
Bounded Suboptimal Search:
A Direct Approach Using Inadmissible Estimates

Jordan T. Thayer and Wheeler Ruml

Department of Computer Science

University of New Hampshire

Durham, NH 03824 USA

jtd7, ruml at cs.unh.edu

Abstract

Bounded suboptimal search algorithms offer
shorter solving times by sacrificing optimality and
instead guaranteeing solution costs within a de-
sired factor of optimal. Typically these algorithms
use a single admissible heuristic both for guiding
search and bounding solution cost. In this paper,
we present a new approach to bounded subopti-
mal search, Explicit Estimation Search, that sepa-
rates these roles, consulting potentially inadmissi-
ble information to determine search order and us-
ing admissible information to guarantee the cost
bound. Unlike previous proposals, it successfully
combines estimates of solution length and solution
cost to predict which node will lead most quickly
to a solution within the suboptimality bound. An
empirical evaluation across six diverse benchmark
domains shows that Explicit Estimation Search is
competitive with the previous state of the art in do-
mains with unit-cost actions and substantially out-
performs previously proposed techniques for do-
mains in which solution cost and length can differ.

1 Introduction

When resources are plentiful, algorithms like A∗ [Hart et al.,
1968] or IDA∗ [Korf, 1985] can be used to solve heuristic
search problems optimally. However, in many practical set-
tings, we must accept suboptimal solutions in order to reduce
the time or memory required for search. When abandoning
optimality, we can still retain some control over the solutions
returned by bounding their cost. We say a search algorithm is
w-admissible if it is guaranteed to find solutions whose cost
is within a specified factor w of optimal.

Weighted A∗, for example, modifies the standard node
evaluation function of A∗, f(n) = g(n)+h(n), where g(n) is
the cost of getting to n from the root and h(n) is the estimated
cost-to-go from n to the goal, into f ′(n) = g(n) + w · h(n).
Placing additional emphasis on h(n) is a common technique
for reducing the number of expansions needed to find solu-
tions. This encourages the search algorithm to prefer states
where there is little estimated cost remaining to the goal, as
they tend to be closer to the goal.

In domains where different actions have different costs,
this tendency is less pronounced. Cost estimates do not nec-
essarily tell us anything about the potential length of so-
lutions, as we could incur the same cost by taking many
cheap actions or a single expensive one. A search algorithm
can use an additional heuristic to determine which nodes
are closer to goals. Several authors [Pearl and Kim, 1982;
Ghallab and Allard, 1983; Pohl, 1973; Thayer and Ruml,
2009] have proposed techniques that rely on such estimates
and have shown how to compute them.

A∗
ε

[Pearl and Kim, 1982] is a search algorithm that re-
lies on such estimates of solution length, but it has not seen
wide adoption because it often performs poorly [Thayer et
al., 2009]. As we will explain in more detail later, this poor
performance is a result of using lower bounds both to guide
the search and to enforce suboptimality bounds. While lower
bounds are needed to prove bounded suboptimality, admissi-
bility is not required to guide the search towards solutions.
Most previous proposals ignore this potential division of la-
bor, but as we will see later in this paper, it can be the differ-
ence between solving problems and not.

We begin by showing that most previously proposed al-
gorithms do not directly attempt to optimize solving time.
We then propose a new search algorithm, Explicit Estima-
tion Search, that directly attempts to find solutions within the
desired suboptimality bound as quickly as possible. It does so
by using unbiased estimates of solution cost as well as solu-
tion length estimates to guide search. Lower bounds are only
used for ensuring that every expanded node is within the sub-
optimality bound. In a study across six diverse benchmark
domains we demonstrate that this difference allows Explicit
Estimation Search to perform much better than the current
state of the art in domains where action costs can differ.

2 Previous Work

The objectives of bounded suboptimal search are, first, to find
solutions within the user specified cost-bound, and second, to
find them as quickly as possible. While it is not clear how
to make search algorithms directly prefer those solutions that
are fastest to find, we can make them prefer solutions that are
estimated to be shorter. Intuitively, shorter solutions are likely
to be easier to find. In order for heuristic search to find a so-
lution, it must expand at least the path from the starting node
to a goal node that represents that solution. Our fundamen-

674

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence



tal assumption is that, all else being equal, shorter solutions
will require fewer expansions to construct. While previous
approaches to bounded suboptimal search satisfy the first ob-
jective by definition, most do not directly address the second:

weighted A∗ [Pohl, 1973] returns solutions of bounded
quality, but it cannot prefer the shorter of two w-admissible
solutions because it has no way of taking advantage of esti-
mates of solution length when determining search order. Re-
vised dynamically weighted A* [Thayer and Ruml, 2009] is
an extension of weighted A* that dynamically adjusts the
weight used based on a nodes estimated distance to goal.
While this modification gives preferential treatment to nodes
which appear to be close to a goal, it will not always attempt
to pursue the shortest solution within the desired bound.

Optimistic Search [Thayer and Ruml, 2008] takes ad-
vantage of the fact that weighted A∗ tends to return solutions
much better than the bound suggests. It does so by running
weighted A∗ with a bound wopt that is twice as suboptimal as
the desired bound, wopt = (w − 1) · 2 + 1, and then expand-
ing some additional nodes after a solution is found to ensure
that the desired bound was met. Specifically, it repeatedly ex-
pands bestf , the node with the smallest f(n) = g(n) + h(n)
of all nodes on the open list, until w · f(bestf) ≥ g(sol),
where sol is the solution returned by the weighted A∗ search.
Because f(bestf) is a lower bound on the cost of an optimal
solution, this proves that the incumbent is within the desired
suboptimality bound. Because the underlying search order
ignores the length of solutions, so does optimistic search.

Skeptical Search [Thayer and Ruml, 2011] replaces the
aggressive weighting of optimistic search with a weighted

search on an inadmissible heuristic, as in f̂ ′(n) = g(n) +

w · ĥ(n), where ĥ is some potentially inadmissible estimate
of the cost-to-go from n to a goal. Then, as with optimistic
search, bestf is repeatedly expanded to prove that the incum-
bent solution is within the desired bound. Because skeptical
search is only relying on cost-to-go estimates for guidance, it
cannot prefer shorter solutions within the bound.

A∗
ε

[Pearl and Kim, 1982] uses a distance-to-go estimate
to determine search order. A∗

ε sorts its open list on f(n).
It maintains the subset of all open nodes that it believes can
lead to w-admissible solutions, called the focal list. These
are the nodes where f(n) ≤ w · f(bestf). From focal, it se-
lects the node that appears to be as close to a goal as possible,

the node with minimum d̂(n), for expansion. d̂ is a poten-
tially inadmissible estimate of the number of actions along a
minimum-cost path from n to a goal. While this algorithm
does follow the objectives of suboptimal search, it performs
poorly in practice [Thayer et al., 2009]. This is a result of
using f(bestf) to determine which nodes form focal. When
we use a lower bound to determine membership in the focal
list, it is often the case that the children of an expanded node
will not qualify for inclusion in focal because f(n) tends to
rise along any path. As a result of f ’s tendency to rise, bestf

tends to have low depth and high d̂. This results in an unfor-
tunate and inefficient thrashing behavior at low to moderate
suboptimality bounds, where focal is repeatedly emptied until
bestf is finally expanded, raising f(bestf) and refilling focal.

3 Explicit Estimation Search

The central contribution of this paper is a new bounded sub-
optimal search algorithm, Explicit Estimation Search (EES),
that incorporates the objectives of bounded suboptimal search

directly into its search order. Using ĥ and d̂ functions, it
explicitly estimates the cost and distance-to-go for search
guidance, relying on lower bounds solely for providing sub-
optimality guarantees. In addition to bestf , EES refers to
best

f̂
, the node with the lowest predicted solution cost, that

is f̂(n) = g(n) + ĥ(n) and best
d̂
, the node, among all those

that appear w-admissible, that appears closest to a goal.

best
f̂

= argmin
n∈open

f̂(n)

best
d̂

= argmin
n∈open∧f̂(n)≤w·f̂(best

f̂
)

d̂(n)

Note that best
d̂

is chosen from a focal list based on best
f̂

because f̂(best
f̂
) is our current estimate of the cost of an

optimal solution, thus nodes with f̂(n) ≤ w · f̂(best
f̂
) are

those nodes that we suspect lead to solutions within the de-
sired suboptimality bound. At every expansion, EES chooses
from among these three nodes using the function:

selectNode

1. if f̂(best
d̂
) ≤ w · f(bestf) then best

d̂

2. else if f̂(best
f̂
) ≤ w · f(bestf) then best

f̂

3. else bestf

We first consider best
d̂
, as pursuing nearer goals should lead

to a goal fastest, satisfying the second objective of bounded
suboptimal search. best

d̂
is selected if its expected solution

cost can be shown to be within the suboptimality bound. If
best

d̂
is unsuitable, best

f̂
is examined. We suspect that this

node lies along a path to an optimal solution. Expanding this
node can also expand the set of candidates for best

d̂
by rais-

ing the estimated cost of best
f̂

. We only expand best
f̂

if it

is estimated to lead to a solution within the bound. If neither
best

f̂
nor best

d̂
are thought to be within the bound, we re-

turn bestf . Expanding it can raise our lower bound f(bestf),
allowing us to consider best

d̂
or best

f̂
in the next iteration.

Theorem 1 If ĥ(n) ≥ h(n) and g(opt) represents the cost
of an optimal solution, then for every node n expanded by
EES, it is true that f(n) ≤ w · g(opt), and thus EES returns
w-admissible solutions.

Proof: selectNode will always return one of best
d̂
, best

f̂
or

bestf . No matter which node n is selected we will show that
f(n) ≤ w · f(bestf ). This is trivial when bestf is chosen.
When best

d̂
is selected:

f̂(best
d̂
) ≤ w · f(bestf) by selectNode

g(best
d̂
) + ĥ(best

d̂
) ≤ w · f(bestf) by def. of f̂

g(best
d̂
) + h(best

d̂
) ≤ w · f(bestf) by h ≤ ĥ

f(best
d̂
) ≤ w · f(bestf) by def. of f

f(best
d̂
) ≤ w · g(opt) by admissible h

675



When best
d̂

is a solution, h(best
d̂
) = 0 and f(best

d̂
) =

g(best
d̂
), thus the cost of the solution represented by best

d̂
is within a bounded factor w of the cost of an optimal solu-
tion. The best

f̂
case is analogous. �

3.1 The Behavior of EES

Explicit Estimation Search takes both the distance-to-go es-
timate as well as the cost-to-go estimate into consideration
when deciding which node to expand next. This allows it to
prefer finding solutions within the bound as quickly as possi-
ble. It does this by operating in the same spirit as A∗

ε , using
both an open and a focal list. However, unlike A∗

ε , EES con-
sults an unbiased estimate of the cost-to-go for nodes in order

to form its focal list. f̂(n) is less likely to rise along a path
than f(n), considering that f(n) can only rise or stay the
same by the admissibility of h(n). Relying on an unbiased
estimate tempers the tendency for estimated costs to always
rise and avoids the thrashing behavior of A∗

ε .

Like optimistic and skeptical search, EES uses a cleanup
list, a list of all open nodes sorted on f(n), to prove its sub-
optimality bound. Rather than doing all of these expansions
after having found a solution, EES interleaves cleanup expan-
sions with those directed towards finding a solution. We can
see this in the definition of selectNode, where EES may ei-
ther raise the lower bound on optimal solution cost by select-
ing bestf , or it may instead pursue a solution by expanding
either of the other two nodes. It can never run into the prob-
lem of having an incumbent solution that falls outside of the
desired suboptimality bound because every node selected for
expansion is within the bound.

Much like A∗
ε or weighted A∗, EES will become faster

as the bound is loosened. Like A∗
ε , EES becomes a greedy

search on d̂. This contrasts with weighted A∗, skeptical
search, and optimistic search which focus exclusively on cost
estimates and thus do not minimize search time.

3.2 Alternative Node Selection Strategies

Although the formulation of selectNode is directly moti-
vated by the stated goals of bounded suboptimal search, it
is natural to wonder if there are other strategies that may have
better performance. We consider two alternatives, one con-
servative and one optimistic. First, a more conservative ap-
proach that prefers to do the bound-proving expansions, those
on bestf , as early as possible and so it first considers bestf :

selectNodecon

1. if f̂(best
f̂
) > w · f(bestf) then bestf

2. else if f̂(best
d̂
) ≤ w · f(bestf) then best

d̂
3. else best

f̂

If bestf isn’t selected for expansion, it then considers best
d̂

and best
f̂

as before. This expansion order produces a solu-

tion within the desired bound by the same argument as that
for selectNode. While this alternate select node seems quite
different on the surface, it turns out that it is identical to the
original rules. If we were to strengthen the rules for selecting
each of the three nodes by including the negation of the pre-
vious rules, we would see that the two functions are identical.

Next, consider an optimistic approach, analogous to that
used by optimistic search and skeptical search:

selectNodeopt
1. if no incumbent then best

d̂

2. else if f̂(best
d̂
) ≤ w · f(bestf) then best

d̂

3. else if f̂(best
f̂
) ≤ w · f(bestf) then best

f̂

4. else bestf

In its initial phase, EESopt finds the shortest solution it be-
lieves to be within the bound. Then, after finding an incum-
bent solution, it behaves exactly like EES. The search ends
when either w · f(bestf) is larger than the cost of the in-
cumbent solution or when a new goal is expanded, because in
either case EESopt has produced a w-admissible solution. We
will examine both EES and EESopt in our evaluation below.

3.3 Implementation

EES is structured like a classic best-first search: insert the ini-
tial node into open, and at each step, we select the next node
for expansion using selectNode. To efficiently access best

f̂
,

best
d̂
, and bestf , EES maintains three queues, the open list,

focal list, and cleanup list. These lists are used to access
best

f̂
, best

d̂
, and bestf respectively. The open list contains

all generated but unexpanded nodes sorted on f̂(n). The node
at the front of the open list is best

f̂
. focal is a prefix of the

open list ordered on d̂. focal contains all of those nodes where

f̂(n) ≤ w · f̂(best
f̂
). The node at the front of focal is best

d̂
.

cleanup contains all nodes from open, but is ordered on f(n)

instead of f̂(n). The node at the front of cleanup is bestf .
We need to be able to quickly select a node at the front of
one these queues, remove it from all relevant data structures,
and reinsert its children efficiently. To accomplish this, we
implement cleanup as a binary heap, open as a red-black tree,
and focal as a heap synchronized with a left prefix of open.
This lets us perform most insertions and removals in logarith-
mic time except for transferring nodes from open onto focal
as best

f̂
changes. This requires us to visit a small range of

the red-black tree in order to put the correct nodes in focal.

3.4 Simplified Approaches

With three queues to manage, EES has substantial overhead
when compared to other bounded suboptimal search algo-
rithms. One way to simplify EES would be to remove some
of the node orderings. It is clear that we can not ignore the
cleanup list, or we would lose bounded suboptimality. If we
were to eliminate the open list, and synchronize focal with
cleanup instead, we would obtain A∗

ε . If we were to ignore fo-
cal, and instead only expand either bestf or best

f̂
, we would

be left with a novel interleaved implementation of skeptical
search, but this would not be able to prefer the shorter of two
solutions within the bound. We can conclude that EES is only
as complicated as it needs to be. In the next section, we will
see that its overhead is worthwhile.

4 Empirical Evaluation

From the description of the algorithm, we can see that EES
was designed to work well in domains where solution cost

676



and length can differ and it should do particularly well on
problems with computationally expensive node expansion
functions and heuristics. We do not know how much of an
advantage using distance estimates will provide, nor do we
know how much the overhead of EES will degrade perfor-
mance in domains where expansion and heuristic computa-
tion are cheap. To gain a better understanding of these as-
pects of the algorithm, we performed an empirical evaluation
across six benchmark domains. All algorithms were imple-
mented in Objective Caml and compiled to native code on
64-bit Intel Linux systems with 3.16 GHz Core2 duo proces-
sors and 8 GB of RAM. Algorithms were run until they solved
the problem or until ten minutes had passed.

We examined the following algorithms:

weighted A∗(wA*) [Pohl, 1970] For domains with many du-
plicates and consistent heuristics, it ignores duplicate states as
this has no impact on the suboptimality bound and typically
improves performance [Likhachev et al., 2003].

A∗
ε (A* eps) [Pearl and Kim, 1982] using the base distance-

to-go heuristic d to sort its focal list.

Optimistic search as described by Thayer and Ruml [2008].

Skeptical search with ĥ and d̂ estimated from the base h and
d using the on-line single step heuristic corrections presented
in Thayer and Ruml [2011]. The technique calculates the
mean one step error in both h and d along the current search
path from the root to the current node. This measurement of
heuristic error is then used to produce a more accurate, but
potentially inadmissible heuristic.

EES using the same estimates of ĥ and d̂ as skeptical.

EES Opt is EES using selectNodeopt.

We evaluated these algorithms on the following domains:

Dock Robot We implemented a dock robot domain inspired
by Ghallab et al. [2004] and the depots domain from the In-
ternational Planning Competition. Here, a robot must move
containers to their desired locations. Containers are stacked
at a location using a crane, and only the topmost container
on a pile may be accessed at any time. The robot may drive
between locations and load or unload itself using the crane
at the location. We tested on 150 randomly configured prob-
lems having three locations laid out on a unit square and ten
containers with random start and goal configurations. Driv-
ing between the depots has a cost of the distance between
them, loading and unloading the robot costs 0.1, and the cost
of using the crane was 0.05 times the height of the stack of
containers at the depot. h was computed as the cost of driv-
ing between all depots with containers that did not belong to
them in the goal configuration plus the cost of moving the
deepest out of place container in the stack to the robot. d was
computed similarly, but 1 is used rather than the actual costs.

We show results for this domain in the leftmost plot of Fig-
ure 1. All plots are laid out similarly, with the x-axis repre-
senting the user-supplied suboptimality bound and the y-axis
representing the mean CPU time taken to find a solution (of-
ten on a log10 scale). We present 95% confidence intervals
on the mean for all plots. In dock robots, we show results
for suboptimality bounds of 1.2 and above. Below this, no
algorithm could reliably solve the instances within memory.
Here we see that the techniques that rely on both inadmis-

sible heuristics and estimates of solution length outperform
weighted A* and optimistic search. A∗

ε performs particularly
poorly in this domain, with run times that are hundreds of
times larger than the other search algorithms, a direct result of
the thrashing behavior described previously. Further we see
that both variants of EES are significantly faster than skep-
tical search, with EESopt being slightly faster than EES for
most suboptimality bounds. Both variants take about half the
time of skeptical search to solve problems at the same bound.
Not only are both EES variants consistently faster than skep-
tical search, their performance is more consistent, as noted by
the tighter confidence intervals around their means.

Vacuum World In this domain, which follows the first state
space presented in Russell and Norvig, page 36 [2010], a
robot is charged with cleaning up a grid world. Movement
is in the cardinal directions, and when the robot is on top of
a pile of dirt, it may clean it up. We consider two variants
of this problem, a unit-cost implementation and another more
realistic variant where the cost of taking an action is one plus
the number of dirt piles the robot has cleaned up (the weight
from the dirt drains the battery faster). We used 50 instances
that are 200 by 200, each cell having a 35% probability of
being blocked. We place ten piles of dirt and the robot ran-
domly in unblocked cells and ensure that the problem can be
solved. For the unit cost domain, we use the minimum span-
ning tree of the dirt piles and the robot for h and for d we
estimate the cost of a greedy traversal of the dirt piles. That
is, we make a freespace assumption on the grid and calculate
the number of actions required to send the robot to the nearest
pile of dirt, then the nearest after that, and so on. For h on the
heavy vacuum problems, we compute the minimum spanning
as before, order the edges by greatest length first, and then
multiply the edge weights by the current weight of the robot
plus the number of edges already considered. d is unchanged.

The center panel of Figure 1 shows the relative perfor-
mance of the algorithms on the unit-cost vacuum problem.
We see that there is very little difference between EES and
EES Opt. which both outperform the other search algo-
rithms about an order of magnitude, solving the problems in
tenths of seconds instead of requiring several seconds. Again,
what these two algorithms have in common that differs from
other approaches is their ability to rely on inadmissible cost-
to-go estimates and estimates of solution length for search
guidance. The performance gap between EES and skeptical
search is not as large here as it is in domains with actions of
differing costs. In unit cost domains like this, searches that
become greedy on cost-to-go behave identically to those that
become greedy on distance-to-go. Removing the distinction
between solution cost and solution length removes one of the
advantages that EES holds over skeptical search.

The right most panel of Figure 1 shows the performance of
the algorithms for the heavy vacuum robot domain. Of the
domains presented here, this has the best set of properties for
use with EES; the heuristic is relatively expensive to compute
and there is a difference between solution cost and solution
length. For very tight bounds, the algorithms all perform sim-
ilarly. As the bound is relaxed, both versions of EES clearly
dominate the other approaches, being between one and two
orders of magnitude faster than other approaches. Both vari-

677



Dock Robot

Suboptimality
2.41.6

to
ta

l 
ra

w
 c

p
u

 t
im

e

300

200

100

A* eps

wA*

Optimistic

Skeptical

EES

EES Opt.

Vacuum World

Suboptimality
42

lo
g
1

0
 t

o
ta

l 
ra

w
 c

p
u

 t
im

e

0.6

0

-0.6

A* eps

Optimistic

Skeptical

wA*

EES

EES Opt.

Heavy Vacuum World

Suboptimality
168

lo
g
1

0
 t

o
ta

l 
ra

w
 c

p
u

 t
im

e

1

0

-1

wA*

Optimistic

Skeptical

A* eps

EES

EES Opt.

Figure 1: Mean CPU time required to find solutions within a given suboptimality bound.

ants solve the problems in fractions of a second instead of
tens of seconds. A∗

ε makes a strong showing for high subop-
timality bounds in this domain precisely because it can take
advantage of the difference between solution cost and solu-
tion length. Of the algorithms that take advantage of distance
estimates, it makes the weakest showing, as it begins to fail
to find solutions for many problems at suboptimality bounds
as large as 4, whereas the EES algorithms solve all instances
down to a suboptimality bound of 1.5.

Dynamic Robot Navigation Following Likhachev et
al. [2003], the goal is to find the fastest path from the initial
state of the robot to some goal location and heading, taking
momentum into account. We use worlds that are 200 by 200
cells in size. We scatter 25 lines, up to 70 cells in length, with
random orientations across the domain and present results av-
eraged over 100 instances. We precompute the shortest path
from the goal to all states, ignoring dynamics. To compute h,
we take the length of the shortest path from a node to a goal
and divide it by the maximum velocity of the robot. For d, we
report the number of actions along that path.

The leftmost panel of Figure 2 shows performance of the
algorithms in a dynamic robot navigation domain. As in
heavy vacuums and dock robots, there is a substantial dif-
ference between the number of actions in a plan and the cost
of that plan, however here computing the heuristic is cheap.
For tight bounds, EES is faster than A∗

ε , however for more
generous bounds A∗

ε pulls ahead. When we evaluate these al-
gorithms in terms of nodes expanded (omitted for space), we
would see that their performance is similar. The better times
of A∗

ε in this domain can be attributed to reduced overhead.

Sliding Tiles Puzzles We examined the 100 instances of the
15-puzzle presented by Korf [1985]. The center panel of Fig-
ure 2 shows the relative performance of the algorithms on
the unit-cost sliding tiles puzzle. We use Manhattan distance
plus linear conflicts for both h and d. This is exactly the
wrong kind of domain for EES. Node generation and heuris-
tic evaluation are incredibly fast, and there is no difference
between the number of actions in a solution and the cost of
that solution. Such a domain lays bare the overhead of EES
and prevents it from taking advantage of its ability to distin-
guish between cost and length of solutions. We see that, in

terms of time to solutions, EES is almost indistinguishable
from weighted A∗ and skeptical search and worse, by about
an order of magnitude, than optimistic search. If we examine
these results in terms of nodes generated (omitted for space),
we see that EES, skeptical, and optimistic search examine a
similar number of nodes for many suboptimality bounds; the
time difference is due to the differing overheads of the algo-
rithms.

The right panel of Figure 2 shows the performance of the
algorithms on inverse tiles problems, where the cost of mov-
ing a tile is the inverse of its face value, 1

face
. This sepa-

rates the cost and length of a solution without altering other
properties of the domain, such as its connectivity and branch-
ing factor. This simple change to the cost function makes
these problems remarkably difficult to solve, and reveals a
hitherto unappreciated brittleness in previously proposed al-
gorithms. We use a weighted Manhattan distance for h and
the unit Manhattan distance for d. Explicit estimation search
and skeptical search are the only algorithms shown for this
domain, as all of the other algorithms fail to solve at least
half of the problems within a 600 second timeout across all
suboptimality bounds shown in the plot. This failure can be
attributed in part to their inability to correct the admissible
heuristic for the problem into a stronger inadmissible heuris-
tic during search, as this is the fundamental difference be-
tween skeptical search, which can solve the problem, and op-
timistic search, which cannot. The ability to solve instances
is not entirely due to reliance on d(n), as A∗

ε is unable to
solve many of the instances in this domain. EES is signifi-
cantly faster than skeptical search in this domain, about 5 to
6 times as fast for moderate suboptimality bounds and a little
more than a full order of magnitude for tight bounds, because
it can incorporate distance-to-go estimates directly for guid-
ance. While we show data out to a suboptimality bound of
50, this trend holds out to at least 100,000.

Summary In our benchmark domains, we saw that ex-
plicit estimation search was consistently faster than other ap-
proaches for bounded suboptimal search in domains where
actions had varying costs. Although A∗

ε was faster for some
bounds in one domain, its behavior is so brittle that it is of
little practical use. EES’ advantage increased in those do-

678



Dynamic Robot Navigation

Suboptimality
321

lo
g
1

0
 t

o
ta

l 
ra

w
 c

p
u

 t
im

e
1

0

-1

-2

wA*

Skeptical

Optimistic

A* eps

EES Opt.

EES

Korf's 100 15 Puzzles

Suboptimality
2.41.6

lo
g
1

0
 t

o
ta

l 
ra

w
 c

p
u

 t
im

e

2

1

0

-1

A* eps

EES Opt.

EES

Skeptical

wA*

Optimistic

100 Inverse 15 Puzzles

Suboptimality
4020

lo
g
1

0
 t

o
ta

l 
ra

w
 c

p
u

 t
im

e

0

-1

-2

Skeptical

EES Opt.

EES

Figure 2: Mean CPU time required to find solutions within a given suboptimality bound.

mains where either child generation or heuristic computation
were relatively expensive. Here, a superior search order can
overcome search overhead. For domains with cheap heuris-
tics and unit cost actions, EES was merely competitive with
previously proposed algorithms in terms of solving time.

While optimistic search is faster than either version of EES
for one domain, unit cost tiles, note that it cannot solve a sim-
ple real-valued variant, inverse tiles, reliably. Similarly, while
A∗

ε outperforms all algorithms for part of the dynamic robot
navigation problems, it performs poorly, sometimes failing
catastrophically, in the other domains. EES’ overhead affords
it an amount of robustness lacking in the other algorithms.

Neither variant of EES dominates the other in our evalua-
tion. The effectiveness of EESopt depends on the accuracy of

ĥ. If ĥ is relatively accurate, it is more likely that the incum-
bent solution found by EESopt will be within the desired sub-
optimality bound, and EESopt should outperform EES. When

ĥ is inaccurate, it is very likely that the incumbent solution
will be outside of the bound, and EES should be faster.

5 Conclusions

We introduced a new bounded suboptimal heuristic search
algorithm, Explicit Estimation Search (EES), that takes ad-
vantage of inadmissible heuristics and distance estimates to
quickly find solutions within a given suboptimality bound.
It does this by directly optimizing the objective of bounded
suboptimal search. While it is widely appreciated that inad-
missible heuristics are useful for guiding search, it is equally
important to realize that we can use these inadmissible heuris-
tics to guide search without sacrificing bounds on solution
quality. EES is significantly faster than previous approaches,
several orders of magnitude in some cases. It achieves this
in large part by explicitly estimating the cost of completing a
partial solution in addition to computing a lower bound when
deciding which node to expand next. EES is robust, but works
best in domains with actions of varying cost.

6 Acknowledgments

We gratefully acknowledge support from NSF (grant IIS-0812141)
and the DARPA CSSG program (grant N10AP20029).

References
[Ghallab and Allard, 1983] M. Ghallab and D.G. Allard. Aε: An

efficient near admissible heuristic search algorithm. In Proceed-
ings of IJCAI-83, 1983.

[Ghallab et al., 2004] Malik Ghallab, Dana Nau, and Paolo
Traverso. Automated Planning: Theory and Practice. Morgan
Kaufmann, San Francisco, CA, 2004.

[Hart et al., 1968] Peter E. Hart, Nils J. Nilsson, and Bertram
Raphael. A formal basis for the heuristic determination of mini-
mum cost paths. IEEE Transactions of Systems Science and Cy-
bernetics, SSC-4(2):100–107, July 1968.

[Korf, 1985] Richard E. Korf. Iterative-deepening-A*: An optimal
admissible tree search. In Proceedings of IJCAI-85, pages 1034–
1036, 1985.

[Likhachev et al., 2003] Maxim Likhachev, Geoff Gordon, and Se-
bastian Thrun. ARA*: Anytime A* with provable bounds on
sub-optimality. In Proceedings of NIPS-03, 2003.

[Pearl and Kim, 1982] Judea Pearl and Jin H. Kim. Studies in semi-
admissible heuristics. IEEE Transactions on Pattern Analysis and
Machine Intelligence, PAMI-4(4):391–399, July 1982.

[Pohl, 1970] Ira Pohl. Heuristic search viewed as path finding in a
graph. Artificial Intelligence, 1:193–204, 1970.

[Pohl, 1973] Ira Pohl. The avoidance of (relative) catastrophe,
heuristic competence, genuine dynamic weighting and computa-
tion issues in heuristic problem solving. In Proceedings of IJCAI-
73, pages 12–17, 1973.

[Russell and Norvig, 2010] Stuart Russell and Peteer Norvig. Arti-
ficial Intelligence: A Modern Approach. Third edition, 2010.

[Thayer and Ruml, 2008] Jordan T. Thayer and Wheeler Ruml.
Faster than weighted A*: An optimistic approach to bounded
suboptimal search. In Proceedings of ICAPS-08, 2008.

[Thayer and Ruml, 2009] Jordan T. Thayer and Wheeler Ruml. Us-
ing distance estimates in heuristic search. In Proceedings of
ICAPS-09, 2009.

[Thayer and Ruml, 2011] Jordan T. Thayer and Wheeler Ruml.
Learning inadmissible heuristics during search. In Proceedings
of ICAPS-11, 2011.

[Thayer et al., 2009] Jordan T. Thayer, Wheeler Ruml, and Jeff
Kreis. Using distance estimates in heuristic search: A re-
evaluation. In Symposium on Combinatorial Search, 2009.

679




