is
shown. Nesting levels n ≥ 1 start from a given node and
iterate through successive ply (lines 14 and 22-23). Each iter-
ation recursively calls level n− 1 on each child of the current
node (lines 15-17), replacing the current best solution from
the current ply to the end if an improvement is found (lines
18-21). Each iteration concludes by advancing the current
node one ply towards the current best solution (line 22).

649

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

1 NMCS(level,node):
2 IF level==0: // base rollout policy
3 ply = 0, seq = {} // count from initial node
4 WHILE num_children(node)>0:
5 CHOOSE seq[ply] = child i with probability
6 1/num_children(node)
7 node = child(node,seq[ply])
8 ply += 1
9 RETURN (score(node),seq)

10
11 ELSE: // for nesting levels>=1
12 ply = 0, seq = {} // count from initial node
13 best_score = -infinity
14 WHILE num_children(node)>0:
15 FOR children i of node:
16 temp = child(node,i)
17 (result,new) = NMCS(level-1,temp)
18 IF result>best_score THEN:
19 best_score = result
20 seq[ply] = i
21 seq[ply+1...] = new
22 node = child(node,seq[ply])
23 ply += 1
24 RETURN (best_score,seq)

Figure 1: NMCS with Uniform Rollout Policy

An NMCS search tree is defined by operations root(),
num children(node), child(node,i) returning the i’th child of
node, and score(node) at a leaf. Search at nesting level L
is initiated by NMCS(L,root()). The only tunable parameter,
nesting level, has just a few feasible settings. More domain-
specific tuning can be done by reshaping the tree [Bjarnason
et al., 2007] and choosing a heuristic level 0 policy [Bjarna-
son et al., 2007; Cazenave, 2007; Rimmel et al., 2011].

2.2 Nested Rollout Policy Adaptation

Fig. 2 shows the new Nested Rollout Policy Adaptation
(NRPA) algorithm. Lines 2-9 are the level 0 rollout, which
follows (lines 5-6) a given weighted policy from the root to
a leaf. Nesting levels n ≥ 1 do a fixed number of iterations
(line 13) starting from an initial given policy. Each iteration
uses the current policy as a starting point in a recursive call to
level n−1 (line 14), replacing the current best solution when a
tie or improvement is found (lines 15-17), then advancing the
policy one gradient ascent step towards the current best so-
lution sequence (line 18 and Adapt(); see Section 2.3). Note
level n− 1’s final policy is not returned to level n.

Search at nesting level L is initiated by NRPA(L,pol) with
all-zero vector pol. An NRPA search tree is defined by the
same operations as NMCS, with the addition of code(node,i)
which returns a domain-specific code for the action leading
from the node to its i’th child. This provides the domain-
specific representation for policy adaptation. No further
domain-specific tuning of the policy is available; it is deter-
mined by adaptation starting from a uniform random policy.
In addition to the nesting level parameter, NRPA allows tun-
ing of Alpha and number of iterations N per level. Results
here use Alpha=1.0 and N=100, across the test problems.

2.3 NRPA’s Design

NMCS can be applied to any search tree, even when nodes
and children have no known properties beyond their place in
the tree. But many problems have additional structure. NRPA
benefits when actions with the same code have similar value
across a range of nodes. The general idea, that actions can
have similar value in a range of contexts, has helped improve

1 NRPA(level,pol):
2 IF level==0: // base rollout policy
3 node = root(), ply = 0, seq = {}
4 WHILE num_children(node)>0:
5 CHOOSE seq[ply] = child i with probability
6 proportional to exp(pol[code(node,i)])
7 node = child(node,seq[ply])
8 ply += 1
9 RETURN (score(node),seq)
10
11 ELSE: // for nesting levels>=1
12 best_score = -infinity
13 FOR N iterations:
14 (result,new) = NRPA(level-1,pol)
15 IF result>=best_score THEN:
16 best_score = result
17 seq = new
18 pol = Adapt(pol,seq)
19 RETURN (best_score,seq)
20
21 Adapt(pol,seq): // a gradient ascent step towards seq
22 node = root(), pol’ = pol
23 FOR ply = 0 TO length(seq)-1:
24 pol’[code(node,seq[ply])] += Alpha
25 z = SUM exp(pol[code(node,i)]) over node’s children i
26 FOR children i of node:
27 pol’[code(node,i)] -= Alpha*exp(pol[code(node,i)])/z
28 node = child(node,seq[ply])
29 RETURN pol’

Figure 2: NRPA with Global Parameters Alpha and N

efficiency of other MCTS methods as well [Finnsson et al.,
2010; Gelly et al., 2007; Akiyama et al., 2010].

In our test problems, the same state can be reachable by
multiple paths; this could be represented by a DAG [Saffidine
et al., 2010] rather than a tree. NRPA can benefit by exploring
permutations of actions that reach the same state but offer
unique departure points for further exploration. Section 4.4
suggests NRPA may also benefit by bringing actions into new
contexts, beyond simple permutations of paths in a DAG.

NRPA may not obtain robust policies that give viable
results starting from arbitrary nodes in the tree. Instead,
NRPA’s policies emphasize actions taken by the best solu-
tions so far, and help push rollouts into the neighborhood of
these solutions. This is how NRPA focuses search, since lev-
els n ≥ 1 do not maintain an explicit current tree node like
NMCS does. Passing the policy recursively helps level n ob-
tain results from level n− 1 relevant to its current focus.

NRPA rollouts choose child i from node s with probabil-
ity proportional to epol[code(s,i)], where pol[x] is the adapt-
able weight on code x. This is comparable to forms used in
past work on rollout policy adaptation [Finnsson et al., 2010;
Silver et al., 2009; Rimmel et al., 2011; Coulom, 2007].

Adapt() increases the probability of the current best se-
quence by raising the relative weight of its codes (also affect-
ing other sequences that share some codes). Log of sequence
probability is concave here, amenable to Adapt()’s gradient
ascent. A sequence of children ct chosen at nodes st has prob-
ability

∏
t(e

pol[code(st,ct)])/(
∑

i e
pol[code(st,i)]); the log is∑

t

(
pol[code(st, ct)]− log(

∑
i e

pol[code(st,i)])
)
. The gradi-

ent is a sum over t; t’s contribution to component code(st, j)
for j �= ct is −(epol[code(st,j)])/(∑i e

pol[code(st,i)]) (lines 25-
27) and for j = ct is 1− (epol[code(st,j)])/(

∑
i e

pol[code(st,i)])
(first term is in line 24).

NRPA ensures search at a particular level eventually (given
enough iterations) returns to the best score so far: as long as it
does not, Adapt() keeps increasing the probability of the best

650

Table 1: Test Problems
Depth Branch Old Record New

MorpT 177 46 170 [Bruneau, 1976] 177
MorpD 82 46 80 [Cazenave, 2009] 82
CrossC 37 1197 36;256 [CrossC, 2006] 37;259
CrossP 28 988 28;236 [CrossP, 1994] 28;238

solution sequence so far until it is overwhelmingly likely to
recapitulate that solution sequence. Adapt() can increase this
probability exponentially quickly: very roughly, one call in-
creases probability by close to a factor of e∗Alpha on each
action that still has low probability. This rapid increase in se-
quence probability has only modest dependence on branching
factor and sequence length, and in Section 4 a single value of
Alpha works well across a range of problems.

This convergence towards recapitulation depends upon
NRPA adapting only towards a single best-so-far solution. If
it was based instead on a mix of solutions, representational
limitations might cause convergence towards a suboptimal
compromise amongst multiple solutions, preventing recapitu-
lation of any one best-so-far solution score. Nonetheless, we
do replace the current best solution with a new equally good
one that ties its score. This preserves the property of return
to the best score found so far, while aiding exploration. In
preliminary experiments, taking ties gave NRPA substantially
better results, compared to taking only strict improvements.

NRPA can be compared to other distribution-based search
methods [Larranaga et al., 2002].

2.4 Choosing Policy Representations for NRPA

The following two properties suffice so that NRPA’s policy
can converge towards any sequence. First, for any node s,
code(s,i) should be distinct so that any child can be assigned
arbitrarily high probability. Second, any solution sequence
with nodes st in which children it are selected should have
code(st, it) distinct from code(st′ , i) for all t′ > t and all i.
That is, selecting it in st “retires” code(st, it), so putting high
probability on it doesn’t interfere with later action selection.

In addition, if any legal permutation of a sequence
code(st, it) yields the same score, NRPA can explore permu-
tations more freely with less need to constrain ordering.

The test problems here each have a simple and natural rep-
resentation that adheres to the above properties. Our final
results use the same representations that were initially tested;
no exploration of representational alternatives was needed.

Other problems may benefit from exploration of represen-
tational alternatives, as is often the case in machine learning.
For NRPA, actions with same code should have similar value.
But this only needs to be approximately true, and only within
limited scope (as opposed to the entire state space). Actions
with distinct codes are searched separately, so the total num-
ber of available codes should be minimized. Some problems
may benefit from code(s,i) including limited additional con-
text from global state s [Finnsson et al., 2010].

3 Test Problems

3.1 Crossword Puzzle Construction

An instance of Crossword Puzzle Construction (CPC) pro-
vides a grid and a dictionary of allowed words. A feasible

2

13

Figure 3: Morpion
Solitaire: gray dots
are the initial con-
figuration. Moves 1
and 2 are legal in
both versions, move
3 only in MorpT.

0 1 2 3 4 5 6 7 8 9 Figure 4: Dominated Move

solution is a legal crossword. A legal crossword places a sub-
set S of the dictionary on the grid, with words oriented either
horizontally left-to-right or vertically top-to-bottom, such that
every two adjacent occupied grid positions are part of one of
the placed words from S (Fig. 7a). All occupied grid posi-
tions must be connected by adjacency (no disjoint compo-
nents). We seek a solution that uses as many words from the
dictionary as possible, breaking ties according to the largest
total number of letters used in the words in the solution. CPC
scores are shown as #words;#letters, so 25;243 is 25 words
and 243 letters and is superior to 24;251 and 25;239. In-
stances here have a square grid with all positions open to use.

Heuristic search has previously been applied [Ginsberg
et al., 1990] to a generalized decision version of CPC which
is NP-complete [Garey and Johnson, 1979].

Instances here are from GAMES Magazine contests. Con-
tests were diverse (not all CPC). Contests were approachable
by humans without computer assistance, but computer assis-
tance was allowed. Contests included monetary prizes, and
attracted high-quality solutions. From over 12 years of con-
tests, we select two CPC instances with largest grid (19x19).
CrossC has 63 allowed words: 50 state, 10 provincial, and 3
territorial capitals in the U.S. and Canada with spaces, punc-
tuation, and accents removed (e.g. Québec City becomes
QUEBECCITY) [CrossC, 2006]. CrossP has 52 words: the
52 U.S. National Parks listed in The 1994 World Almanac
with spaces and punctuation removed [CrossP, 1994]. Both
yielded a unique winner (Table 1) from hundreds of entries.

Nodes in the CPC search tree are feasible solutions as de-
fined above, starting with zero words at the root and adding
one word per ply until reaching leaves in which no additional
words can be added.1 The first ply adds an initial word, con-
strained to be vertical and start in the top row. This is without
loss of generality: any solution that uses the top row must
have a vertical word starting there, and any solution that does
not use the top row can be shifted upwards without changing
score. Beyond the first word, children of a node consist of all
single words which may be added to leave a new legal state.

For NRPA, code(node,i) identifies the word added by child
i together with its grid position and orientation.

3.2 Morpion Solitaire

Morpion Solitaire [Boyer, 2011] is a pencil-and-paper puzzle
on a square grid that is presumed to be infinite. Given a cur-
rent configuration of dots (marked intersections on the grid),
a legal turn requires the addition of one more dot such that

1This can’t reach legal states having a 2x2 or larger block filled
with letters. But such states are highly constrained, didn’t appear in
published solutions, and weren’t needed to get our positive results.

651

10 100 1000

Time

80

100

120

140

160

M
ed

ia
n

S
co

re

Nesting Level 3
Nesting Level 2
Nesting Level 1
Nesting Level 0

Figure 5: NRPA Median Timelines for MorpT

a new line of 5 dots in a row can be formed, horizontally or
vertically or diagonally. The line is also added to the grid,
and new lines cannot overlap any previous line. Solutions are
scored by the number of lines they contain, and the goal is
to maximize this. We consider two versions: the “Touching”
version (MorpT) allows parallel lines to share an endpoint,
but the “Disjoint” version (MorpD) does not. Generalized
Morpion Solitaire is NP-hard [Demaine et al., 2006]. Here
we consider the common starting configuration (Fig. 3).

The best previous computer search results for Morpion
Solitaire came from MCTS methods. A MorpD record of
80 was set by NMCS [Cazenave, 2009]. For MorpT, the best
previously reported method was an NMCS variant that gave
146 [Akiyama et al., 2010]. But a 1976 human-generated
MorpT record of 170 [Bruneau, 1976] stood for over 30
years, until NRPA obtained 172 in August 2010 [Boyer, 2010;
2011]. This paper is the first to describe NRPA, and the record
is improved to 177 in this paper.

Our search tree has the starting configuration at the root.
Children of a node consist of all legal distinct lines that may
be added to the grid; such a line uniquely determines the dot
that is added. Leaves of the tree have no further legal moves.

We modify the tree slightly by replacing a type of domi-
nated move. In Fig. 4, two moves add a new dot between 0
and 1: move A extends from 0 to 3, and move B from the
new dot to 4. Move A blocks line segments 3-4 and 4-5; after
move A these cannot be used by later moves. Move B blocks
only 4-5. Move B occupies 3-4 whereas A does not, but since
A blocks 3-4 it does not gain any advantage by leaving 3-4
unoccupied. Move A is dominated by B: any legal sequence
of moves that includes A is still legal if A is replaced by B,
and B may open up more possibilities (by leaving the segment
from 0 to the new dot available). During NMCS and NRPA,
nodes with an available dominated move (like A) retain the
same number of children, and the dominated move may be
selected and recorded as part of the solution sequence, but its
effect is replaced by that of the dominating move (like B).
This gave a small improvement in early experiments, more so
than removing dominated moves entirely.

For NRPA, code(node,i) uniquely identifies the endpoints
of the chosen line to be added by child i. In the case of a dom-
inated move, it still codes the line represented by the domi-
nated move (even though the line actually placed is different).
This ensures all children have a unique code even when dom-
inated moves exist. We use a 64x64 grid with the initial con-
figuration near the center, which sufficed so that search did
not approach the edges of the grid.

Table 2: Median Scores from Timed Runs
Method Level 102 sec 103 sec

MorpT NRPA 3 153 157
MorpT NMCS 3 116 130
MorpD NRPA 3 79 81
MorpD NMCS 3 71 74
CrossC NRPA 3 33;229 34;244
CrossC NRPA 2 32;240 33;242
CrossC NMCS 2 31;223 32;229
CrossP NRPA 3 26;222 27;223
CrossP NRPA 2 26;219 26;232
CrossP NMCS 2 25;208 26;215

3.3 Test Problem Summary

Table 1 summarizes the test problems. “Depth” and “Branch”
are maximum depth and branching factors seen in a set of test
runs. For CPC, maximum branching occurs at the root where
any word can be placed at the top of any column, but large
branching factors of over 400 occur deeper in the tree as well.

4 Experimental Results

All NRPA runs use Alpha=1.0 and N=100 iterations per
level. These values were chosen via a limited set of initial
experiments, and appeared to work well across problems.

4.1 Comparing Efficiency of Search

We wish to compare the effectiveness of NMCS and NRPA.
To account for the methods’ differing computation time and
overhead, we compare based on actual execution times mea-
sured on a reference machine (3.6GHz Core i7 with 4 physi-
cal cores; at most 4 single-threaded jobs run at any time).

A fixed time horizon is used (1000 or 10000 seconds). If
a search configuration completes before the time horizon is
exhausted, the time horizon is filled with independent restarts
of the same configuration. At each point in time, we track the
max score seen so far among all restarts of the search config-
uration. This yields a single timeline for the search configura-
tion; at least 15 independent timelines are generated for each
configuration. Multiple independent timelines can then be
combined to form a picture of the typical trajectory. This has
been used to illustrate that NMCS typically becomes more ef-
ficient as nesting level increases [Cazenave, 2009], and NRPA
shows a similar trend (Fig. 5). When displaying results, we
combine multiple independent timelines at each time t by tak-
ing the median (defined here as the mid element in a sorted
list, or the larger of the 2 mid elements of an even-length list).
When comparing samples, we use a Mann-Whitney U test of
statistical significance with p < 0.05.

Given a time horizon, we ran NRPA and NMCS at increas-
ing nesting level, until it was no longer possible to complete
the majority of a single search run within the horizon. NMCS
consistently gave best results at the largest nesting level, and
so this is the result we show. In some cases, NRPA can run at
a larger nesting level than NMCS in the same horizon. Then,
we show NRPA results at both the larger level as well as the
same nesting level at which NMCS ran.

Table 2 shows median results at 100 and 1000 seconds for
NRPA and NMCS. For all test problems, NRPA results at

652

1. If the previous move resulted in new lines becoming available:
sample 4 such newly-available lines (with replacement) and
pick one yielding the largest number of total available moves
[Cazenave, 2007].

2. Otherwise, with 90% probability: from available moves which
place their new dot at horizontal/vertical/diagonal distance 1 or
2 from the previously-added dot, sample 2 (with replacement)
and pick the one yielding more total available moves.

3. Otherwise, sample 6 available moves (without replacement;
take all if fewer than 6 exist) and pick one yielding the largest
number of newly-available lines as described in 1 above,
breaking ties via the largest number of total available moves.

Figure 6: Tuned MorpT Rollout Policy

100 seconds are statistically significantly better than NMCS
at 1000 seconds. So, in these tests, NRPA consistently ob-
tains better results than NMCS, even in 1/10 the time used
by NMCS. This was true whether NRPA was run at its high-
est nesting level, or at the same nesting level as NMCS.

Sample-k NMCS

For CPC, NMCS spends a large fraction of its time iterat-
ing through high branching factors near the search tree’s root.
This may not be the best use of limited time, and it reduces the
nesting level that can fit in the time horizon. So, we also test
an alternative “Sample-k NMCS” which at each node sam-
ples (with replacement) a fixed number k of children, regard-
less of branching factor. With k sufficiently low, Sample-k
NMCS can fit higher nesting levels than NMCS in the same
time horizon. Table 3 shows median results for CrossC with a
time horizon of 10000 seconds that allows Sample-5 NMCS
to run at nesting level 4 and Sample-15 to run at nesting level
3. Sampling enables improved results here compared to stan-
dard NMCS at nesting level 2. But NRPA level 3 at 1000
seconds still gives statistically significantly better results than
Sample-k NMCS (and standard NMCS) at 10000 seconds.
Again, NRPA obtains better results in 1/10 of the time.

Table 3: CrossC Median Scores with Sampled NMCS
Method Level 102 sec 103 sec 104 sec
NRPA 3 33;229 34;244 35;247
NMCS 2 31;223 32;229 33;235
Sample-5 NMCS 4 32;228 33;232 34;235
Sample-15 NMCS 3 32;231 33;235 33;248

Tuned NMCS Rollout Policy

Since NRPA adapts its rollout policy, it is natural to compare
NMCS using a domain-specific policy. Before running NRPA
on MorpT, we manually tuned a rollout policy via small ex-
periments evaluating policy elements’ impact on results.

Table 4: MorpT Median Scores with Tuned NMCS
Method Level 102 sec 103 sec 104 sec
NRPA 4 152 155 160
NRPA 3 153 157 158
NMCS 3 116 130 137
Tuned NMCS 3 137 146 149

The tuned policy (Fig. 6) is effective in NMCS; Table 4
shows at 10000 seconds it already obtains a median score
higher than the best prior MorpT computer search result

Figure 7: Two of the New Record Solutions and Scores
(a) CrossC: 37;259
C.....HALIFAX...I.D
OLYMPIA....T....Q.E
L...H.R..COLUMBIA.S
U..BOSTON..A....L.M
M.S.E.F..HONOLULU.O
BATONROUGE.T....I.I
U.J.I.R..L.A.AUSTIN
S.O.X.DOVER..U.A..E
..H......N.REGINA.S
CONCORD..A...U.T...
H.S...E.J..BISMARCK
A...JUNEAU...T.F...
R..T..V.C...SALEM..
L.BOISE.K.P.T.A.A.A
E..R..R.S.I.P.N.D.L
S..O...TOPEKA.S.I.B
TRENTON.N.R.U.I.S.A
O..T......R.LINCOLN
N.MONTPELIER..G.N.Y

(b) MorpT: 177 lines

423

49

52

31

11

30

5

10

36 22

9

47 54

58

64

38

35 34 24

2

17 13

29 15

69

28

40

73

75

46

78

45

70

20

44

3

1618

27

88

8 92

85 41

1

106

86

112 115 42

79

80

98

12

7

26

33

6

25

14

19

32

21

37483950

55

118

4390

94

132

59

61

5156

5357

65

60

63

62

6866

82

67 72

81

7187

95

127

76 74

77 84

99

104

83100

120

89

9691

93

135

97

102101

103 105

107

108 109

113

110

116 111117

125114 121

119

128

122

124

123

126

129

138 130

131139

133134

146145

136

143 137

150

140

151

141

142147

163

169

144

149

152

148

155

153

154 156

157

159

171 158

166

164

160

162

161

165

172

168 167

170 173

174

175

176 177

[Akiyama et al., 2010]. But, NMCS with the tuned policy
is still much less efficient than NRPA, even though NRPA
adapts from scratch and does not benefit from such manual
tuning. NMCS, with or without the tuned policy, gives sta-
tistically significantly worse results at 10000 seconds than
NRPA at 100 seconds (whether NRPA is run at level 3 or 4).
So, NRPA obtains better MorpT results than NMCS in 1/100
of the time, even when NMCS is using a well-tuned policy.

4.2 Results of Longer Runs

We ran NRPA over longer times, to compare NRPA’s best
solutions to the best previously published solutions for the
test problems. At the nesting levels selected, approximate
per-run reference machine time is 1 hour for MorpD, 15 hours
for CrossP, 24 hours for CrossC, and 1 week for MorpT. As
a rough comparison, best previous results were reported as
taking 38 days for a MorpT run [Akiyama et al., 2010] and 10
days for a MorpD run on a single machine [Cazenave, 2009].

Table 5: NRPA Results of Longer Runs
Level Runs Median Max(Rep)

MorpT 5 28 171 177 (2)
MorpD 4 40 82 82 (25)
CrossC 4 40 35;249 37;259 (1)
CrossP 4 40 27;234 28;238 (3)

Table 5 has results. For MorpT and MorpD, even the me-
dian is an improvement over the best previously published
solutions. For CrossC and CrossP, the maximum is an im-
provement over the best previous (contest-winning) solutions
(see Table 1). Fig. 7 has the new CrossC and MorpT records.

4.3 Distribution of NRPA Results

Fig. 8 has a distribution of results from NRPA nesting lev-
els 0-5, for MorpT. Nesting level n required roughly 100x
the time of n − 1, so on the logarithmic vertical axis we can
roughly conclude nesting level n is more efficient than n−1 if
its cumulative histogram is over two decades higher. Nesting
levels 1-3 show especially large efficiency gains.

653

100 120 140 160 180

Best Score Obtained by Run

1x10-9
1x10-8
1x10-7
1x10-6
1x10-5
1x10-4

0.001

0.01

0.1

1
F

ra
ct

io
n

of
 R

un
s

Nesting Level 0
Nesting Level 1
Nesting Level 2
Nesting Level 3
Nesting Level 4
Nesting Level 5

Figure 8: NRPA Cumulative Histograms for MorpT

4.4 Permutations and Hybrids

We examine the composition of intermediate solution se-
quences obtained by NRPA. From over 200 MorpT runs with
nesting level 3, we gather each tie and improvement obtained
at level 3 during its 100 iterations. For each, we examine
the codes returned by code() for its sequence of actions, and
categorize each code as one of: Prefix for the initial segment
that exactly matches the previous solution sequence’s initial
segment (note NMCS strictly increases this through a level’s
iterations, but NRPA need not); Permutation matches the pre-
vious solution, but in a permuted order rather than as part of
Prefix; Hybrid does not match the immediately previous so-
lution, but does match an older solution at this level; and New
were not used in any previous solution at this level.

Table 6: NRPA Intermediate Solution Content for MorpT
Prefix Permutation Hybrid New

Ties 0.1% 89.7% 8.3% 1.9%
Improvements 0.1% 65.0% 14.9% 20.0%

Table 6 has results. NRPA freely explores permutations,
with little of the initial segment staying the same. Solutions
also have substantial Hybrid content; NRPA’s policy retains
some emphasis on codes from older solutions (not just the
current best). Hybrid content is higher in improvements than
ties, suggesting it can contribute usefully to progress.

5 Conclusion

We have presented NRPA, an MCTS algorithm that uses gra-
dient ascent on its rollout policy to navigate search. NRPA
yields substantial search efficiency improvements as well as
new record solutions on our test problems. NRPA is the first
computer search method to improve upon a human-generated
Morpion Solitaire record that had stood for over 30 years.

Ongoing work includes more complex applications, en-
abling code() to return a feature vector, and parallelization.

Acknowledgments

Thanks to Mark Land. This work was supported in part by the
DARPA GALE project, Contract No. HR0011-08-C-0110.

References

[Akiyama et al., 2010] H. Akiyama et al. Nested Monte-
Carlo search with AMAF heuristic. In TAAI, 2010.

[Bertsekas, 1997] D. Bertsekas. Differential training of roll-
out policies. In Allerton Conf., 1997.

[Bjarnason et al., 2007] R. Bjarnason et al. Searching soli-
taire in real time. ICGA J., 2007.

[Boyer, 2010] C. Boyer. Science & Vie, page 144, Nov. 2010.
[Boyer, 2011] C. Boyer. http://morpionsolitaire.com, 2011.
[Bruneau, 1976] C.-H. Bruneau. Science & Vie, April 1976.
[Cazenave, 2007] T. Cazenave. Reflexive Monte-Carlo

search. In CGW, 2007.
[Cazenave, 2009] T. Cazenave. Nested Monte-Carlo search.

In IJCAI, 2009.
[Cazenave et al., 2009] T. Cazenave et al. Monte-Carlo bus

regulation. In ITSC, 2009.
[Coulom, 2007] R. Coulom. Computing Elo ratings of move

patterns in the game of Go. In CGW, 2007.
[CrossC, 2006] GAMES Magazine, page 76, August 2006.

Winning solution: page 93, December 2006.
[CrossP, 1994] GAMES Magazine, page 8, June 1994. Win-

ning solution: page 67, October 1994.
[de Mesmay et al., 2009] F. de Mesmay et al. Bandit-based

optimization for library performance tuning. ICML, 2009.
[Demaine et al., 2006] E. D. Demaine et al. Morpion Soli-

taire. Theory Comput. Syst., 2006.
[Fern et al., 2003] A. Fern et al. Approximate policy itera-

tion with a policy language bias. In NIPS, 2003.
[Finnsson et al., 2010] H. Finnsson et al. Learning simula-

tion control in GGP agents. In AAAI, 2010.
[Garey and Johnson, 1979] M. Garey and D. Johnson. Com-

puters and Intractability. 1979.
[Gelly et al., 2007] S. Gelly et al. Combining online and of-

fline knowledge in UCT. In ICML, 2007.
[Ginsberg et al., 1990] M. Ginsberg et al. Search lessons

learned from crossword puzzles. In AAAI, 1990.
[Larranaga et al., 2002] P. Larranaga et al. Estimation of

Distribution Algorithms. Kluwer, 2002.
[Méhat et al., 2010] J. Méhat et al. Combining UCT and

NMCS for single-player GGP. IEEE TCIAIG, 2010.
[Nakhost et al., 2009] H. Nakhost et al. Monte-Carlo explo-

ration for deterministic planning. IJCAI, 2009.
[Rimmel et al., 2011] A. Rimmel et al. Optimization of the

Nested Monte-Carlo Algorithm on the Traveling Salesman
Problem with Time Windows. In Evostar, 2011.

[Saffidine et al., 2010] A. Saffidine et al. UCD: Upper con-
fidence bound for directed acyclic graphs. In TAAI, 2010.

[Silver et al., 2009] D. Silver et al. Monte-Carlo simulation
balancing. In ICML, 2009.

[Silver et al., 2010] D. Silver et al. Monte-Carlo planning in
large POMDPs. In NIPS, 2010.

[Tesauro et al., 1996] G. Tesauro et al. On-line policy im-
provement using Monte-Carlo search. In NIPS, 1996.

[Veness et al., 2011] J. Veness et al. A Monte-Carlo AIXI
approximation. JAIR, 2011.

654

