
Rational Deployment of CSP Heuristics

David Tolpin and Solomon Eyal Shimony

Department of Computer Science,
Ben-Gurion University of the Negev, Beer Sheva, Israel

{tolpin,shimony}@cs.bgu.ac.il

Abstract

Heuristics are crucial tools in decreasing search ef-
fort in varied fields of AI. In order to be effective,
a heuristic must be efficient to compute, as well as
provide useful information to the search algorithm.
However, some well-known heuristics which do
well in reducing backtracking are so heavy that the
gain of deploying them in a search algorithm might
be outweighed by their overhead.
We propose a rational metareasoning approach to
decide when to deploy heuristics, using CSP back-
tracking search as a case study. In particular, a
value of information approach is taken to adaptive
deployment of solution-count estimation heuristics
for value ordering. Empirical results show that
indeed the proposed mechanism successfully bal-
ances the tradeoff between decreasing backtracking
and heuristic computational overhead, resulting in
a significant overall search time reduction.

1 Introduction

Large search spaces are common in artificial intelligence,
heuristics being of major importance in limiting search ef-
forts. The role of a heuristic, depending on type of search
algorithm, is to decrease the number of nodes expanded (e.g.
in A* search), the number of candidate actions considered
(planning), or the number of backtracks in constraint satisfac-
tion problem (CSP) solvers. Nevertheless, some sophisticated
heuristics have considerable computational overhead, signif-
icantly decreasing their overall effect [Horsch and Havens,
2000; Kask et al., 2004], even causing increased total runtime
in pathological cases. It has been recognized that control of
this overhead can be essential to improve search performance;
e.g. by selecting which heuristics to evaluate in a manner de-
pendent on the state of the search [Wallace and Freuder, 1992;
Domshlak et al., 2010].

We propose a rational metareasoning approach [Russell
and Wefald, 1991] to decide when and how to deploy
heuristics, using CSP backtracking search as a case study.
The heuristics examined are various solution count estimate
heuristics for value ordering [Meisels et al., 1997; Horsch and
Havens, 2000], which are expensive to compute, but can sig-

nificantly decrease the number of backtracks. These heuris-
tics make a good case study, as their overall utility, taking
computational overhead into account, is sometimes detrimen-
tal; and yet, by employing these heuristics adaptively, it may
still be possible to achieve an overall runtime improvement,
even in these pathological cases. Following the metareason-
ing approach, the value of information (VOI) of a heuristic is
defined in terms of total search time saved, and the heuristic
is computed such that the expected net VOI is positive.

We begin with background on metareasoning and CSP
(Section 2), followed by a re-statement of value ordering in
terms of rational metareasoning (Section 3), allowing a def-
inition of VOI of a value-ordering heuristics — a contribu-
tion of this paper. This scheme is then instantiated to han-
dle our case-study of backtracking search in CSP (Section 4),
with parameters specific to value-ordering heuristics based on
solution-count estimates, the main contribution of this paper.
Empirical results (Section 5) show that the proposed mech-
anism successfully balances the tradeoff between decreasing
backtracking and heuristic computational overhead, resulting
in a significant overall search time reduction. Other aspects of
such tradeoffs are also analyzed empirically. Finally, related
work is examined (Section 6), and possible future extensions
of the proposed mechanism are discussed (Section 7).

2 Background

2.1 Rational metareasoning

In rational metareasoning [Russell and Wefald, 1991], a
problem-solving agent can perform base-level actions from
a known set {Ai}. Before committing to an action, the agent
may perform a sequence of meta-level “deliberation” actions
from a set {Sj}. At any given time there is an “optimal” base-
level action, Aα, that maximizes the agent’s expected utility:

α = argmax
i

∑
k

P (Wk)U(Ai,Wk) (1)

where {Wk} is the set of possible world states, U(Ai,Wk) is
the utility of performing action Ai in state Wk, and P (Wk) is
the probability that the current world state is Wk.

A meta-level action provides information and affects the
choice of the base-level action Aα. The value of information
(VOI) of a meta-level action Sj is the expected difference
between the expected utility of Sj and the expected utility

680

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

of the current Aα, where P is the current belief distribution
about the state of world, and P j is the belief-state distribution
of the agent after the computational action Sj is performed,
given the outcome of Sj :

V (Sj) = EP (EP j (U(Sj))− EP j (U(Aα))) (2)

Under certain assumptions, it is possible to capture the de-
pendence of utility on time in a separate notion of time cost
C. Then, Equation (2) can be rewritten as:

V (Sj) = Λ(Sj)− C(Sj) (3)

where the intrinsic value of information

Λ(Sj) = EP

(
EP j (U(Aj

α))− EP j (U(Aα))
)

(4)

is the expected difference between the intrinsic expected util-
ities of the new and the old selected base-level action, com-
puted after the meta-level action is taken.

2.2 Constraint satisfaction

A constraint satisfaction problem (CSP) is defined by a set
of variables X = {X1, X2, ...}, and a set of constraints
C = {C1, C2, ...}. Each variable Xi has a non-empty domain
Di of possible values. Each constraint Ci involves some sub-
set of the variables—the scope of the constraint— and speci-
fies the allowable combinations of values for that subset. An
assignment that does not violate any constraints is called con-
sistent (or a solution). There are numerous variants of CSP
settings and algorithmic paradigms. This paper focuses on
binary CSPs over discrete-values variables, and backtracking
search algorithms [Tsang, 1993].

A basic method used in numerous CSP search algorithm
is that of maintaining arc consistency (MAC) [Sabin and
Freuder, 1997]. There are several versions of MAC; all share
the common notion of arc consistency. A variable Xi is arc-
consistent with Xj if for every value a of Xi from the domain
Di there is a value b of Xj from the domain Dj satisfying the
constraint between Xi and Xj . MAC maintains arc consis-
tency for all pairs of variables, and speeds up backtracking
search by pruning many inconsistent branches.

CSP backtracking search algorithms typically employ both
variable-ordering [Tsang, 1993] and value-ordering heuris-
tics. The latter type include minimum conflicts [Tsang, 1993],
which orders values by the number of conflicts they cause
with unassigned variables, Geelen’s promise [Geelen, 1992]
— by the product of domain sizes, and minimum impact [Re-
falo, 2004] orders values by relative impact of the value as-
signment on the product of the domain sizes.

Some value-ordering heuristics are based on solution count
estimates [Meisels et al., 1997; Horsch and Havens, 2000;
Kask et al., 2004]: solution counts for each value assign-
ment of the current variable are estimated, and assignments
(branches) with the greatest solution count are searched first.
The heuristics are based on the assumption that the estimates
are correlated with the true number of solutions, and thus a
greater solution count estimate means a higher probability
that a solution be found in a branch, as well as a shorter search
time to find the first solution if one exists in that branch.
[Meisels et al., 1997] estimate solution counts by approxi-
mating marginal probabilities in a Bayesian network derived

from the constraint graph; [Horsch and Havens, 2000] pro-
pose the probabilistic arc consistency heuristic (pAC) based
on iterative belief propagation for a better accuracy of rela-
tive solution count estimates; [Kask et al., 2004] adapt Iter-
ative Join-Graph Propagation to solution counting, allowing
a tradeoff between accuracy and complexity. These meth-
ods vary by computation time and precision, although all are
rather computationally heavy. Principles of rational metarea-
soning can be applied independently of the choice of imple-
mentation, to decide when to deploy these heuristics.

3 Rational Value-Ordering

The role of (dynamic) value ordering is to determine the or-
der of values to assign to a variable Xk from its domain Dk,
at a search state where values have already been assigned
to (X1, ..., Xk−1). We make the standard assumption that
the ordering may depend on the search state, but is not re-
computed as a result of backtracking from the initial value
assignments to Xk: a new ordering is considered only after
backtracking up the search tree above Xk.

Value ordering heuristics provide information on future
search efforts, which can be summarized by 2 parameters:

• Ti—the expected time to find a solution containing as-
signment Xk = yki or verify that there are no such so-
lutions;

• pi—the “backtracking probability”, that there will be no
solution consistent with Xk = yki.

These are treated as the algorithm’s subjective probabilities
about future search in the current problem instance, rather
than actual distributions over problem instances. Assuming
correct values of these parameters, and independence of back-
tracks, the expected remaining search time in the subtree un-
der Xk for ordering ω is given by:

T s|ω = Tω(1) +

|Dk|∑
i=2

Tω(i)

i−1∏
j=1

pω(j) (5)

In terms of rational metareasoning, the “current” optimal
base-level action is picking the ω which optimizes T s|ω .
Based on a general property of functions on sequences
[Monma and Sidney, 1979], it can be shown that T s|ω is min-
imal if the values are sorted by increasing order of Ti

1−pi
.

A candidate heuristic H (with computation time TH) gen-
erates an ordering by providing an updated (hopefully more
precise) value of the parameters Ti, pi for value assignments
Xk = yki, which may lead to a new optimal ordering ωH ,
corresponding to a new base-level action. The total expected
remaining search time is given by:

T = TH + E[T s|ωH] (6)
Since both TH (the “time cost” of H in metareasoning

terms) and T s|ωH contribute to T , even a heuristic that im-
proves the estimates and ordering may not be useful. It may
be better not to deploy H at all, or to update Ti, pi only for
some of the assignments. According to the rational metarea-
soning approach (Section 2.1), the intrinsic VOI Λi of esti-
mating Ti, pi for the ith assignment is the expected decrease

681

in the expected search time:

Λi = E

[
T s|ω− − T s|ω+i

]
(7)

where ω− is the optimal ordering based on priors, and ω+i on
values after updating Ti, pi. Computing new estimates (with
overhead T c) for values Ti, pi is beneficial just when the net
VOI is positive:

Vi = Λi − T c (8)
To simplify estimation of Λi, the expected search time of
an ordering is estimated as though the parameters are com-
puted only for ω−(1), i.e. for the first value in the ordering;
essentially, this is the metareasoning subtree independence
assumption. Other value assignments are assumed to have
the prior (“default”) parameters Tdef , pdef . Assuming w.l.o.g.
that ω−(1) = 1:

T s|ω− = T1 + p1

|Dk|∑
i=2

Tdefp
i−2
def = T1 + p1Tdef

1− p
(|Dk|−1)
def

1− pdef
(9)

and the intrinsic VOI of the ith deliberation action is:

Λi = E

[
G(Ti, pi)

∣∣∣ Ti

1− pi
<

T1

1− p1

]
(10)

where G(Ti, pi) is the search time gain given the heuristically
computed values Ti, pi:

G(Ti, pi) = T1 − Ti + (p1 − pi)Tdef
1− p

(|Dk|−1)
def

1− pdef
(11)

In some cases, H provides estimates only for the expected
search time Ti. In such cases, the backtracking probability pi
can be bounded by the Markov inequality as the probability
for the given assignment that the time t to find a solution or
to verify that no solution exists is at least the time T all

i to find
all solutions: pi = P

(
t ≥ T all

i

) ≤ Ti

Tall
i

, and the bound can
be used to estimate the probability:

pi ≈ Ti

T all
i

(12)

Furthermore, note that in harder problems the probability
of backtracking from variable Xk is proportional to p

(|Dk|−1)
def ,

and it is reasonable to assume that backtracking probabilities
above Xk (trying values for X1, ..., Xk−1) are still signifi-
cantly greater than 0. Thus, the “default” backtracking prob-
ability pdef is close to 1, and consequently:

T all
i ≈ Tdef ,

1− p
(|Dk|−1)
def

1− pdef
≈ |Dk| − 1 (13)

By substituting (12), (13) into (11), estimate (14) for
G(Ti, pi) is obtained:

G(Ti, pi) ≈ T1 − Ti + (
T1

T all
1

− Ti

T all
i

)Tdef
1− p

(|Dk|−1)
def

1− pdef

≈ (T1 − Ti)|Dk| (14)

Finally, since (12), (13) imply that Ti < T1 ⇔ Ti

1−pi
< T1

1−p1
,

Λi ≈ E

[
(T1 − Ti)|Dk|

∣∣∣ Ti < T1

]
(15)

4 VOI of Solution Count Estimates

The estimated solution count for an assignment may be used
to estimate the expected time to find a solution for the assign-
ment under the following assumptions1:

1. Solutions are roughly evenly distributed in the search
space, that is, the distribution of time to find a solution
can be modeled by a Poisson process.

2. Finding all solutions for an assignment Xk = yki takes
roughly the same time for all assignments to the variable
Xk. Prior work [Meisels et al., 1997; Kask et al., 2004]
demonstrates that ignoring the differences in subprob-
lem sizes is justified.

3. The expected time to find all solutions for an assignment
divided by its solution count estimate is a reasonable es-
timate for the expected time to find a single solution.

Based on these assumptions, Ti can be estimated as Tall

|Dk|ni

where T all is the expected time to find all solutions for all
values of Xk, and ni is the solution count estimate for yki;
likewise, T1 = Tall

|Dk|nmax
, where nmax is the currently greatest

ni. By substituting the expressions for Ti, T1 into (15), obtain
as the intrinsic VOI of computing ni:

Λi = T all
∞∑

n=nmax

(
1

nmax
− 1

n

)
P (n, ν) (16)

where P (n, ν) = e−ν νn

n! is the probability, according to the
Poisson distribution, to find n solutions for a particular as-
signment when the mean number of solutions per assignment
is ν = N

|Dk| , and N is the estimated solution count for all
values of Xk, computed at an earlier stage of the algorithm.

Neither T all nor T c, the time to estimate the solution count
for an assignment, are known. However, for relatively low so-
lution counts, when an invocation of the heuristic has high
intrinsic VOI, both T all and T c are mostly determined by
the time spent eliminating non-solutions. Therefore, T c can
be assumed approximately proportional to Tall

|Dk| , the average
time to find all solutions for a single assignment, with an un-
known factor γ < 1:

T c ≈ γ
T all

|Dk| (17)

Then, T all can be eliminated from both T c and Λ. Following
Equation (8), the solution count should be estimated when-
ever the net VOI is positive:

V (nmax) ∝ |Dk|e−ν
∞∑

n=nmax

(
1

nmax
− 1

n

)
νn

n!
− γ (18)

The infinite series in (18) rapidly converges, and an approx-
imation of the sum can be computed efficiently. As done in

1We do not claim that this is a valid model of CSP search; rather,
we argue that even with such a crude model one can get significant
runtime improvements.

682

Section 5, γ can be learned offline from a set of problem in-
stances of a certain kind for the given implementation of the
search algorithm and the solution counting heuristic.

Algorithm 1 implements rational value ordering. The pro-
cedure receives problem instance csp with assigned values for
variables X1, ..., Xk−1, variable Xk to be ordered, and esti-
mate N of the number of solutions of the problem instance
(line 1); N is computed at the previous step of the backtrack-
ing algorithm as the solution count estimate for the chosen
assignment for Xk−1, or, if k = 1, at the beginning of the
search as the total solution count estimate for the instance.
Solution counts ni for some of the assignments are estimated
(lines 4–9) by selectively invoking the heuristic computation
ESTIMATESOLUTIONCOUNT (line 8), and then the domain
of Xk, ordered by non-increasing solution count estimates of
value assignments, is returned (lines 11–12).

Algorithm 1 Value Ordering via Solution Count Estimation
1: procedure VALUEORDERING-SC(csp,Xk, N)
2: D ← Dk, nmax ← N

|D|
3: for all i in 1..|D| do ni ← nmax

4: while V (nmax) > 0 do � using Equation (18)
5: choose yki ∈ D arbitrarily
6: D ← D \ {yki}
7: csp′ ← csp with Dk = {yki}
8: ni ← ESTIMATESOLUTIONCOUNT(csp′)
9: if ni > nmax then nmax ← ni

10: end while
11: Dord ← sort Dk by non-increasing ni

12: return Dord

5 Empirical Evaluation

Specifying the algorithm parameter γ is the first issue. γ
should be a characteristic of the implementation of the search
algorithm, rather than of the problem instance; it is also desir-
able that the performance of the algorithm not be too sensitive
to fine tuning of this parameter.

Most of the experiments were conducted on sets of random
problem instances generated according to Model RB [Xu and
Li, 2000]. The empirical evaluation was performed in two
stages. In the first stage, several benchmarks were solved
for a wide range of values of γ, and an appropriate value for
γ was chosen. In the second stage, the search was run on
two sets of problem instances with the chosen γ, as well as
with exhaustive deployment, and with the minimum conflicts
heuristic, and the search time distributions were compared for
each of the value-ordering heuristics.

The AC-3 version of MAC was used for the experiments,
with some modifications [Sabin and Freuder, 1997]. Vari-
ables were ordered using the maximum degree variable or-
dering heuristic.2 The value-ordering heuristic was based on
a version of the solution count estimate proposed in [Meisels

2A dynamic variable ordering heuristic, such as dom/deg, may
result in shorter search times in general, but gave no significant im-
provement in our experiments; on the other hand, static variable or-
dering simplifies the analysis.

et al., 1997]. The version used in this paper was optimized
for better computation time for overconstrained problem in-
stances. As a result, Equation (17) is a reasonable approxi-
mation for this implementation. The source code is available
from http://ftp.davidashen.net/vsc.tar.gz.

5.1 Benchmarks

1e−07 1e−05 1e−03 1e−01

0.
0

0.
5

1.
0

1.
5

a. Search time

T
V

S
C

T

TVSC TSC

TVSC TMC
TVSC TpAC

1e−07 1e−05 1e−03 1e−01
0.

0
1.

0
2.

0
3.

0

b. Number of backtracks

N
V

S
C

N

NVSC NSC

NVSC NMC
NVSC NpAC

1e−07 1e−05 1e−03 1e−01

0.
0

0.
2

0.
4

0.
6

c. Solution count estimations

C
vs

c
C

sc

Figure 1: Influence of γ in CSP benchmarks

CSP benchmarks from CSP Solver Competition 2005
[Boussemart et al., 2005] were used. 14 out of 26 bench-
marks solved by at least one of the solvers submitted for the
competition could be solved with 30 minutes timeout by the
solver used for this empirical study for all values of γ: γ = 0
and the exponential range γ ∈ {10−7, 10−6, ..., 1}, as well as
with the minimum-conflicts heuristic and the pAC heuristic.

Figure 1.a shows the mean search time of VOI-driven so-
lution count estimate deployment TV SC normalized by the
search time of exhaustive deployment TSC (γ = 0), for the
minimum conflicts heuristic TMC , and for the pAC heuris-
tic TPAC . The shortest search time on average is achieved
by VSC for γ ∈ [10−4, 3 · 10−3] (shaded in the figure) and
is much shorter than for SC (mean

(
TV SC(10−3)

TSC

)
≈ 0.45);

the improvement was actually close to the “ideal” of getting
all the information provided by the heuristic without paying
the overhead at all. For all but one of the 14 benchmarks the
search time for VSC with γ = 3 · 10−3 is shorter than for
MC. For most values of γ, VSC gives better results than MC
(TV SC

TMC
< 1). pAC always results in the longest search time

due to the computational overhead.

683

Figure 1.b shows the mean number of backtracks of VOI-
driven deployment NV SC normalized by the number of back-
tracks of exhaustive deployment NSC , the minimum conflicts
heuristic NMC , and for the pAC heuristic NpAC . VSC causes
less backtracking than MC for γ ≤ 3·10−3 (NV SC

NMC
< 1). pAC

always causes less backtracking than other heuristics, but has
overwhelming computational overhead.

Figure 1.c shows CV SC , the number of estimated solu-
tion counts of VOI-driven deployment, normalized by the
number of estimated solution counts of exhaustive deploy-
ment CSC . When γ = 10−3 and the best search time is
achieved, the solution counts are estimated only in a rela-
tively small number of search states: the average number of
estimations is ten times smaller than in the exhaustive case
(mean

(
CV SC(10−3)

CSC

)
≈ 0.099, median

(
CV SC(10−3)

CSC

)
≈

0.048).
The results show that although the solution counting

heuristic may provide significant improvement in the search
time, further improvement is achieved when the solution
count is estimated only in a small fraction of occasions se-
lected using rational metareasoning.

a. Easier instances

Search time, sec

F
re

qu
en

cy

0 5TMCTSCTVSC TpAC

MC

SC

VSC pAC

MC
SC
VSC
pAC

b. Harder instances

Search time, sec

F
re

qu
en

cy

0 50TMCTSCTVSC TpAC

MC

SC

VSC pAC

MC
SC
VSC
pAC

Figure 2: Search time comparison on sets of random in-
stances (using Model RB)

5.2 Random instances

Based on the results on benchmarks, we chose γ = 10−3,
and applied it to two sets of 100 problem instances. Exhaus-
tive deployment, rational deployment, the minimum conflicts
heuristic, and probabilistic arc consistency were compared.

The first, easier, set was generated with 30 variables, 30
values per domain, 280 constraints, and 220 nogood pairs
per constraint (p = 0.24, pcrit = 0.30). Search time dis-
tributions are presented in Figure 2.a. The shortest mean
search time is achieved for rational deployment, with ex-
haustive deployment next (TSC

TV SC
≈ 1.75), followed by the

minimum conflicts heuristic (TMC

TV SC
≈ 2.16) and probabilis-

tic arc consistency (TpAC

TV SC
≈ 3.42). Additionally, while

the search time distributions for solution counting are sharp
(maxTSC

TSC
≈ 1.08, maxTV SC

TV SC
≈ 1.73), the distribution for

the minimum conflicts heuristic has a long tail with a much
longer worst case time (maxTV SC

TV SC
≈ 5.67).

The second, harder, set was generated with 40 variables, 19
values, 410 constraints, 90 nogood pairs per constraint (ex-
actly at the phase transition: p = pcrit = 0.25). Search
time distributions are presented in Figure 2.b. As with the
first set, the shortest mean search time is achieved for rational
deployment: TSC

TV SC
≈ 1.43, while the relative mean search

time for the minimum conflicts heuristic is much longer:
TMC

TV SC
≈ 3.45. The probabilistic arc consistency heuristic

resulted again in the longest search time due to the overhead
of computing relative solution count estimates by loopy belief
propagation: maxTV SC

TV SC
≈ 3.91.

Thus, the value of γ chosen based on a small set of hard in-
stances gives good results on a set of instances with different
parameters and of varying hardness.

5.3 Generalized Sudoku

Randomly generated problem instances have played a key
role in the design and study of heuristics for CSP. How-
ever, one might argue that the benefits of our scheme are
specific to model RB. Indeed, real-world problem instances
often have much more structure than random instances gen-
erated according to Model RB. Hence, we repeated the exper-
iments on randomly generated Generalized Sudoku instances
[Ansótegui et al., 2006], since this domain is highly struc-
tured, and thus a better source of realistic problems with a
controlled measure of hardness.

The search was run on two sets of 100 Generalized Su-
doku instances, with 4x3 tiles and 90 holes and with 7x4 tiles
and 357 holes, with holes punched using the doubly balanced
method [Ansótegui et al., 2006]. The search was repeated
on each instance with the exhaustive solution-counting, VOI-
driven solution counting (with the same value of γ = 10−3 as
for the RB model problems), minimum conflicts, and proba-
bilistic arc consistency value ordering heuristics. Results are
summarized in Table 1 and show that relative performance of
the methods on Generalized Sudoku is similar to the perfor-
mance on Model RB.

TSC , sec
(

TV SC
TSC

) (
TMC
TSC

) (
TpAC

TSC

)

4x3, 90 holes 1.809 0.755 1.278 22.421
7x4, 357 holes 21.328 0.868 3.889 3.826

Table 1: Generalized Sudoku

5.4 Deployment patterns

One might ask whether trivial methods for selective deploy-
ment would work, such as estimating solution counts for a
certain number of assignments in the beginning of the search.
We examined deployment patterns of VOI-driven SC with
(γ = 10−3) on several instances of different hardness. For

684

all instances, the solution counts were estimated at varying
rates during all stages of the search, and the deployment pat-
terns differed between the instances, so a simple deployment
scheme seems unlikely.

VOI-driven deployment also compares favorably to ran-
dom deployment. Table 2 shows performance of VOI-driven
deployment for γ = 10−3 and of uniform random deploy-
ment, with total number of solution count estimations equal
to that of the VOI-driven deployment. For both schemes, the
values for which solution counts were not estimated were or-
dered randomly, and the search was repeated 20 times. The
mean search time for the random deployment is ≈ 1.6 times
longer than for the VOI-driven deployment, and has ≈ 100
times greater standard deviation.

mean(T), sec median(T), sec sd(T), sec
VOI-driven 19.841 19.815 0.188

random 31.421 42.085 20.038

Table 2: VOI-driven vs. random deployment

6 Discussion and Related Work

The principles of bounded rationality appear in [Horvitz,
1987]. [Russell and Wefald, 1991] provided a formal de-
scription of rational metareasoning and case studies of appli-
cations in several problem domains. A typical use of rational
metareasoning in search is in finding which node to expand,
or in a CSP context determining a variable or value assign-
ment. The approach taken in this paper adapts these methods
to whether to spend the time to compute a heuristic.

Runtime selection of heuristics has lately been of inter-
est, e.g. deploying heuristics for planning [Domshlak et al.,
2010]. The approach taken is usually that of learning which
heuristics to deploy based on features of the search state. Al-
though our approach can also benefit from learning, since we
have a parameter that needs to be tuned, its value is mostly al-
gorithm dependent, rather than problem-instance dependent.
This simplifies learning considerably, as opposed to having
to learn a classifier from scratch. Comparing metareasoning
techniques to learning techniques (or possibly a combination
of both, e.g. by learning more precise distribution models) is
an interesting issue for future research.

Although rational metareasoning is applicable to other
types of heuristics, solution-count estimation heuristics are
natural candidates for the type of optimization suggested in
this paper. [Dechter and Pearl, 1987] first suggested solution
count estimates as a value-ordering heuristic (using propaga-
tion on trees) for constraint satisfaction problems, refined in
[Meisels et al., 1997] to multi-path propagation.

[Horsch and Havens, 2000] used a value-ordering heuristic
that estimated relative solution counts to solve constraint sat-
isfaction problems and demonstrated efficiency of their algo-
rithm (called pAC, probabilistic Arc Consistency). However,
the computational overhead of the heuristic was large, and
the relative solution counts were computed offline. [Kask et
al., 2004] introduced a CSP algorithm with a solution count-
ing heuristic based on the Iterative Join-Graph Propagation

(IJGP-SC), and empirically showed performance advances
over MAC in most cases. In several cases IJGP-SC was still
slower than MAC due to the computational overhead. [Kask
et al., 2004] also used the IJGP-SC heuristic as the value or-
dering heuristic for MAC.

Impact-based value ordering [Refalo, 2004] is another
heavy informative heuristic. One way to decrease its over-
head, suggested in [Refalo, 2004], is to learn the impact of
an assignment by averaging the impact of earlier assignments
of the same value to the same variable. Rational deployment
of this heuristic by estimating the probability of backtracking
based on the impact may be possible, an issue for future re-
search. [Gomes et al., 2007] propose a technique that adds
random generalized XOR constraints and counts solutions
with high precision, but at present requires solving CSPs, thus
seems not to be immediately applicable as a search heuristic.

The work presented in this paper differs from the above re-
lated schemes in that it does not attempt to introduce new
heuristics or solution-count estimates. Rather, an “off the
shelf” heuristic is deployed selectively based on value of in-
formation, thereby significantly reducing the heuristic’s “ef-
fective” computational overhead, with an improvement in
performance for problems of different size and hardness.

7 Summary and Future Research

This paper suggests a model for adaptive deployment of value
ordering heuristics in algorithms for constraint satisfaction
problems. As a case study, the model was applied to a value-
ordering heuristic based on solution count estimates, and a
steady improvement in the overall algorithm performance
was achieved compared to always computing the estimates,
as well as to other simple deployment tactics. The experi-
ments showed that for many problem instances the optimum
performance is achieved when solution counts are estimated
only in a relatively small number of search states.

The methods introduced in this paper can be extended in
numerous ways. First, generalization of the VOI to deploy
different types of heuristics for CSP, such as variable order-
ing heuristics, as well as reasoning about deployment of more
than one heuristic at a time, are natural non-trivial extensions.
Second, an explicit evaluation of the quality of the distribu-
tion model is an interesting issue, coupled with a better candi-
date model of the distribution. Such distribution models can
also employ more disciplined statistical learning methods in
tandem, as suggested above. Finally, applying the methods
suggested in this paper to search in other domains can be
attempted, especially to heuristics for planning. In particu-
lar, examining whether the meta-reasoning scheme can im-
prove reasoning over deployment of heuristics based solely
on learning methods is an interesting future research issue.

Acknowledgments

The research is partially supported by the IMG4 Consortium
under the MAGNET program of the Israeli Ministry of Trade
and Industry, by Israel Science Foundation grant 305/09, by
the Lynne and William Frankel Center for Computer Sci-
ences, and by the Paul Ivanier Center for Robotics Research
and Production Management.

685

References

[Ansótegui et al., 2006] Carlos Ansótegui, Ramón Béjar,
César Fernàndez, Carla Gomes, and Carles Mateu. The
impact of balancing on problem hardness in a highly struc-
tured domain. In Proc. of 9th Int. Conf. on Theory and
Applications of Satisfiability Testing (SAT 06), 2006.

[Boussemart et al., 2005] Frédéric Boussemart, Fred
Hemery, and Christophe Lecoutre. Description and
representation of the problems selected for the first
international constraint satisfaction solver competition.
Technical report, Proc. of CPAI’05 workshop, 2005.

[Dechter and Pearl, 1987] Rina Dechter and Judea Pearl.
Network-based heuristics for constraint-satisfaction prob-
lems. Artif. Intell., 34:1–38, December 1987.

[Domshlak et al., 2010] Carmel Domshlak, Erez Karpas,
and Shaul Markovitch. To max or not to max: Online
learning for speeding up optimal planning. In AAAI, 2010.

[Geelen, 1992] Pieter Andreas Geelen. Dual viewpoint
heuristics for binary constraint satisfaction problems. In
Proc. 10th European Conf. on AI, ECAI ’92, pages 31–35,
New York, NY, USA, 1992. John Wiley & Sons, Inc.

[Gomes et al., 2007] Carla P. Gomes, Willem jan Van Ho-
eve, Ashish Sabharwal, and Bart Selman. Counting CSP
solutions using generalized XOR constraints. In AAAI,
pages 204–209, 2007.

[Horsch and Havens, 2000] Michael C. Horsch and
William S. Havens. Probabilistic arc consistency: A
connection between constraint reasoning and probabilistic
reasoning. In UAI, pages 282–290, 2000.

[Horvitz, 1987] Eric J. Horvitz. Reasoning about beliefs and
actions under computational resource constraints. In Pro-
ceedings of the 1987 Workshop on Uncertainty in Artificial
Intelligence, pages 429–444, 1987.

[Kask et al., 2004] Kalev Kask, Rina Dechter, and Vibhav
Gogate. Counting-based look-ahead schemes for con-
straint satisfaction. In Proc. of 10th Int. Conf. on Con-
straint Programming (CP04), pages 317–331, 2004.

[Meisels et al., 1997] Amnon Meisels, Solomon Eyal Shi-
mony, and Gadi Solotorevsky. Bayes networks for esti-
mating the number of solutions to a CSP. In Proc. of the
14th National Conference on AI, pages 179–184, 1997.

[Monma and Sidney, 1979] Clyde L. Monma and Jeffrey B.
Sidney. Sequencing with series-parallel precedence con-
straints. Mathematics of Operations Research, 4(3):215–
224, August 1979.

[Refalo, 2004] Philippe Refalo. Impact-based search strate-
gies for constraint programming. In CP, pages 557–571.
Springer, 2004.

[Russell and Wefald, 1991] Stuart Russell and Eric Wefald.
Do the right thing: studies in limited rationality. MIT
Press, Cambridge, MA, USA, 1991.

[Sabin and Freuder, 1997] Daniel Sabin and Eugene C.
Freuder. Understanding and improving the MAC algo-
rithm. In 3rd Int. Conf. on Principles and Practice of

Constraint Programming, LNCS 1330, pages 167–181.
Springer, 1997.

[Tsang, 1993] Edward Tsang. Foundations of Constraint
Satisfaction. Academic Press, London and San Diego,
1993.

[Wallace and Freuder, 1992] Richard J. Wallace and Eu-
gene C. Freuder. Ordering heuristics for arc consistency
algorithms. In AI/GI/VI 92, pages 163–169, 1992.

[Xu and Li, 2000] Ke Xu and Wei Li. Exact phase transi-
tions in random constraint satisfaction problems. Journal
of Artificial Intelligence Research, 12:93–103, 2000.

686

