Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

Real-Time Solving of Quantified CSPs
Based on Monte-Carlo Game Tree Search

Baba Satomi, Yongjoon Joe, Atsushi Iwasaki, and Makoto Yokoo
Department of ISEE, Kyushu University
Fukuoka, Japan
{s-baba@agent., yongjoon@agent., iwasaki@, yokoo@ }inf.kyushu-u.ac.jp

Abstract

We develop a real-time algorithm based on a
Monte-Carlo game tree search for solving a quanti-
fied constraint satisfaction problem (QCSP), which
is a CSP where some variables are universally
quantified. A universally quantified variable rep-
resents a choice of nature or an adversary. The
goal of a QCSP is to make a robust plan against
an adversary. However, obtaining a complete plan
off-line is intractable when the size of the problem
becomes large. Thus, we need to develop a real-
time algorithm that sequentially selects a promising
value at each deadline. Such a problem has been
considered in the field of game tree search. In a
standard game tree search algorithm, developing a
good static evaluation function is crucial. However,
developing a good static evaluation function for a
QCSP is very difficult since it must estimate the
possibility that a partially assigned QCSP is solv-
able. Thus, we apply a Monte-Carlo game tree
search technique called UCT. However, the simple
application of the UCT algorithm does not work
since the player and the adversary are asymmet-
ric, i.e., finding a game sequence where the player
wins is very rare. We overcome this difficulty by
introducing constraint propagation techniques. We
experimentally compare the winning probability of
our UCT-based algorithm and the state-of-the-art
alpha-beta search algorithm. Our results show that
our algorithm outperforms the state-of-the-art algo-
rithm in large-scale problems.

1 Introduction

A constraint satisfaction problem (CSP) [Mackworth, 1992]
is the problem of finding an assignment of values to variables
that satisfies all constraints. Each variable takes a value from
a discrete finite domain. A variety of Al problems can be for-
malized as CSPs. Consequently, CSP research has a long and
distinguished history in Al literature. A quantified constraint
satisfaction problem (QCSP) [Chen, 2004] is an extension of
a CSP in which some variables are universally quantified. A
universally quantified variable can be considered the choice
of nature or an adversary. The goal of a QCSP is to make

655

a robust plan against an adversary. A QCSP can formalize
various application problems including planning under uncer-
tainty and playing a game against an adversary.

While solving a CSP is generally NP-complete, solving a
QCSP is generally PSPACE-complete. Thus, as the number
of variables increases, obtaining a complete plan off-line be-
comes intractable quickly when the size of the problem be-
comes large. In an off-line planning, if a complete solution
is not found before the agent actually plays against the ad-
versary, it is a complete failure. However, if the adversary is
not omniscient, the agent does not necessarily need a com-
plete plan to defeat the adversary. The agent should make a
reasonable choice, even if it is not guaranteed to be succeed,
using the available time until each deadline. In this paper,
we develop a real-time algorithm that sequentially selects a
promising value for each variable at each deadline.

Most existing algorithms for solving a QCSP are off-
line algorithms [Bacchus and Stergiou, 2007; Gent ef al.,
2005]. One notable exception is [Stynes and Brown, 2009].
In [Stynes and Brown, 2009], a real-time algorithm for solv-
ing a QCSP is presented. This algorithm applies a standard
game tree search technique to QCSP; it is a combination of a
lookahead method based on an alpha-beta pruning and a static
evaluation function. In [Stynes and Brown, 2009], several al-
ternative strategies are evaluated. A strategy called Intelligent
Alpha Beta (IAB) is shown to be most effective. In IAB, child
nodes in a search tree are ordered from best to worst, and an
alpha-beta search is executed. In this algorithm, the evalua-
tion value is calculated based on a static evaluation function
for a leaf node in a partially expanded game tree (which is not
a terminal node of the fully expanded game tree).

In a standard game tree search algorithm including alpha-
beta, developing a good static evaluation function is crucial.
However, it is very unlikely that we can develop a good static
evaluation function for a QCSP because it must estimate the
possibility that a partially assigned QCSP is solvable. This
task is difficult even for a standard CSP. The static evalua-
tion function in [Stynes and Brown, 2009] (called Dynamic
Geelen’s Promise) uses the product of the sizes of future ex-
istential domains. This seems reasonable for a standard CSP,
but it is not clear whether this function is really appropriate
to a QCSP.

In this paper, we apply a Monte-Carlo game tree search
technique that does not require a static evaluation function.

A Monte-Carlo method, which is an algorithm based on re-
peated random sampling, evaluates the node by the results
of many playouts in which we play a game randomly until
it is finished. Thus, the evaluation values are stochastic. In
Computer game Go, a variation of the Monte-Carlo method
called the UCT (UCB applied to Trees) algorithm [Kocsis and
Szepesviri, 2006] has been very successful. One merit of
UCT is that it can balance exploration and exploitation when
selecting a node to start a playout. In this paper, we also use
a UCT-based algorithm.

However, the player and the adversary are extremely asym-
metric in a QCSP if we choose parameters, such as constraint
tightness, similar to a standard CSP. A prevailing assumption
in a CSP literature is that satisfying all constraints is difficult.
For example, in the eight-queens problem (which is consid-
ered as a very easy CSP instance), if we place eight queens
on the chess board at random, the chance that these queens do
not threaten with each other is very small. Thus, if we simply
apply UCT, finding a game sequence where the player wins
is very rare. As aresult, the UCT’s decision is about the same
as a random guess. To overcome this difficulty, we introduce
constraint propagation techniques based on a concept called
arc-consistency to allow the algorithm to concentrate on the
part of the game tree where the player has some chance to
win. We experimentally compare the winning probability of
our UCT-based algorithm and the state-of-the-art alpha-beta
search algorithm (IAB). Our results show that our algorithm
outperforms IAB for large-scale problems.

The rest of this paper is organized as follows. In Section 2,
we show the formalization of a QCSP, real-time online solv-
ing of a QCSP, and the UCT algorithm as a related research.
In Section 3, we present real-time algorithms for solving a
QCSP. Then, in Section 4, we show the experimental results.
Finally, in Section 5, we conclude this paper.

2 Related Research
2.1 Quantified CSP

A constraint satisfaction problem (CSP) is a problem of find-
ing an assignment of values to variables that satisfies con-
straints. A CSP is described with n variables z1, zs, - -, 2,
and m constraints C, Cy, - - -, C),. Each variable x; takes a
value from a discrete finite domain D;.

A QCSP [Chen, 2004] is a generalization of a CSP in
which variables are existentially (3) or universally (V) quan-
tified. Solving a QCSP is PSPACE-complete. Each quantifier
is defined by the sequence of quantified variables. Sequence
@ consists of n pairs, where each pair consists of quantifier
Q; and variable x;, as represented in (1):

lel ann (1)

Note that the sequence order matters, e.g., the meanings of
VaTy loves(x,y) and FyVz loves(x,y) are quite different.
Va 3y loves(x, y) means any x loves some y, where y can be
different for each x. On the other hand, JyVx loves (z,y)
means particular person y is loved by everybody.

A QCSP has a form QC as in (2), where C'is a conjunction
of constraints and () is a sequence of quantified variables:

3$1VI23I3V$4(I1 }é Ig) A\ (CCl < $4) A (IQ }é Ig). (2)

656

The semantics of a QCSP QC' can be defined recursively
as follows:

e If C' is empty then the problem is true. If @) is of the
form Jx1 Qx5 - - - Qpxy, then QC is true iff there exists
some value a € D such that Qaxs - - - Qrx, Cl(21, a)]
is true. If @) is of the form Vz1Qsxs - - - Qp 2y, then
QC is true iff for each value a € D1, Qo+ QnTy
Cl(x1,a)] is true. Here, C[(z1,a)] is a constraint C
where z; is instantiated to value a.

2.2 Real-Time Online Solving of QCSP

In the real-time online solving of QCSP [Stynes and Brown,
2009], a QCSP is treated as a two-players game, in which
the existential player assigns values to existentially quanti-
fied variables and the universal player assigns values to uni-
versally quantified variables. Each player must decide the
value of each variable within a time limit. For the existential
player, the goal is to reach a solution, but the universal player
is trying to prevent a solution from being reached. Real-Time
online solving of QCSP for the existential player is defined as
follows:

e Given QCSP QC, increasing sequence of time points
t1,t2,---,t,, and sequence of values vy, vs,vs,- -,
Up—1 such that each value v; is in D; and is revealed
at time t;, generate at each time t;, fork = 2,4,6,---,n
a value vy, € Dy such that the tuple (v, va,---,v,)isa
solution for QC'.

Here, for simplicity, the sequence of quantifiers of QCSP QC'
is assumed to be a strictly alternating sequence of quantifiers,
starting with V and ending with 3.

23 UCT

UCT (Upper Confidence bound applied to Trees) [Kocsis and
Szepesviri, 2006] is a Monte-Carlo method combined with
tree search. A Monte-Carlo method is a stochastic technique
using random numbers, that evaluates nodes with the mean
score given by the result of many playouts in which we play
a game randomly until it is finished. It is effective when a
lookahead search is difficult, e.g., the size of the game tree
is huge, and/or designing a good static evaluation function
is hard. For Computer Go, UCT-based algorithms are very
effective. CrazyStone [Coulom, 2006] is one of the first com-
puter Go programs that utilizes UCT. UCT is also success-
ful in General Game Playing competitions, where an agent
should accept declarative descriptions of an arbitrary game
at runtime and be able to play the game effectively without
human intervention [Finnsson and Bjérnsson, 2008].

UCT can be considered an application of Upper Confi-
dence Bound (UCB) [Auer et al., 2002] to tree search, which
is a technique applied to the multi-armed bandit problem. The
goal of the problem is to select a sequence of arms that maxi-
mizes the sum of rewards. The reward of each arm is given by
a fixed probability distribution which is initially unknown. In
this problem, achieving a good balance between exploration
and exploitation, i.e., whether to use a trial for gathering new
information, or collecting of rewards, is important. When
UCB is applied for selecting an arm, it selects an arm whose
UCB value is highest. A UCB value is defined in (3):

~_

40% 10%
winning probability

20%

Figure 1: Node expansion by UCT

7 2logt
X4y B
tj

X is the mean of rewards given by the plays of arm j, t;
is the number of plays of arm j, and ¢ is the overall number
of plays. The first term favors the arm with the best empirical
reward while the second term prefers an arm with fewer plays.

In UCT, a partially expanded game tree (which is a subtree
of a fully expanded game tree) is stored. Initially, this subtree
has only one root node. UCT continue to select a node by the
UCB value in this subtree, from the root node until it reaches
one leaf node of the subtree (which is not a terminal node of
the fully expanded game tree). A leaf node is expanded if the
number of visits of the node reaches a threshold value. When
UCT arrives at a leaf node, a random playout starts from the
leaf node to a terminal node, where the result of the game is
determined. The result of the playout is updated iteratively
from the leaf node to the root node as an evaluation value.

3)

Figure 1 represents the subtree used in UCT. Since UCT
gives only two values that represents winning or losing as a
reward, an evaluation value represents the winning probabil-
ity. In Figure 1, the number of visits for the left node is largest
since the winning probability of the left node is highest. So
the left node is expanded first. On the other hand, the center
and right nodes are also visited (although less frequently than
the left node) due to the second term in (3).

Algorithm 1 illustrates the UCT algorithm. UCT searches
a tree repeatedly until a time limit. One search trial includes
three processes. The first process (i) in Algorithm 1 is a func-
tion that selects a node by the UCB value. The second pro-
cess (ii) represents one playout, which returns the result of the
playout. The last process (iii) is a function that updates the
evaluation values of nodes. This function updates the evalua-
tion values from a leaf node to the root node by the result of
the playout.

657

Algorithm 1 UCT algorithm

while not timeout do
search(rootNode);
end while

function search(rootNode)
node :=rootNode;
while node is not leaf do

node := selectByUCB(node); — (i)
end while
value := playout(node); — (ii)
updateValue(node, value); — (iii)
end function

3 Real-Time Algorithm based on
Monte-Carlo for Solving QCSPs

In this section, we present a real-time algorithm for solving a
QCSP, which is based on UCT. First, we show the basic real-
time algorithm based on UCT (Section 3.1). However, since
this basic algorithm fails to obtain useful information from
playouts in a reasonable amount of time, we modified it by
introducing constraint propagation techniques (Section 3.2).

3.1 Basic Monte-Carlo Algorithm for QCSPs

A UCT-based algorithm stores a subtree of a game tree. In a
QCSP, since the values of the variables must be determined
in a sequence of quantifiers, a QCSP’s game tree can be rep-
resented as follows:

e A node in a game tree represents a partially assigned
QCSP. More specifically, the root node represents a state
where no variable’s value has been assigned yet. A node
whose depth is i represents a state where the values have
been assigned from the first variable to ¢-th variable in
the sequence.

Each node has a variable that should be assigned next.
The number of links from a node equals the domain size
of the variable of the node, i.e., each link represents the
choice of a value of the variable. A child node represents
a state where the value of the parent node’s variable is
assigned according to the link.

Our algorithm continues to select a child node (which cor-
responds to selecting the value of a variable by the UCB
value), from the root until it reaches one leaf node of the sub-
tree. In our algorithm, we set the threshold value of a node
expansion to one, i.e., a leaf node is expanded on the first
visit. When a leaf node is expanded, its children are gener-
ated and they become new leaf nodes. Then, the algorithm
selects one new leaf node randomly, and starts a playout from
the selected node.

In this algorithm, for each playout, we assign values ran-
domly to all variables based on the sequence of quantifiers.
The existential player wins if all constraints are satisfied, oth-
erwise the universal player, i.e., the adversary, wins. If the
existential player wins, the evaluation values of the nodes are
updated by 1, otherwise by 0. The update procedure from the

universal player’s point of view is symmetric. More specifi-
cally, the evaluation values of the nodes are updated by —1 if
the existential player wins.

We introduce a Pure Value Rule [Gent et al., 2005] for ba-
sic pruning that is defined as follows:

e It prunes the search space using a concept called pure
value, which is defined as follows:

— Value a € D; of QCSP QC is pure iff VQ;z; €
Q, where z; # x; and Vb € D, the assignments
(x;,a) and (x;,b) are compatible.

An existential variable with a pure value can be set to
that value, while a pure value is removed from the do-
main of a universal variable.

In our algorithm, a Pure Value Rule is applied in a process
selectByUCB() in Algorithm 1 when a node is expanded. The
algorithm creates child nodes for values except for values re-
moved by the Pure Value Rule, which reduces the number
of child nodes since it is applied before a node is expanded.
However, the Pure Value Rule is not powerful enough to re-
duce the search space. Since the player and the adversary are
extremely asymmetric in a QCSP, the probability that a set
of random value assignments satisfies all constraints is very
small. Thus, finding a game sequence where the player wins
is very rare, and evaluation values are updated only by 0 in
most cases. As a result, the decision of UCT is about the
same as a random guess. To overcome this difficulty, we in-
troduce more powerful constraint propagation techniques so
that the algorithm can concentrate on the part of the game tree
where the player has some chance to win.

3.2 Improvement of Basic Algorithm with
Constraint Propagation

We modified a basic real-time algorithm for solving a QCSP
by introducing constraint propagation techniques, i.e., we re-
move values from the domains, that cannot be a part of the
final solution. This corresponds to pruning nodes where the
universal player wins in the future. By pruning such nodes,
the algorithm can concentrate on the part of the game tree
where the player has some chance to win. We present two
different approaches on how to update evaluation values of
nodes based on the result of constraint propagation: one is
called shallow update, the other is called deep update.

Algorithm 2 Process of node expansion

if node is a leaf node then
pureValueRule(node);
for each value v in domain of variable that the node has
do
child := new node(v);
end for
for each child do
constraintPropagate(child);
end for
end if

658

Incorporating More Powerful Constraint Propagation
Techniques
We introduce a constraint propagation technique based on
a concept called arc-consistency. A CSP is called arc-
consistent, if for any pair of variables z; and x2, for any
value a in D1, there exists at least one value b in D> that sat-
isfies the constraint between x1 and x2. An arc-consistency
algorithm removes the values if they do not satisfy the above
condition. Our algorithm achieves Strongly Quantified Gen-
eralized Arc Consistency (SQGAC) [Nightingale, 2007] by
constraint propagation. For QCSP, constraint C' is SQGAC
iff for each variable x included in C, for each value a € D,
for all universal variables x;, x;, - - - ,, which appear after x in
sequence (@, and for each partial assignment {(z, a), (2;,b) |
be D, (zj,¢) | c€ Dj,- -}, there exists a strategy to assign
other variables in C so that constraint c is satisfied. When all
constraints are binary, SQGAC is reduced to Quantified Arc
Consistency (QAC) [Bordeaux and Monfroy, 2002].

In our algorithm, when a node is expanded, or a value of
a variable is determined within a random playout, constraint
propagation is executed to achieve SQGAC. We present two
alternative methods (deep/shallow update) that are different
in how far the update of evaluation values continues.

Details of Algorithm

The modified algorithms apply constraint propagation for
all child nodes created as represented in Algorithm 2. The
algorithm performs SQGAC. If the domain of an existen-
tially quantified variable becomes empty or any value is re-
moved from the domain of a universally quantified variable
by achieving SQGAC, the assignment eventually leads to a
constraint violation. In the shallow update method, when the
algorithm finds such a constraint violation, it updates the eval-
uation value of the node that leads to a constraint violation to
—00.

In our deep update method, as well as the above procedure
for the shallow update, we incorporate the following addi-
tional procedure to update the evaluation values of ancestor
nodes.

e Assume for node ¢, which represents an existentially
quantified variable, the evaluation values of all ¢’s child
nodes become —oo (as a result of several shallow/deep
updates). Then node ¢ will eventually lead to a con-
straint violation. Thus, the algorithm updates ¢’s eval-
uation value to —o0.

Assume for node 7, which represents a universally quan-
tified variable, the evaluation value of one of 7’s child
nodes is —oo (as a result of another shallow/deep up-
date). Then node 7 will eventually lead to a constraint
violation (assuming the adversary takes the child node
whose evaluation value is —o0). Thus, the algorithm up-
dates 7’s evaluation value to —oo.

Note that value —oo is used as a sign that the node causes a
constraint violation. When updating the evaluation value of
its parent node, it is treated as 0.

While constraint propagation is effective for pruning the
search space and for concentrating playouts on the part of the
game tree where the player has some chance to win, we need

winning
probability
50%

removed

- /

Figure 2: Change of winning probability with constraint
propagation

winning probability 30%

to redefine the way of calculating the winning probability of
a node based on the result of the playouts. More specifically,
when a value is removed by constraint propagation, the esti-
mated winning probability obtained by playouts is skewed, as
illustrated in Figure 2.

Here, assume 100 terminal nodes exist from the leaf node
in total. Each terminal node represents a state where the val-
ues of all variables are assigned. Within 100 terminal nodes,
since 40 are descendants of the removed node, they are not
considered in the playouts. Assume the estimated winning
probability by random playouts for this leaf node is 50%.
This means that within the 60 unremoved nodes, the player
can win around 30 terminal nodes. On the other hand, the
correct winning probability should be 4031960 = 30%.

To overcome this problem, we need to incorporate the in-
formation of the removed nodes, (which result in constraint
violations, i.e., player’s loss) into the evaluation values and
UCB values. We redefine a UCB value as follows:

b 2logt

ij(L)+ tj

[is the number of terminal nodes pruned, and L is the total
number of terminal nodes. Thus, [/ L is the rate of the pruned
terminal nodes (thus unexplored). Therefore, X; x (1 —1/L)
is the adjusted winning probability including the pruned ter-
minal nodes. This probability should be close to the real win-
ning probability. When the universal player wins in all play-
outs from a node, the node’s UCB value is determined only
by the second term since the first term is 0.

l

“)

4 Experiments

In this section, we experimentally compare the winning prob-
ability of our UCT-based algorithm and the state-of-the-art
alpha-beta search algorithm, when they play against a deliber-
ative and random adversary. We can consider a random adver-
sary represents a choice of nature or an irrational agent. Ide-
ally, a real-time algorithm should perform well against both
rational/irrational adversaries.

659

100, . .

90 MC (shallow)—— |
S 80 L MC (NoProp)---%--- |
~ Random ------
270+
S 60
—‘é 50 -
A~ 40 +-
230
£ 20x
= 10 g [O VI
[y ¥ """"" e ¥ ORI S %
055 06 065 07 075 08 0.85
p33

Figure 3: Effect of constraint propagation: QCSP against ran-
dom adversary (n = 20,d = 8)

We created problem instances with a strictly alternating se-
quence of J and V quantifiers as [Stynes and Brown, 2009].
A random binary QCSP instance is generated based on five
parameters; (n, d, p, p33, pv3), where n is the number of
variables, d represents the domain size, which is the same
for all variables, and p represents the number of binary con-
straints as a fraction of all possible pairs of variables. p33 rep-
resents the number of constraints in the form of 3z; 3z, ¢;; as
a fraction of all possible tuples. py3 is a similar quantity for
Va;3x;, c;; constraints, described below. The other two types
of constraints are not generated since they can be removed by
preprocessing.

When many constraints exist in the form of Vz;3x;, ¢;;,
most problem instances are insolvable. To generate enough
solvable instances, constraints in the form of Vx;3x;, ¢;; are
restricted in the following way, as described in [Gent et al.,
2005]. We generate a random total bijection from one do-
main to the other. All tuples that are not in this bijection are
excluded in the constraint. From this total bijection, choose
pv3 fraction of tuples as constraints.

In Figures 3-5, we chose the following parameters: n =
20, d = 8, p = 0.20, py3 = 0.5. Then we varied p33
from 0.55 to 0.85. For each value of p33, we generated 100
instances. The time limit in which each player determines
a value is 1000ms, i.e., if a player uses a UCT-based algo-
rithm, it tries to perform as many playouts as possible un-
til the time limit. Also, if a player uses a standard game
tree search, it tries to lookahead the search tree as deep as
possible until the time limit. All experiments were run on
an Intel Xeon 2.53GHz processor with 24GB RAM. For this
parameter setting, we can check whether a problem instance
has a winning strategy or not by using an off-line algorithm.
When p33 = 0.55, almost all problem instances have win-
ning strategies. When p33 0.60, approximately 95%
of problem instances have winning strategies. Also, when
paz = 0.65,0.70, and 0.75, the ratios of problem instances
with winning strategies are about 80%, 60%, and 20%, re-
spectively.

Figures 3 and 4 show the ratio of problem instances that
the existential player wins. Figure 3 illustrates the effect of

T T T

MC (deep) —+— _|
MC (shallow)---x---
IAB ---%---

N

Winning Probability (%)

0.7
p33
Figure 4: QCSP against random adversary (n = 20,d = 8)

0.75

0.8

0 | |
0.55 0.6 0.65

0.85

100
90
80
70
60
50
40
30
20
10

0 |
0.55 0.6

T T T

MC (deep) —+— _|
MC (shallow)---x---
IAB---*---

Winning Probability (%)

0.65 0.7

p33
Figure 5: QCSP against alpha-beta (n = 20, d = 8)

constraint propagation. Our UCT-based algorithm without
constraint propagation (MC (NoProp)) performed very badly;
it is slightly better than a random player (Random). On the
other hand, the performance improves significantly by incor-
porating constraint propagation with a shallow update method
(MC (shallow)). Constraint propagation is clearly very effec-
tive in our real-time algorithm for solving QCSPs.

Figure 4 compares our UCT-based algorithms and the
state-of-the-art lookahead algorithm. MC (deep) is the result
of our UCT-based algorithm with a deep update method, and
IAB is the result of the lookahead algorithm with an Intelli-
gent Alpha Beta (IAB) strategy [Stynes and Brown, 2009].
The evaluation results reported in [Stynes and Brown, 2009]
indicate that IAB with a static evaluation function called Dy-
namic Geelen’s Promise (DGP), which uses the product of the
sizes of future existential domains, performs best. Thus, we
also used DGP for the static evaluation function of IAB. In
Figure 4, the results of each algorithm are almost equivalent.
Actually, these differences are not significant'.

Figure 5 shows the experimental results where the univer-
sal player applies the lookahead algorithm with Alpha Beta.

'In this section, we apply paired t-tests and the significant level
is 5%.

660

As shown in Figure 5, the performance of MC (shallow) is
worse than IAB and MC (deep), and these differences are sig-
nificant. On the other hand, MC (deep) and IAB are almost
equivalent, and this difference is not significant.

In Figures 6 and 7, we show the result for larger problem
instances of the following parameters: n 50, d = 16,
p = 0.20, py3 = 0.5. We varied p33 from 0.25 to 0.50
when the universal player applies a random adversary. Then
we varied p33 from 0.25 to 0.45 when the universal player ap-
plies a lookahead algorithm with Alpha Beta. The time limit
in which each player determines a value is 3000ms. For each
value of p33, we generated 100 instances.

Figure 6 shows the experimental result against a random
adversary. In this experiment, MC (shallow) performs much
better than IAB and MC (deep), and these differences are sig-
nificant. IAB performs better than MC (deep) (in particular,
when p33 is 0.4 and 0.45), but the difference is not significant
for overall settings of p33.

Figure 7 shows the experimental result against Alpha Beta.
In this experiment, our UCT-based algorithms performs much
better than IAB, and these differences are significant. MC
(shallow) and MC (deep) are almost equivalent, and this dif-
ference is not significant. When the search tree becomes too
large, a lookahead based algorithm cannot obtain enough in-
formation to make a reasonable decision. On the other hand,
our UCT-based algorithm still manages to obtain some useful
information within a limited amount of time.

The results for MC (deep) and (shallow) are somewhat puz-
zling. Initially, we expected that MC (deep) will consistently
outperform MC (shallow). Our expectation was as follows.
Assume MC (deep) removes a move/value of the existential
player. Then, MC (shallow) also will not select the move af-
ter enough random playouts, since in the UCT, a node that has
more chance to win is selected more frequently. Thus, we as-
sumed that the removal never hurts. However, in larger prob-
lem instances, MC (shallow) outperforms MC (deep) when
the adversary is random, and they are almost equivalent when
the adversary is deliberative.

We do not have a definite answer for explaining this fact
yet. Our current conjecture is as follows. In a larger prob-
lem instance (with a longer time limit), the subtree stored
by our Monte-Carlo algorithm becomes large. Then, per-
forming a deep update requires certain overhead. As a re-
sult, MC (shallow) can run more random playouts than MC
(deep). MC (deep) tries to avoid a value assignment that can
lead to its loss by applying an additional procedure to up-
date the evaluation values, assuming the adversary is ratio-
nal. This additional effort does not pay very well, especially
when the adversary is a random player. More detailed anal-
ysis is needed to clarify the merit/demerit of deep/shallow
update procedures.

5 Conclusions

In this paper, we presented a real-time algorithm for solving
a QCSP. We applied a Monte-Carlo game tree search tech-
nique called UCT, which has been very successful in games
like Go, and does not require a static evaluation function.
We found that a simple application of UCT does not work

100
90
80
70
60
50
40
30
20
10

0 | | | |
025 03

Winning Probability (%)

Figure 6: Large-scale QCSP against random adversary (n =
50,d = 16)

for a QCSP because the player and the adversary are ex-
tremely asymmetric and finding a game sequence where the
player wins is very rare. As a result, the UCT’s decision is
about the same as a random guess. Thus, we introduced con-
straint propagation techniques so that the algorithm can con-
centrate on the part of the game tree where the player has
some chance to win, and obtain a better estimate of the win-
ning probability. Experimental results showed that our UCT-
based algorithm with constraint propagation greatly outper-
forms the algorithm with no constraint propagation. Further-
more, experimental results show that our algorithm is bet-
ter than the state-of-the-art alpha-beta search algorithm for
large-scale problems. Our future works include developing
more efficient algorithms for solving a QCSP by improv-
ing the formula of the UCB value calculation and introduc-
ing an endgame database. Also, we hope to perform experi-
ments with non-random QCSP instances, such as bin-packing
games presented in [Stynes and Brown, 2009].

Furthermore, our ultimate research goal is to develop an
real-time algorithm for a quantified distributed CSP (QD-
CSP) [Baba et al., 2010; Yokoo et al., 1998]. A QDCSP is a
QCSP in which variables are distributed among agents. In a
QDCSP, as in a QCSP, obtaining a complete plan off-line is
intractable. Thus, a team of cooperative agents need to make
their decisions in real-time. We hope to extend the algorithm
developed in this paper to QDCSP.

Acknowledgments

This research was partially supported by Japan Society for the
Promotion of Science, Grant-in-Aid for Scientific Research
(A), 20240015, 2008. The authors would like to thank anony-
mous reviewers for their helpful comments.

References

[Auer et al., 2002] P. Auer, N. Cesa-Bianchi, and P. Fischer.
Finite-time analysis of the multiarmed bandit problem.
Machine Learning, 47(2-3):235-256,2002.

[Baba er al., 2010] S. Baba, A. Iwasaki, M. Yokoo, M. C.
Silaghi, K. Hirayama, and T. Matsui. Cooperative problem

661

100 . .
MC (deep) —— _|

MC (shallow)---%---

IAB---%:---

Winning Probability (%)

O |
0.25 0.3

0.35
p33
Figure 7: Large-scale QCSP against alpha-beta (n = 50,d =
16)

solving against adversary: quantified distributed constraint
satisfaction problem. In AAMAS, pages 781-788, 2010.

[Bacchus and Stergiou, 2007] F. Bacchus and K. Stergiou.
Solution directed backjumping for QCSP. In CP, pages
148-163,2007.

[Bordeaux and Monfroy, 2002] L. Bordeaux and E. Mon-
froy. Beyond NP: Arc-consistency for quantified con-
straints. In CP, pages 371-386, 2002.

[Chen, 2004] H. M. Chen. The computational complexity
of quantified constraint satisfaction. PhD thesis, Cornell
University, 2004.

[Coulom, 2006] R. Coulom. Efficient selectivity and backup
operators in monte-carlo tree search. In CG, pages 72-83,
2006.

[Finnsson and Bjornsson, 2008] H. Finnsson and
Y. Bjornsson. Simulation-based approach to general
game playing. In AAAI, pages 259-264, 2008.

[Gent et al., 2005] 1. P. Gent, P. Nightingale, and K. Stergiou.
QCSP-Solve: A solver for quantified constraint satisfac-
tion problems. In IJCAI, pages 138-143, 2005.

[Kocsis and Szepesviri, 2006] L. Kocsis and C. Szepesviri.
Bandit based monte-carlo planning. In ECML, pages 282—
293, 2006.

[Mackworth, 1992] A. K. Mackworth. Constraint satisfac-
tion. In S. C. Shapiro, editor, Encyclopedia of Artificial
Intelligence, pages 285-293. John Wiley & Sons, 1992.

[Nightingale, 2007] P. Nightingale. ~Consistency and the
Quantified Constraint Satisfaction Problem. PhD thesis,
University of St Andrews, 2007.

[Stynes and Brown, 2009] D. Stynes and K. N. Brown. Re-
altime online solving of quantified CSPs. In CP, pages
771-786,2009.

[Yokoo et al., 1998] M. Yokoo, E. H. Durfee, T. Ishida, and
K. Kuwabara. The distributed constraint satisfaction prob-
lem: formalization and algorithms. IEEE Transactions on
Knowledge and Data Engineering, 10(5):673-685, 1998.

